Include <string.h> for memcpy.
[glib.git] / gqsort.c
blobc75cca31a45983d2505bd1f913309af9b37eb91f
1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1991, 1992, 1996, 1997 Free Software Foundation, Inc.
3 * Copyright (C) 2000 Eazel, Inc.
4 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 02111-1307, USA.
23 * This file was originally part of the GNU C Library, and was modified to allow
24 * user data to be passed in to the sorting function.
26 * Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
27 * Modified by Maciej Stachowiak (mjs@eazel.com)
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/. */
34 #include <string.h>
36 #include "glib.h"
38 /* Byte-wise swap two items of size SIZE. */
39 #define SWAP(a, b, size) \
40 do \
41 { \
42 register size_t __size = (size); \
43 register char *__a = (a), *__b = (b); \
44 do \
45 { \
46 char __tmp = *__a; \
47 *__a++ = *__b; \
48 *__b++ = __tmp; \
49 } while (--__size > 0); \
50 } while (0)
52 /* Discontinue quicksort algorithm when partition gets below this size.
53 This particular magic number was chosen to work best on a Sun 4/260. */
54 #define MAX_THRESH 4
56 /* Stack node declarations used to store unfulfilled partition obligations. */
57 typedef struct
59 char *lo;
60 char *hi;
62 stack_node;
64 /* The next 4 #defines implement a very fast in-line stack abstraction. */
65 #define STACK_SIZE (8 * sizeof(unsigned long int))
66 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
67 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
68 #define STACK_NOT_EMPTY (stack < top)
71 /* Order size using quicksort. This implementation incorporates
72 * four optimizations discussed in Sedgewick:
74 * 1. Non-recursive, using an explicit stack of pointer that store the next
75 * array partition to sort. To save time, this maximum amount of space
76 * required to store an array of MAX_INT is allocated on the stack. Assuming
77 * a 32-bit integer, this needs only 32 * sizeof(stack_node) == 136 bits.
78 * Pretty cheap, actually.
80 * 2. Chose the pivot element using a median-of-three decision tree. This
81 * reduces the probability of selecting a bad pivot value and eliminates
82 * certain * extraneous comparisons.
84 * 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving insertion
85 * sort to order the MAX_THRESH items within each partition. This is a big
86 * win, since insertion sort is faster for small, mostly sorted array
87 * segments.
89 * 4. The larger of the two sub-partitions is always pushed onto the stack
90 * first, with the algorithm then concentrating on the smaller partition.
91 * This *guarantees* no more than log (n) stack size is needed (actually O(1)
92 * in this case)!
95 void
96 g_qsort_with_data (gconstpointer pbase,
97 gint total_elems,
98 size_t size,
99 GCompareDataFunc compare_func,
100 gpointer user_data)
102 register char *base_ptr = (char *) pbase;
104 /* Allocating SIZE bytes for a pivot buffer facilitates a better
105 * algorithm below since we can do comparisons directly on the pivot.
107 char *pivot_buffer = (char *) alloca (size);
108 const size_t max_thresh = MAX_THRESH * size;
110 g_return_if_fail (total_elems > 0);
111 g_return_if_fail (pbase != NULL);
112 g_return_if_fail (compare_func != NULL);
114 if (total_elems > MAX_THRESH)
116 char *lo = base_ptr;
117 char *hi = &lo[size * (total_elems - 1)];
118 /* Largest size needed for 32-bit int!!! */
119 stack_node stack[STACK_SIZE];
120 stack_node *top = stack + 1;
122 while (STACK_NOT_EMPTY)
124 char *left_ptr;
125 char *right_ptr;
127 char *pivot = pivot_buffer;
129 /* Select median value from among LO, MID, and HI. Rearrange
130 * LO and HI so the three values are sorted. This lowers the
131 * probability of picking a pathological pivot value and
132 * skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
134 char *mid = lo + size * ((hi - lo) / size >> 1);
136 if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
137 SWAP (mid, lo, size);
138 if ((*compare_func) ((void *) hi, (void *) mid, user_data) < 0)
139 SWAP (mid, hi, size);
140 else
141 goto jump_over;
142 if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
143 SWAP (mid, lo, size);
144 jump_over:;
145 memcpy (pivot, mid, size);
146 pivot = pivot_buffer;
148 left_ptr = lo + size;
149 right_ptr = hi - size;
151 /* Here's the famous ``collapse the walls'' section of quicksort.
152 * Gotta like those tight inner loops! They are the main reason
153 * that this algorithm runs much faster than others. */
156 while ((*compare_func)
157 ((void *) left_ptr, (void *) pivot,
158 user_data) < 0)
159 left_ptr += size;
161 while ((*compare_func)
162 ((void *) pivot, (void *) right_ptr,
163 user_data) < 0)
164 right_ptr -= size;
166 if (left_ptr < right_ptr)
168 SWAP (left_ptr, right_ptr, size);
169 left_ptr += size;
170 right_ptr -= size;
172 else if (left_ptr == right_ptr)
174 left_ptr += size;
175 right_ptr -= size;
176 break;
179 while (left_ptr <= right_ptr);
181 /* Set up pointers for next iteration. First determine whether
182 * left and right partitions are below the threshold size. If so,
183 * ignore one or both. Otherwise, push the larger partition's
184 * bounds on the stack and continue sorting the smaller one. */
186 if ((size_t) (right_ptr - lo) <= max_thresh)
188 if ((size_t) (hi - left_ptr) <= max_thresh)
189 /* Ignore both small partitions. */
190 POP (lo, hi);
191 else
192 /* Ignore small left partition. */
193 lo = left_ptr;
195 else if ((size_t) (hi - left_ptr) <= max_thresh)
196 /* Ignore small right partition. */
197 hi = right_ptr;
198 else if ((right_ptr - lo) > (hi - left_ptr))
200 /* Push larger left partition indices. */
201 PUSH (lo, right_ptr);
202 lo = left_ptr;
205 else
207 /* Push larger right partition indices. */
208 PUSH (left_ptr, hi);
209 hi = right_ptr;
214 /* Once the BASE_PTR array is partially sorted by quicksort the rest
215 * is completely sorted using insertion sort, since this is efficient
216 * for partitions below MAX_THRESH size. BASE_PTR points to the beginning
217 * of the array to sort, and END_PTR points at the very last element in
218 * the array (*not* one beyond it!). */
221 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
222 char *tmp_ptr = base_ptr;
223 char *thresh = MIN (end_ptr, base_ptr + max_thresh);
224 register char *run_ptr;
226 /* Find smallest element in first threshold and place it at the
227 * array's beginning. This is the smallest array element,
228 * and the operation speeds up insertion sort's inner loop. */
230 for (run_ptr = tmp_ptr + size; run_ptr <= thresh;
231 run_ptr +=
232 size) if ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr,
233 user_data) < 0)
234 tmp_ptr = run_ptr;
236 if (tmp_ptr != base_ptr)
237 SWAP (tmp_ptr, base_ptr, size);
239 /* Insertion sort, running from left-hand-side up to right-hand-side. */
241 run_ptr = base_ptr + size;
242 while ((run_ptr += size) <= end_ptr)
244 tmp_ptr = run_ptr - size;
245 while ((*compare_func)
246 ((void *) run_ptr, (void *) tmp_ptr,
247 user_data) < 0)
248 tmp_ptr -= size;
250 tmp_ptr += size;
251 if (tmp_ptr != run_ptr)
253 char *trav;
255 trav = run_ptr + size;
256 while (--trav >= run_ptr)
258 char c = *trav;
259 char *hi, *lo;
261 for (hi = lo = trav;
262 (lo -= size) >= tmp_ptr; hi = lo)
263 *hi = *lo;
264 *hi = c;