Updated British English translation
[glib.git] / glib / gqsort.c
blobdb4bed21e6d5108a7f2beee46658d94eafcb4faf
1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1991, 1992, 1996, 1997,1999,2004 Free Software Foundation, Inc.
3 * Copyright (C) 2000 Eazel, Inc.
4 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
23 * This file was originally part of the GNU C Library, and was modified to allow
24 * user data to be passed in to the sorting function.
26 * Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
27 * Modified by Maciej Stachowiak (mjs@eazel.com)
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with GLib
32 * at ftp://ftp.gtk.org/pub/gtk/.
35 #include "config.h"
37 #include <limits.h>
38 #include <stdlib.h>
39 #include <string.h>
41 #include "gqsort.h"
43 #include "gtestutils.h"
45 #ifdef HAVE_QSORT_R
47 /**
48 * g_qsort_with_data:
49 * @pbase: start of array to sort
50 * @total_elems: elements in the array
51 * @size: size of each element
52 * @compare_func: function to compare elements
53 * @user_data: data to pass to @compare_func
55 * This is just like the standard C qsort() function, but
56 * the comparison routine accepts a user data argument.
58 void
59 g_qsort_with_data (gconstpointer pbase,
60 gint total_elems,
61 gsize size,
62 GCompareDataFunc compare_func,
63 gpointer user_data)
65 qsort_r ((gpointer)pbase, total_elems, size, compare_func, user_data);
68 #else
70 /* Byte-wise swap two items of size SIZE. */
71 #define SWAP(a, b, size) \
72 do \
73 { \
74 register size_t __size = (size); \
75 register char *__a = (a), *__b = (b); \
76 do \
77 { \
78 char __tmp = *__a; \
79 *__a++ = *__b; \
80 *__b++ = __tmp; \
81 } while (--__size > 0); \
82 } while (0)
84 /* Discontinue quicksort algorithm when partition gets below this size.
85 This particular magic number was chosen to work best on a Sun 4/260. */
86 #define MAX_THRESH 4
88 /* Stack node declarations used to store unfulfilled partition obligations. */
89 typedef struct
91 char *lo;
92 char *hi;
93 } stack_node;
95 /* The next 4 #defines implement a very fast in-line stack abstraction. */
96 /* The stack needs log (total_elements) entries (we could even subtract
97 log(MAX_THRESH)). Since total_elements has type size_t, we get as
98 upper bound for log (total_elements):
99 bits per byte (CHAR_BIT) * sizeof(size_t). */
100 #define STACK_SIZE (CHAR_BIT * sizeof(size_t))
101 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
102 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
103 #define STACK_NOT_EMPTY (stack < top)
106 /* Order size using quicksort. This implementation incorporates
107 four optimizations discussed in Sedgewick:
109 1. Non-recursive, using an explicit stack of pointer that store the
110 next array partition to sort. To save time, this maximum amount
111 of space required to store an array of SIZE_MAX is allocated on the
112 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
113 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
114 Pretty cheap, actually.
116 2. Chose the pivot element using a median-of-three decision tree.
117 This reduces the probability of selecting a bad pivot value and
118 eliminates certain extraneous comparisons.
120 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
121 insertion sort to order the MAX_THRESH items within each partition.
122 This is a big win, since insertion sort is faster for small, mostly
123 sorted array segments.
125 4. The larger of the two sub-partitions is always pushed onto the
126 stack first, with the algorithm then concentrating on the
127 smaller partition. This *guarantees* no more than log (total_elems)
128 stack size is needed (actually O(1) in this case)! */
130 void
131 g_qsort_with_data (gconstpointer pbase,
132 gint total_elems,
133 gsize size,
134 GCompareDataFunc compare_func,
135 gpointer user_data)
137 register char *base_ptr = (char *) pbase;
139 const size_t max_thresh = MAX_THRESH * size;
141 g_return_if_fail (total_elems >= 0);
142 g_return_if_fail (pbase != NULL || total_elems == 0);
143 g_return_if_fail (compare_func != NULL);
145 if (total_elems == 0)
146 /* Avoid lossage with unsigned arithmetic below. */
147 return;
149 if (total_elems > MAX_THRESH)
151 char *lo = base_ptr;
152 char *hi = &lo[size * (total_elems - 1)];
153 stack_node stack[STACK_SIZE];
154 stack_node *top = stack;
156 PUSH (NULL, NULL);
158 while (STACK_NOT_EMPTY)
160 char *left_ptr;
161 char *right_ptr;
163 /* Select median value from among LO, MID, and HI. Rearrange
164 LO and HI so the three values are sorted. This lowers the
165 probability of picking a pathological pivot value and
166 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
167 the while loops. */
169 char *mid = lo + size * ((hi - lo) / size >> 1);
171 if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
172 SWAP (mid, lo, size);
173 if ((*compare_func) ((void *) hi, (void *) mid, user_data) < 0)
174 SWAP (mid, hi, size);
175 else
176 goto jump_over;
177 if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
178 SWAP (mid, lo, size);
179 jump_over:;
181 left_ptr = lo + size;
182 right_ptr = hi - size;
184 /* Here's the famous ``collapse the walls'' section of quicksort.
185 Gotta like those tight inner loops! They are the main reason
186 that this algorithm runs much faster than others. */
189 while ((*compare_func) ((void *) left_ptr, (void *) mid, user_data) < 0)
190 left_ptr += size;
192 while ((*compare_func) ((void *) mid, (void *) right_ptr, user_data) < 0)
193 right_ptr -= size;
195 if (left_ptr < right_ptr)
197 SWAP (left_ptr, right_ptr, size);
198 if (mid == left_ptr)
199 mid = right_ptr;
200 else if (mid == right_ptr)
201 mid = left_ptr;
202 left_ptr += size;
203 right_ptr -= size;
205 else if (left_ptr == right_ptr)
207 left_ptr += size;
208 right_ptr -= size;
209 break;
212 while (left_ptr <= right_ptr);
214 /* Set up pointers for next iteration. First determine whether
215 left and right partitions are below the threshold size. If so,
216 ignore one or both. Otherwise, push the larger partition's
217 bounds on the stack and continue sorting the smaller one. */
219 if ((size_t) (right_ptr - lo) <= max_thresh)
221 if ((size_t) (hi - left_ptr) <= max_thresh)
222 /* Ignore both small partitions. */
223 POP (lo, hi);
224 else
225 /* Ignore small left partition. */
226 lo = left_ptr;
228 else if ((size_t) (hi - left_ptr) <= max_thresh)
229 /* Ignore small right partition. */
230 hi = right_ptr;
231 else if ((right_ptr - lo) > (hi - left_ptr))
233 /* Push larger left partition indices. */
234 PUSH (lo, right_ptr);
235 lo = left_ptr;
237 else
239 /* Push larger right partition indices. */
240 PUSH (left_ptr, hi);
241 hi = right_ptr;
246 /* Once the BASE_PTR array is partially sorted by quicksort the rest
247 is completely sorted using insertion sort, since this is efficient
248 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
249 of the array to sort, and END_PTR points at the very last element in
250 the array (*not* one beyond it!). */
252 #define min(x, y) ((x) < (y) ? (x) : (y))
255 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
256 char *tmp_ptr = base_ptr;
257 char *thresh = min(end_ptr, base_ptr + max_thresh);
258 register char *run_ptr;
260 /* Find smallest element in first threshold and place it at the
261 array's beginning. This is the smallest array element,
262 and the operation speeds up insertion sort's inner loop. */
264 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
265 if ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
266 tmp_ptr = run_ptr;
268 if (tmp_ptr != base_ptr)
269 SWAP (tmp_ptr, base_ptr, size);
271 /* Insertion sort, running from left-hand-side up to right-hand-side. */
273 run_ptr = base_ptr + size;
274 while ((run_ptr += size) <= end_ptr)
276 tmp_ptr = run_ptr - size;
277 while ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
278 tmp_ptr -= size;
280 tmp_ptr += size;
281 if (tmp_ptr != run_ptr)
283 char *trav;
285 trav = run_ptr + size;
286 while (--trav >= run_ptr)
288 char c = *trav;
289 char *hi, *lo;
291 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
292 *hi = *lo;
293 *hi = c;
300 #endif /* HAVE_QSORT_R */