1 /* GLIB sliced memory - fast concurrent memory chunk allocator
2 * Copyright (C) 2005 Tim Janik
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "glibconfig.h"
22 #if defined(HAVE_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE)
23 #define _XOPEN_SOURCE 600 /* posix_memalign() */
25 #include <stdlib.h> /* posix_memalign() */
30 #include <unistd.h> /* sysconf() */
37 #include <stdio.h> /* fputs */
42 #include "gmem.h" /* gslice.h */
43 #include "gstrfuncs.h"
45 #include "gtrashstack.h"
46 #include "gtestutils.h"
48 #include "glib_trace.h"
51 #include "gvalgrind.h"
54 * SECTION:memory_slices
55 * @title: Memory Slices
56 * @short_description: efficient way to allocate groups of equal-sized
59 * Memory slices provide a space-efficient and multi-processing scalable
60 * way to allocate equal-sized pieces of memory, just like the original
61 * #GMemChunks (from GLib 2.8), while avoiding their excessive
62 * memory-waste, scalability and performance problems.
64 * To achieve these goals, the slice allocator uses a sophisticated,
65 * layered design that has been inspired by Bonwick's slab allocator
66 * ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html)
67 * Jeff Bonwick, The slab allocator: An object-caching kernel
68 * memory allocator. USENIX 1994, and
69 * [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html)
70 * Bonwick and Jonathan Adams, Magazines and vmem: Extending the
71 * slab allocator to many cpu's and arbitrary resources. USENIX 2001)
73 * It uses posix_memalign() to optimize allocations of many equally-sized
74 * chunks, and has per-thread free lists (the so-called magazine layer)
75 * to quickly satisfy allocation requests of already known structure sizes.
76 * This is accompanied by extra caching logic to keep freed memory around
77 * for some time before returning it to the system. Memory that is unused
78 * due to alignment constraints is used for cache colorization (random
79 * distribution of chunk addresses) to improve CPU cache utilization. The
80 * caching layer of the slice allocator adapts itself to high lock contention
81 * to improve scalability.
83 * The slice allocator can allocate blocks as small as two pointers, and
84 * unlike malloc(), it does not reserve extra space per block. For large block
85 * sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the
86 * system malloc() implementation. For newly written code it is recommended
87 * to use the new `g_slice` API instead of g_malloc() and
88 * friends, as long as objects are not resized during their lifetime and the
89 * object size used at allocation time is still available when freeing.
91 * Here is an example for using the slice allocator:
92 * |[<!-- language="C" -->
96 * // Allocate 10000 blocks.
97 * for (i = 0; i < 10000; i++)
99 * mem[i] = g_slice_alloc (50);
101 * // Fill in the memory with some junk.
102 * for (j = 0; j < 50; j++)
106 * // Now free all of the blocks.
107 * for (i = 0; i < 10000; i++)
108 * g_slice_free1 (50, mem[i]);
111 * And here is an example for using the using the slice allocator
112 * with data structures:
113 * |[<!-- language="C" -->
116 * // Allocate one block, using the g_slice_new() macro.
117 * array = g_slice_new (GRealArray);
119 * // We can now use array just like a normal pointer to a structure.
120 * array->data = NULL;
123 * array->zero_terminated = (zero_terminated ? 1 : 0);
124 * array->clear = (clear ? 1 : 0);
125 * array->elt_size = elt_size;
127 * // We can free the block, so it can be reused.
128 * g_slice_free (GRealArray, array);
132 /* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
133 * allocator and magazine extensions as outlined in:
134 * + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
135 * memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
136 * + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
137 * slab allocator to many cpu's and arbitrary resources.
138 * USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
140 * - the thread magazines. for each (aligned) chunk size, a magazine (a list)
141 * of recently freed and soon to be allocated chunks is maintained per thread.
142 * this way, most alloc/free requests can be quickly satisfied from per-thread
143 * free lists which only require one g_private_get() call to retrive the
145 * - the magazine cache. allocating and freeing chunks to/from threads only
146 * occours at magazine sizes from a global depot of magazines. the depot
147 * maintaines a 15 second working set of allocated magazines, so full
148 * magazines are not allocated and released too often.
149 * the chunk size dependent magazine sizes automatically adapt (within limits,
150 * see [3]) to lock contention to properly scale performance across a variety
152 * - the slab allocator. this allocator allocates slabs (blocks of memory) close
153 * to the system page size or multiples thereof which have to be page aligned.
154 * the blocks are divided into smaller chunks which are used to satisfy
155 * allocations from the upper layers. the space provided by the reminder of
156 * the chunk size division is used for cache colorization (random distribution
157 * of chunk addresses) to improve processor cache utilization. multiple slabs
158 * with the same chunk size are kept in a partially sorted ring to allow O(1)
159 * freeing and allocation of chunks (as long as the allocation of an entirely
160 * new slab can be avoided).
161 * - the page allocator. on most modern systems, posix_memalign(3) or
162 * memalign(3) should be available, so this is used to allocate blocks with
163 * system page size based alignments and sizes or multiples thereof.
164 * if no memalign variant is provided, valloc() is used instead and
165 * block sizes are limited to the system page size (no multiples thereof).
166 * as a fallback, on system without even valloc(), a malloc(3)-based page
167 * allocator with alloc-only behaviour is used.
170 * [1] some systems memalign(3) implementations may rely on boundary tagging for
171 * the handed out memory chunks. to avoid excessive page-wise fragmentation,
172 * we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
173 * specified in NATIVE_MALLOC_PADDING.
174 * [2] using the slab allocator alone already provides for a fast and efficient
175 * allocator, it doesn't properly scale beyond single-threaded uses though.
176 * also, the slab allocator implements eager free(3)-ing, i.e. does not
177 * provide any form of caching or working set maintenance. so if used alone,
178 * it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
179 * at certain thresholds.
180 * [3] magazine sizes are bound by an implementation specific minimum size and
181 * a chunk size specific maximum to limit magazine storage sizes to roughly
183 * [4] allocating ca. 8 chunks per block/page keeps a good balance between
184 * external and internal fragmentation (<= 12.5%). [Bonwick94]
187 /* --- macros and constants --- */
188 #define LARGEALIGNMENT (256)
189 #define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
190 #define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base)))
191 #define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */
192 #define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
193 #define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */
194 #define MIN_MAGAZINE_SIZE (4)
195 #define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */
196 #define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */
197 #define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
198 #define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */
199 #define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
200 #define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
202 /* optimized version of ALIGN (size, P2ALIGNMENT) */
203 #if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */
204 #define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7)
205 #elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
206 #define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf)
208 #define P2ALIGN(size) ALIGN (size, P2ALIGNMENT)
211 /* special helpers to avoid gmessage.c dependency */
212 static void mem_error (const char *format
, ...) G_GNUC_PRINTF (1,2);
213 #define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
215 /* --- structures --- */
216 typedef struct _ChunkLink ChunkLink
;
217 typedef struct _SlabInfo SlabInfo
;
218 typedef struct _CachedMagazine CachedMagazine
;
226 SlabInfo
*next
, *prev
;
230 gsize count
; /* approximative chunks list length */
233 Magazine
*magazine1
; /* array of MAX_SLAB_INDEX (allocator) */
234 Magazine
*magazine2
; /* array of MAX_SLAB_INDEX (allocator) */
237 gboolean always_malloc
;
238 gboolean bypass_magazines
;
239 gboolean debug_blocks
;
240 gsize working_set_msecs
;
241 guint color_increment
;
244 /* const after initialization */
245 gsize min_page_size
, max_page_size
;
247 gsize max_slab_chunk_size_for_magazine_cache
;
249 GMutex magazine_mutex
;
250 ChunkLink
**magazines
; /* array of MAX_SLAB_INDEX (allocator) */
251 guint
*contention_counters
; /* array of MAX_SLAB_INDEX (allocator) */
257 SlabInfo
**slab_stack
; /* array of MAX_SLAB_INDEX (allocator) */
261 /* --- g-slice prototypes --- */
262 static gpointer
slab_allocator_alloc_chunk (gsize chunk_size
);
263 static void slab_allocator_free_chunk (gsize chunk_size
,
265 static void private_thread_memory_cleanup (gpointer data
);
266 static gpointer
allocator_memalign (gsize alignment
,
268 static void allocator_memfree (gsize memsize
,
270 static inline void magazine_cache_update_stamp (void);
271 static inline gsize
allocator_get_magazine_threshold (Allocator
*allocator
,
274 /* --- g-slice memory checker --- */
275 static void smc_notify_alloc (void *pointer
,
277 static int smc_notify_free (void *pointer
,
280 /* --- variables --- */
281 static GPrivate private_thread_memory
= G_PRIVATE_INIT (private_thread_memory_cleanup
);
282 static gsize sys_page_size
= 0;
283 static Allocator allocator
[1] = { { 0, }, };
284 static SliceConfig slice_config
= {
285 FALSE
, /* always_malloc */
286 FALSE
, /* bypass_magazines */
287 FALSE
, /* debug_blocks */
288 15 * 1000, /* working_set_msecs */
289 1, /* color increment, alt: 0x7fffffff */
291 static GMutex smc_tree_mutex
; /* mutex for G_SLICE=debug-blocks */
293 /* --- auxiliary funcitons --- */
295 g_slice_set_config (GSliceConfig ckey
,
298 g_return_if_fail (sys_page_size
== 0);
301 case G_SLICE_CONFIG_ALWAYS_MALLOC
:
302 slice_config
.always_malloc
= value
!= 0;
304 case G_SLICE_CONFIG_BYPASS_MAGAZINES
:
305 slice_config
.bypass_magazines
= value
!= 0;
307 case G_SLICE_CONFIG_WORKING_SET_MSECS
:
308 slice_config
.working_set_msecs
= value
;
310 case G_SLICE_CONFIG_COLOR_INCREMENT
:
311 slice_config
.color_increment
= value
;
317 g_slice_get_config (GSliceConfig ckey
)
321 case G_SLICE_CONFIG_ALWAYS_MALLOC
:
322 return slice_config
.always_malloc
;
323 case G_SLICE_CONFIG_BYPASS_MAGAZINES
:
324 return slice_config
.bypass_magazines
;
325 case G_SLICE_CONFIG_WORKING_SET_MSECS
:
326 return slice_config
.working_set_msecs
;
327 case G_SLICE_CONFIG_CHUNK_SIZES
:
328 return MAX_SLAB_INDEX (allocator
);
329 case G_SLICE_CONFIG_COLOR_INCREMENT
:
330 return slice_config
.color_increment
;
337 g_slice_get_config_state (GSliceConfig ckey
,
342 g_return_val_if_fail (n_values
!= NULL
, NULL
);
347 case G_SLICE_CONFIG_CONTENTION_COUNTER
:
348 array
[i
++] = SLAB_CHUNK_SIZE (allocator
, address
);
349 array
[i
++] = allocator
->contention_counters
[address
];
350 array
[i
++] = allocator_get_magazine_threshold (allocator
, address
);
352 return g_memdup (array
, sizeof (array
[0]) * *n_values
);
359 slice_config_init (SliceConfig
*config
)
363 *config
= slice_config
;
365 val
= getenv ("G_SLICE");
369 const GDebugKey keys
[] = {
370 { "always-malloc", 1 << 0 },
371 { "debug-blocks", 1 << 1 },
374 flags
= g_parse_debug_string (val
, keys
, G_N_ELEMENTS (keys
));
375 if (flags
& (1 << 0))
376 config
->always_malloc
= TRUE
;
377 if (flags
& (1 << 1))
378 config
->debug_blocks
= TRUE
;
382 /* G_SLICE was not specified, so check if valgrind is running and
383 * disable ourselves if it is.
385 * This way it's possible to force gslice to be enabled under
386 * valgrind just by setting G_SLICE to the empty string.
388 #ifdef ENABLE_VALGRIND
389 if (RUNNING_ON_VALGRIND
)
390 config
->always_malloc
= TRUE
;
396 g_slice_init_nomessage (void)
398 /* we may not use g_error() or friends here */
399 mem_assert (sys_page_size
== 0);
400 mem_assert (MIN_MAGAZINE_SIZE
>= 4);
404 SYSTEM_INFO system_info
;
405 GetSystemInfo (&system_info
);
406 sys_page_size
= system_info
.dwPageSize
;
409 sys_page_size
= sysconf (_SC_PAGESIZE
); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
411 mem_assert (sys_page_size
>= 2 * LARGEALIGNMENT
);
412 mem_assert ((sys_page_size
& (sys_page_size
- 1)) == 0);
413 slice_config_init (&allocator
->config
);
414 allocator
->min_page_size
= sys_page_size
;
415 #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN
416 /* allow allocation of pages up to 8KB (with 8KB alignment).
417 * this is useful because many medium to large sized structures
418 * fit less than 8 times (see [4]) into 4KB pages.
419 * we allow very small page sizes here, to reduce wastage in
420 * threads if only small allocations are required (this does
421 * bear the risk of increasing allocation times and fragmentation
424 allocator
->min_page_size
= MAX (allocator
->min_page_size
, 4096);
425 allocator
->max_page_size
= MAX (allocator
->min_page_size
, 8192);
426 allocator
->min_page_size
= MIN (allocator
->min_page_size
, 128);
428 /* we can only align to system page size */
429 allocator
->max_page_size
= sys_page_size
;
431 if (allocator
->config
.always_malloc
)
433 allocator
->contention_counters
= NULL
;
434 allocator
->magazines
= NULL
;
435 allocator
->slab_stack
= NULL
;
439 allocator
->contention_counters
= g_new0 (guint
, MAX_SLAB_INDEX (allocator
));
440 allocator
->magazines
= g_new0 (ChunkLink
*, MAX_SLAB_INDEX (allocator
));
441 allocator
->slab_stack
= g_new0 (SlabInfo
*, MAX_SLAB_INDEX (allocator
));
444 allocator
->mutex_counter
= 0;
445 allocator
->stamp_counter
= MAX_STAMP_COUNTER
; /* force initial update */
446 allocator
->last_stamp
= 0;
447 allocator
->color_accu
= 0;
448 magazine_cache_update_stamp();
449 /* values cached for performance reasons */
450 allocator
->max_slab_chunk_size_for_magazine_cache
= MAX_SLAB_CHUNK_SIZE (allocator
);
451 if (allocator
->config
.always_malloc
|| allocator
->config
.bypass_magazines
)
452 allocator
->max_slab_chunk_size_for_magazine_cache
= 0; /* non-optimized cases */
456 allocator_categorize (gsize aligned_chunk_size
)
458 /* speed up the likely path */
459 if (G_LIKELY (aligned_chunk_size
&& aligned_chunk_size
<= allocator
->max_slab_chunk_size_for_magazine_cache
))
460 return 1; /* use magazine cache */
462 if (!allocator
->config
.always_malloc
&&
463 aligned_chunk_size
&&
464 aligned_chunk_size
<= MAX_SLAB_CHUNK_SIZE (allocator
))
466 if (allocator
->config
.bypass_magazines
)
467 return 2; /* use slab allocator, see [2] */
468 return 1; /* use magazine cache */
470 return 0; /* use malloc() */
474 g_mutex_lock_a (GMutex
*mutex
,
475 guint
*contention_counter
)
477 gboolean contention
= FALSE
;
478 if (!g_mutex_trylock (mutex
))
480 g_mutex_lock (mutex
);
485 allocator
->mutex_counter
++;
486 if (allocator
->mutex_counter
>= 1) /* quickly adapt to contention */
488 allocator
->mutex_counter
= 0;
489 *contention_counter
= MIN (*contention_counter
+ 1, MAX_MAGAZINE_SIZE
);
492 else /* !contention */
494 allocator
->mutex_counter
--;
495 if (allocator
->mutex_counter
< -11) /* moderately recover magazine sizes */
497 allocator
->mutex_counter
= 0;
498 *contention_counter
= MAX (*contention_counter
, 1) - 1;
503 static inline ThreadMemory
*
504 thread_memory_from_self (void)
506 ThreadMemory
*tmem
= g_private_get (&private_thread_memory
);
507 if (G_UNLIKELY (!tmem
))
509 static GMutex init_mutex
;
512 g_mutex_lock (&init_mutex
);
513 if G_UNLIKELY (sys_page_size
== 0)
514 g_slice_init_nomessage ();
515 g_mutex_unlock (&init_mutex
);
517 n_magazines
= MAX_SLAB_INDEX (allocator
);
518 tmem
= g_malloc0 (sizeof (ThreadMemory
) + sizeof (Magazine
) * 2 * n_magazines
);
519 tmem
->magazine1
= (Magazine
*) (tmem
+ 1);
520 tmem
->magazine2
= &tmem
->magazine1
[n_magazines
];
521 g_private_set (&private_thread_memory
, tmem
);
526 static inline ChunkLink
*
527 magazine_chain_pop_head (ChunkLink
**magazine_chunks
)
529 /* magazine chains are linked via ChunkLink->next.
530 * each ChunkLink->data of the toplevel chain may point to a subchain,
531 * linked via ChunkLink->next. ChunkLink->data of the subchains just
532 * contains uninitialized junk.
534 ChunkLink
*chunk
= (*magazine_chunks
)->data
;
535 if (G_UNLIKELY (chunk
))
537 /* allocating from freed list */
538 (*magazine_chunks
)->data
= chunk
->next
;
542 chunk
= *magazine_chunks
;
543 *magazine_chunks
= chunk
->next
;
548 #if 0 /* useful for debugging */
550 magazine_count (ChunkLink
*head
)
557 ChunkLink
*child
= head
->data
;
559 for (child
= head
->data
; child
; child
= child
->next
)
568 allocator_get_magazine_threshold (Allocator
*allocator
,
571 /* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
572 * which is required by the implementation. also, for moderately sized chunks
573 * (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
574 * of chunks available per page/2 to avoid excessive traffic in the magazine
575 * cache for small to medium sized structures.
576 * the upper bound of the magazine size is effectively provided by
577 * MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
578 * the content of a single magazine doesn't exceed ca. 16KB.
580 gsize chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
581 guint threshold
= MAX (MIN_MAGAZINE_SIZE
, allocator
->max_page_size
/ MAX (5 * chunk_size
, 5 * 32));
582 guint contention_counter
= allocator
->contention_counters
[ix
];
583 if (G_UNLIKELY (contention_counter
)) /* single CPU bias */
585 /* adapt contention counter thresholds to chunk sizes */
586 contention_counter
= contention_counter
* 64 / chunk_size
;
587 threshold
= MAX (threshold
, contention_counter
);
592 /* --- magazine cache --- */
594 magazine_cache_update_stamp (void)
596 if (allocator
->stamp_counter
>= MAX_STAMP_COUNTER
)
599 g_get_current_time (&tv
);
600 allocator
->last_stamp
= tv
.tv_sec
* 1000 + tv
.tv_usec
/ 1000; /* milli seconds */
601 allocator
->stamp_counter
= 0;
604 allocator
->stamp_counter
++;
607 static inline ChunkLink
*
608 magazine_chain_prepare_fields (ChunkLink
*magazine_chunks
)
614 /* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
615 /* ensure a magazine with at least 4 unused data pointers */
616 chunk1
= magazine_chain_pop_head (&magazine_chunks
);
617 chunk2
= magazine_chain_pop_head (&magazine_chunks
);
618 chunk3
= magazine_chain_pop_head (&magazine_chunks
);
619 chunk4
= magazine_chain_pop_head (&magazine_chunks
);
620 chunk4
->next
= magazine_chunks
;
621 chunk3
->next
= chunk4
;
622 chunk2
->next
= chunk3
;
623 chunk1
->next
= chunk2
;
627 /* access the first 3 fields of a specially prepared magazine chain */
628 #define magazine_chain_prev(mc) ((mc)->data)
629 #define magazine_chain_stamp(mc) ((mc)->next->data)
630 #define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data)
631 #define magazine_chain_next(mc) ((mc)->next->next->data)
632 #define magazine_chain_count(mc) ((mc)->next->next->next->data)
635 magazine_cache_trim (Allocator
*allocator
,
639 /* g_mutex_lock (allocator->mutex); done by caller */
640 /* trim magazine cache from tail */
641 ChunkLink
*current
= magazine_chain_prev (allocator
->magazines
[ix
]);
642 ChunkLink
*trash
= NULL
;
643 while (ABS (stamp
- magazine_chain_uint_stamp (current
)) >= allocator
->config
.working_set_msecs
)
646 ChunkLink
*prev
= magazine_chain_prev (current
);
647 ChunkLink
*next
= magazine_chain_next (current
);
648 magazine_chain_next (prev
) = next
;
649 magazine_chain_prev (next
) = prev
;
650 /* clear special fields, put on trash stack */
651 magazine_chain_next (current
) = NULL
;
652 magazine_chain_count (current
) = NULL
;
653 magazine_chain_stamp (current
) = NULL
;
654 magazine_chain_prev (current
) = trash
;
656 /* fixup list head if required */
657 if (current
== allocator
->magazines
[ix
])
659 allocator
->magazines
[ix
] = NULL
;
664 g_mutex_unlock (&allocator
->magazine_mutex
);
668 const gsize chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
669 g_mutex_lock (&allocator
->slab_mutex
);
673 trash
= magazine_chain_prev (current
);
674 magazine_chain_prev (current
) = NULL
; /* clear special field */
677 ChunkLink
*chunk
= magazine_chain_pop_head (¤t
);
678 slab_allocator_free_chunk (chunk_size
, chunk
);
681 g_mutex_unlock (&allocator
->slab_mutex
);
686 magazine_cache_push_magazine (guint ix
,
687 ChunkLink
*magazine_chunks
,
688 gsize count
) /* must be >= MIN_MAGAZINE_SIZE */
690 ChunkLink
*current
= magazine_chain_prepare_fields (magazine_chunks
);
691 ChunkLink
*next
, *prev
;
692 g_mutex_lock (&allocator
->magazine_mutex
);
693 /* add magazine at head */
694 next
= allocator
->magazines
[ix
];
696 prev
= magazine_chain_prev (next
);
698 next
= prev
= current
;
699 magazine_chain_next (prev
) = current
;
700 magazine_chain_prev (next
) = current
;
701 magazine_chain_prev (current
) = prev
;
702 magazine_chain_next (current
) = next
;
703 magazine_chain_count (current
) = (gpointer
) count
;
705 magazine_cache_update_stamp();
706 magazine_chain_stamp (current
) = GUINT_TO_POINTER (allocator
->last_stamp
);
707 allocator
->magazines
[ix
] = current
;
708 /* free old magazines beyond a certain threshold */
709 magazine_cache_trim (allocator
, ix
, allocator
->last_stamp
);
710 /* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
714 magazine_cache_pop_magazine (guint ix
,
717 g_mutex_lock_a (&allocator
->magazine_mutex
, &allocator
->contention_counters
[ix
]);
718 if (!allocator
->magazines
[ix
])
720 guint magazine_threshold
= allocator_get_magazine_threshold (allocator
, ix
);
721 gsize i
, chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
722 ChunkLink
*chunk
, *head
;
723 g_mutex_unlock (&allocator
->magazine_mutex
);
724 g_mutex_lock (&allocator
->slab_mutex
);
725 head
= slab_allocator_alloc_chunk (chunk_size
);
728 for (i
= 1; i
< magazine_threshold
; i
++)
730 chunk
->next
= slab_allocator_alloc_chunk (chunk_size
);
735 g_mutex_unlock (&allocator
->slab_mutex
);
741 ChunkLink
*current
= allocator
->magazines
[ix
];
742 ChunkLink
*prev
= magazine_chain_prev (current
);
743 ChunkLink
*next
= magazine_chain_next (current
);
745 magazine_chain_next (prev
) = next
;
746 magazine_chain_prev (next
) = prev
;
747 allocator
->magazines
[ix
] = next
== current
? NULL
: next
;
748 g_mutex_unlock (&allocator
->magazine_mutex
);
749 /* clear special fields and hand out */
750 *countp
= (gsize
) magazine_chain_count (current
);
751 magazine_chain_prev (current
) = NULL
;
752 magazine_chain_next (current
) = NULL
;
753 magazine_chain_count (current
) = NULL
;
754 magazine_chain_stamp (current
) = NULL
;
759 /* --- thread magazines --- */
761 private_thread_memory_cleanup (gpointer data
)
763 ThreadMemory
*tmem
= data
;
764 const guint n_magazines
= MAX_SLAB_INDEX (allocator
);
766 for (ix
= 0; ix
< n_magazines
; ix
++)
770 mags
[0] = &tmem
->magazine1
[ix
];
771 mags
[1] = &tmem
->magazine2
[ix
];
772 for (j
= 0; j
< 2; j
++)
774 Magazine
*mag
= mags
[j
];
775 if (mag
->count
>= MIN_MAGAZINE_SIZE
)
776 magazine_cache_push_magazine (ix
, mag
->chunks
, mag
->count
);
779 const gsize chunk_size
= SLAB_CHUNK_SIZE (allocator
, ix
);
780 g_mutex_lock (&allocator
->slab_mutex
);
783 ChunkLink
*chunk
= magazine_chain_pop_head (&mag
->chunks
);
784 slab_allocator_free_chunk (chunk_size
, chunk
);
786 g_mutex_unlock (&allocator
->slab_mutex
);
794 thread_memory_magazine1_reload (ThreadMemory
*tmem
,
797 Magazine
*mag
= &tmem
->magazine1
[ix
];
798 mem_assert (mag
->chunks
== NULL
); /* ensure that we may reset mag->count */
800 mag
->chunks
= magazine_cache_pop_magazine (ix
, &mag
->count
);
804 thread_memory_magazine2_unload (ThreadMemory
*tmem
,
807 Magazine
*mag
= &tmem
->magazine2
[ix
];
808 magazine_cache_push_magazine (ix
, mag
->chunks
, mag
->count
);
814 thread_memory_swap_magazines (ThreadMemory
*tmem
,
817 Magazine xmag
= tmem
->magazine1
[ix
];
818 tmem
->magazine1
[ix
] = tmem
->magazine2
[ix
];
819 tmem
->magazine2
[ix
] = xmag
;
822 static inline gboolean
823 thread_memory_magazine1_is_empty (ThreadMemory
*tmem
,
826 return tmem
->magazine1
[ix
].chunks
== NULL
;
829 static inline gboolean
830 thread_memory_magazine2_is_full (ThreadMemory
*tmem
,
833 return tmem
->magazine2
[ix
].count
>= allocator_get_magazine_threshold (allocator
, ix
);
836 static inline gpointer
837 thread_memory_magazine1_alloc (ThreadMemory
*tmem
,
840 Magazine
*mag
= &tmem
->magazine1
[ix
];
841 ChunkLink
*chunk
= magazine_chain_pop_head (&mag
->chunks
);
842 if (G_LIKELY (mag
->count
> 0))
848 thread_memory_magazine2_free (ThreadMemory
*tmem
,
852 Magazine
*mag
= &tmem
->magazine2
[ix
];
853 ChunkLink
*chunk
= mem
;
855 chunk
->next
= mag
->chunks
;
860 /* --- API functions --- */
864 * @type: the type to allocate, typically a structure name
866 * A convenience macro to allocate a block of memory from the
869 * It calls g_slice_alloc() with `sizeof (@type)` and casts the
870 * returned pointer to a pointer of the given type, avoiding a type
871 * cast in the source code. Note that the underlying slice allocation
872 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
873 * environment variable.
875 * This can never return %NULL as the minimum allocation size from
876 * `sizeof (@type)` is 1 byte.
878 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
886 * @type: the type to allocate, typically a structure name
888 * A convenience macro to allocate a block of memory from the
889 * slice allocator and set the memory to 0.
891 * It calls g_slice_alloc0() with `sizeof (@type)`
892 * and casts the returned pointer to a pointer of the given type,
893 * avoiding a type cast in the source code.
894 * Note that the underlying slice allocation mechanism can
895 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
896 * environment variable.
898 * This can never return %NULL as the minimum allocation size from
899 * `sizeof (@type)` is 1 byte.
901 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
909 * @type: the type to duplicate, typically a structure name
910 * @mem: (not nullable): the memory to copy into the allocated block
912 * A convenience macro to duplicate a block of memory using
913 * the slice allocator.
915 * It calls g_slice_copy() with `sizeof (@type)`
916 * and casts the returned pointer to a pointer of the given type,
917 * avoiding a type cast in the source code.
918 * Note that the underlying slice allocation mechanism can
919 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
920 * environment variable.
922 * This can never return %NULL.
924 * Returns: (not nullable): a pointer to the allocated block, cast to a pointer
932 * @type: the type of the block to free, typically a structure name
933 * @mem: a pointer to the block to free
935 * A convenience macro to free a block of memory that has
936 * been allocated from the slice allocator.
938 * It calls g_slice_free1() using `sizeof (type)`
940 * Note that the exact release behaviour can be changed with the
941 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
942 * [`G_SLICE`][G_SLICE] for related debugging options.
944 * If @mem is %NULL, this macro does nothing.
950 * g_slice_free_chain:
951 * @type: the type of the @mem_chain blocks
952 * @mem_chain: a pointer to the first block of the chain
953 * @next: the field name of the next pointer in @type
955 * Frees a linked list of memory blocks of structure type @type.
956 * The memory blocks must be equal-sized, allocated via
957 * g_slice_alloc() or g_slice_alloc0() and linked together by
958 * a @next pointer (similar to #GSList). The name of the
959 * @next field in @type is passed as third argument.
960 * Note that the exact release behaviour can be changed with the
961 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
962 * [`G_SLICE`][G_SLICE] for related debugging options.
964 * If @mem_chain is %NULL, this function does nothing.
971 * @block_size: the number of bytes to allocate
973 * Allocates a block of memory from the slice allocator.
974 * The block address handed out can be expected to be aligned
975 * to at least 1 * sizeof (void*),
976 * though in general slices are 2 * sizeof (void*) bytes aligned,
977 * if a malloc() fallback implementation is used instead,
978 * the alignment may be reduced in a libc dependent fashion.
979 * Note that the underlying slice allocation mechanism can
980 * be changed with the [`G_SLICE=always-malloc`][G_SLICE]
981 * environment variable.
983 * Returns: a pointer to the allocated memory block, which will be %NULL if and
984 * only if @mem_size is 0
989 g_slice_alloc (gsize mem_size
)
996 /* This gets the private structure for this thread. If the private
997 * structure does not yet exist, it is created.
999 * This has a side effect of causing GSlice to be initialised, so it
1002 tmem
= thread_memory_from_self ();
1004 chunk_size
= P2ALIGN (mem_size
);
1005 acat
= allocator_categorize (chunk_size
);
1006 if (G_LIKELY (acat
== 1)) /* allocate through magazine layer */
1008 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1009 if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem
, ix
)))
1011 thread_memory_swap_magazines (tmem
, ix
);
1012 if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem
, ix
)))
1013 thread_memory_magazine1_reload (tmem
, ix
);
1015 mem
= thread_memory_magazine1_alloc (tmem
, ix
);
1017 else if (acat
== 2) /* allocate through slab allocator */
1019 g_mutex_lock (&allocator
->slab_mutex
);
1020 mem
= slab_allocator_alloc_chunk (chunk_size
);
1021 g_mutex_unlock (&allocator
->slab_mutex
);
1023 else /* delegate to system malloc */
1024 mem
= g_malloc (mem_size
);
1025 if (G_UNLIKELY (allocator
->config
.debug_blocks
))
1026 smc_notify_alloc (mem
, mem_size
);
1028 TRACE (GLIB_SLICE_ALLOC((void*)mem
, mem_size
));
1035 * @block_size: the number of bytes to allocate
1037 * Allocates a block of memory via g_slice_alloc() and initializes
1038 * the returned memory to 0. Note that the underlying slice allocation
1039 * mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
1040 * environment variable.
1042 * Returns: a pointer to the allocated block, which will be %NULL if and only
1048 g_slice_alloc0 (gsize mem_size
)
1050 gpointer mem
= g_slice_alloc (mem_size
);
1052 memset (mem
, 0, mem_size
);
1058 * @block_size: the number of bytes to allocate
1059 * @mem_block: the memory to copy
1061 * Allocates a block of memory from the slice allocator
1062 * and copies @block_size bytes into it from @mem_block.
1064 * @mem_block must be non-%NULL if @block_size is non-zero.
1066 * Returns: a pointer to the allocated memory block, which will be %NULL if and
1067 * only if @mem_size is 0
1072 g_slice_copy (gsize mem_size
,
1073 gconstpointer mem_block
)
1075 gpointer mem
= g_slice_alloc (mem_size
);
1077 memcpy (mem
, mem_block
, mem_size
);
1083 * @block_size: the size of the block
1084 * @mem_block: a pointer to the block to free
1086 * Frees a block of memory.
1088 * The memory must have been allocated via g_slice_alloc() or
1089 * g_slice_alloc0() and the @block_size has to match the size
1090 * specified upon allocation. Note that the exact release behaviour
1091 * can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment
1092 * variable, also see [`G_SLICE`][G_SLICE] for related debugging options.
1094 * If @mem_block is %NULL, this function does nothing.
1099 g_slice_free1 (gsize mem_size
,
1102 gsize chunk_size
= P2ALIGN (mem_size
);
1103 guint acat
= allocator_categorize (chunk_size
);
1104 if (G_UNLIKELY (!mem_block
))
1106 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1107 !smc_notify_free (mem_block
, mem_size
))
1109 if (G_LIKELY (acat
== 1)) /* allocate through magazine layer */
1111 ThreadMemory
*tmem
= thread_memory_from_self();
1112 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1113 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1115 thread_memory_swap_magazines (tmem
, ix
);
1116 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1117 thread_memory_magazine2_unload (tmem
, ix
);
1119 if (G_UNLIKELY (g_mem_gc_friendly
))
1120 memset (mem_block
, 0, chunk_size
);
1121 thread_memory_magazine2_free (tmem
, ix
, mem_block
);
1123 else if (acat
== 2) /* allocate through slab allocator */
1125 if (G_UNLIKELY (g_mem_gc_friendly
))
1126 memset (mem_block
, 0, chunk_size
);
1127 g_mutex_lock (&allocator
->slab_mutex
);
1128 slab_allocator_free_chunk (chunk_size
, mem_block
);
1129 g_mutex_unlock (&allocator
->slab_mutex
);
1131 else /* delegate to system malloc */
1133 if (G_UNLIKELY (g_mem_gc_friendly
))
1134 memset (mem_block
, 0, mem_size
);
1137 TRACE (GLIB_SLICE_FREE((void*)mem_block
, mem_size
));
1141 * g_slice_free_chain_with_offset:
1142 * @block_size: the size of the blocks
1143 * @mem_chain: a pointer to the first block of the chain
1144 * @next_offset: the offset of the @next field in the blocks
1146 * Frees a linked list of memory blocks of structure type @type.
1148 * The memory blocks must be equal-sized, allocated via
1149 * g_slice_alloc() or g_slice_alloc0() and linked together by a
1150 * @next pointer (similar to #GSList). The offset of the @next
1151 * field in each block is passed as third argument.
1152 * Note that the exact release behaviour can be changed with the
1153 * [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
1154 * [`G_SLICE`][G_SLICE] for related debugging options.
1156 * If @mem_chain is %NULL, this function does nothing.
1161 g_slice_free_chain_with_offset (gsize mem_size
,
1165 gpointer slice
= mem_chain
;
1166 /* while the thread magazines and the magazine cache are implemented so that
1167 * they can easily be extended to allow for free lists containing more free
1168 * lists for the first level nodes, which would allow O(1) freeing in this
1169 * function, the benefit of such an extension is questionable, because:
1170 * - the magazine size counts will become mere lower bounds which confuses
1171 * the code adapting to lock contention;
1172 * - freeing a single node to the thread magazines is very fast, so this
1173 * O(list_length) operation is multiplied by a fairly small factor;
1174 * - memory usage histograms on larger applications seem to indicate that
1175 * the amount of released multi node lists is negligible in comparison
1176 * to single node releases.
1177 * - the major performance bottle neck, namely g_private_get() or
1178 * g_mutex_lock()/g_mutex_unlock() has already been moved out of the
1179 * inner loop for freeing chained slices.
1181 gsize chunk_size
= P2ALIGN (mem_size
);
1182 guint acat
= allocator_categorize (chunk_size
);
1183 if (G_LIKELY (acat
== 1)) /* allocate through magazine layer */
1185 ThreadMemory
*tmem
= thread_memory_from_self();
1186 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1189 guint8
*current
= slice
;
1190 slice
= *(gpointer
*) (current
+ next_offset
);
1191 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1192 !smc_notify_free (current
, mem_size
))
1194 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1196 thread_memory_swap_magazines (tmem
, ix
);
1197 if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem
, ix
)))
1198 thread_memory_magazine2_unload (tmem
, ix
);
1200 if (G_UNLIKELY (g_mem_gc_friendly
))
1201 memset (current
, 0, chunk_size
);
1202 thread_memory_magazine2_free (tmem
, ix
, current
);
1205 else if (acat
== 2) /* allocate through slab allocator */
1207 g_mutex_lock (&allocator
->slab_mutex
);
1210 guint8
*current
= slice
;
1211 slice
= *(gpointer
*) (current
+ next_offset
);
1212 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1213 !smc_notify_free (current
, mem_size
))
1215 if (G_UNLIKELY (g_mem_gc_friendly
))
1216 memset (current
, 0, chunk_size
);
1217 slab_allocator_free_chunk (chunk_size
, current
);
1219 g_mutex_unlock (&allocator
->slab_mutex
);
1221 else /* delegate to system malloc */
1224 guint8
*current
= slice
;
1225 slice
= *(gpointer
*) (current
+ next_offset
);
1226 if (G_UNLIKELY (allocator
->config
.debug_blocks
) &&
1227 !smc_notify_free (current
, mem_size
))
1229 if (G_UNLIKELY (g_mem_gc_friendly
))
1230 memset (current
, 0, mem_size
);
1235 /* --- single page allocator --- */
1237 allocator_slab_stack_push (Allocator
*allocator
,
1241 /* insert slab at slab ring head */
1242 if (!allocator
->slab_stack
[ix
])
1244 sinfo
->next
= sinfo
;
1245 sinfo
->prev
= sinfo
;
1249 SlabInfo
*next
= allocator
->slab_stack
[ix
], *prev
= next
->prev
;
1255 allocator
->slab_stack
[ix
] = sinfo
;
1259 allocator_aligned_page_size (Allocator
*allocator
,
1262 gsize val
= 1 << g_bit_storage (n_bytes
- 1);
1263 val
= MAX (val
, allocator
->min_page_size
);
1268 allocator_add_slab (Allocator
*allocator
,
1274 gsize addr
, padding
, n_chunks
, color
= 0;
1277 gpointer aligned_memory
;
1281 page_size
= allocator_aligned_page_size (allocator
, SLAB_BPAGE_SIZE (allocator
, chunk_size
));
1282 /* allocate 1 page for the chunks and the slab */
1283 aligned_memory
= allocator_memalign (page_size
, page_size
- NATIVE_MALLOC_PADDING
);
1285 mem
= aligned_memory
;
1289 const gchar
*syserr
= strerror (errsv
);
1290 mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
1291 (guint
) (page_size
- NATIVE_MALLOC_PADDING
), (guint
) page_size
, syserr
);
1293 /* mask page address */
1294 addr
= ((gsize
) mem
/ page_size
) * page_size
;
1295 /* assert alignment */
1296 mem_assert (aligned_memory
== (gpointer
) addr
);
1297 /* basic slab info setup */
1298 sinfo
= (SlabInfo
*) (mem
+ page_size
- SLAB_INFO_SIZE
);
1299 sinfo
->n_allocated
= 0;
1300 sinfo
->chunks
= NULL
;
1301 /* figure cache colorization */
1302 n_chunks
= ((guint8
*) sinfo
- mem
) / chunk_size
;
1303 padding
= ((guint8
*) sinfo
- mem
) - n_chunks
* chunk_size
;
1306 color
= (allocator
->color_accu
* P2ALIGNMENT
) % padding
;
1307 allocator
->color_accu
+= allocator
->config
.color_increment
;
1309 /* add chunks to free list */
1310 chunk
= (ChunkLink
*) (mem
+ color
);
1311 sinfo
->chunks
= chunk
;
1312 for (i
= 0; i
< n_chunks
- 1; i
++)
1314 chunk
->next
= (ChunkLink
*) ((guint8
*) chunk
+ chunk_size
);
1315 chunk
= chunk
->next
;
1317 chunk
->next
= NULL
; /* last chunk */
1318 /* add slab to slab ring */
1319 allocator_slab_stack_push (allocator
, ix
, sinfo
);
1323 slab_allocator_alloc_chunk (gsize chunk_size
)
1326 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1327 /* ensure non-empty slab */
1328 if (!allocator
->slab_stack
[ix
] || !allocator
->slab_stack
[ix
]->chunks
)
1329 allocator_add_slab (allocator
, ix
, chunk_size
);
1330 /* allocate chunk */
1331 chunk
= allocator
->slab_stack
[ix
]->chunks
;
1332 allocator
->slab_stack
[ix
]->chunks
= chunk
->next
;
1333 allocator
->slab_stack
[ix
]->n_allocated
++;
1334 /* rotate empty slabs */
1335 if (!allocator
->slab_stack
[ix
]->chunks
)
1336 allocator
->slab_stack
[ix
] = allocator
->slab_stack
[ix
]->next
;
1341 slab_allocator_free_chunk (gsize chunk_size
,
1346 guint ix
= SLAB_INDEX (allocator
, chunk_size
);
1347 gsize page_size
= allocator_aligned_page_size (allocator
, SLAB_BPAGE_SIZE (allocator
, chunk_size
));
1348 gsize addr
= ((gsize
) mem
/ page_size
) * page_size
;
1349 /* mask page address */
1350 guint8
*page
= (guint8
*) addr
;
1351 SlabInfo
*sinfo
= (SlabInfo
*) (page
+ page_size
- SLAB_INFO_SIZE
);
1352 /* assert valid chunk count */
1353 mem_assert (sinfo
->n_allocated
> 0);
1354 /* add chunk to free list */
1355 was_empty
= sinfo
->chunks
== NULL
;
1356 chunk
= (ChunkLink
*) mem
;
1357 chunk
->next
= sinfo
->chunks
;
1358 sinfo
->chunks
= chunk
;
1359 sinfo
->n_allocated
--;
1360 /* keep slab ring partially sorted, empty slabs at end */
1364 SlabInfo
*next
= sinfo
->next
, *prev
= sinfo
->prev
;
1367 if (allocator
->slab_stack
[ix
] == sinfo
)
1368 allocator
->slab_stack
[ix
] = next
== sinfo
? NULL
: next
;
1369 /* insert slab at head */
1370 allocator_slab_stack_push (allocator
, ix
, sinfo
);
1372 /* eagerly free complete unused slabs */
1373 if (!sinfo
->n_allocated
)
1376 SlabInfo
*next
= sinfo
->next
, *prev
= sinfo
->prev
;
1379 if (allocator
->slab_stack
[ix
] == sinfo
)
1380 allocator
->slab_stack
[ix
] = next
== sinfo
? NULL
: next
;
1382 allocator_memfree (page_size
, page
);
1386 /* --- memalign implementation --- */
1387 #ifdef HAVE_MALLOC_H
1388 #include <malloc.h> /* memalign() */
1392 * define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h>
1393 * define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h>
1394 * define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
1395 * if none is provided, we implement malloc(3)-based alloc-only page alignment
1398 #if !(HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
1399 static GTrashStack
*compat_valloc_trash
= NULL
;
1403 allocator_memalign (gsize alignment
,
1406 gpointer aligned_memory
= NULL
;
1408 #if HAVE_POSIX_MEMALIGN
1409 err
= posix_memalign (&aligned_memory
, alignment
, memsize
);
1412 aligned_memory
= memalign (alignment
, memsize
);
1416 aligned_memory
= valloc (memsize
);
1419 /* simplistic non-freeing page allocator */
1420 mem_assert (alignment
== sys_page_size
);
1421 mem_assert (memsize
<= sys_page_size
);
1422 if (!compat_valloc_trash
)
1424 const guint n_pages
= 16;
1425 guint8
*mem
= malloc (n_pages
* sys_page_size
);
1430 guint8
*amem
= (guint8
*) ALIGN ((gsize
) mem
, sys_page_size
);
1432 i
--; /* mem wasn't page aligned */
1433 G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1435 g_trash_stack_push (&compat_valloc_trash
, amem
+ i
* sys_page_size
);
1436 G_GNUC_END_IGNORE_DEPRECATIONS
1439 G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1440 aligned_memory
= g_trash_stack_pop (&compat_valloc_trash
);
1441 G_GNUC_END_IGNORE_DEPRECATIONS
1443 if (!aligned_memory
)
1445 return aligned_memory
;
1449 allocator_memfree (gsize memsize
,
1452 #if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
1455 mem_assert (memsize
<= sys_page_size
);
1456 G_GNUC_BEGIN_IGNORE_DEPRECATIONS
1457 g_trash_stack_push (&compat_valloc_trash
, mem
);
1458 G_GNUC_END_IGNORE_DEPRECATIONS
1463 mem_error (const char *format
,
1468 /* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
1469 fputs ("\n***MEMORY-ERROR***: ", stderr
);
1470 pname
= g_get_prgname();
1471 g_fprintf (stderr
, "%s[%ld]: GSlice: ", pname
? pname
: "", (long)getpid());
1472 va_start (args
, format
);
1473 g_vfprintf (stderr
, format
, args
);
1475 fputs ("\n", stderr
);
1480 /* --- g-slice memory checker tree --- */
1481 typedef size_t SmcKType
; /* key type */
1482 typedef size_t SmcVType
; /* value type */
1487 static void smc_tree_insert (SmcKType key
,
1489 static gboolean
smc_tree_lookup (SmcKType key
,
1491 static gboolean
smc_tree_remove (SmcKType key
);
1494 /* --- g-slice memory checker implementation --- */
1496 smc_notify_alloc (void *pointer
,
1499 size_t address
= (size_t) pointer
;
1501 smc_tree_insert (address
, size
);
1506 smc_notify_ignore (void *pointer
)
1508 size_t address
= (size_t) pointer
;
1510 smc_tree_remove (address
);
1515 smc_notify_free (void *pointer
,
1518 size_t address
= (size_t) pointer
;
1523 return 1; /* ignore */
1524 found_one
= smc_tree_lookup (address
, &real_size
);
1527 g_fprintf (stderr
, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT
"\n", pointer
, size
);
1530 if (real_size
!= size
&& (real_size
|| size
))
1532 g_fprintf (stderr
, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT
" invalid-size=%" G_GSIZE_FORMAT
"\n", pointer
, real_size
, size
);
1535 if (!smc_tree_remove (address
))
1537 g_fprintf (stderr
, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT
"\n", pointer
, size
);
1540 return 1; /* all fine */
1543 /* --- g-slice memory checker tree implementation --- */
1544 #define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */
1545 #define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */
1546 #define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */
1547 #define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */
1548 #define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT)
1552 unsigned int n_entries
;
1555 static SmcBranch
**smc_tree_root
= NULL
;
1558 smc_tree_abort (int errval
)
1560 const char *syserr
= strerror (errval
);
1561 mem_error ("MemChecker: failure in debugging tree: %s", syserr
);
1564 static inline SmcEntry
*
1565 smc_tree_branch_grow_L (SmcBranch
*branch
,
1568 unsigned int old_size
= branch
->n_entries
* sizeof (branch
->entries
[0]);
1569 unsigned int new_size
= old_size
+ sizeof (branch
->entries
[0]);
1571 mem_assert (index
<= branch
->n_entries
);
1572 branch
->entries
= (SmcEntry
*) realloc (branch
->entries
, new_size
);
1573 if (!branch
->entries
)
1574 smc_tree_abort (errno
);
1575 entry
= branch
->entries
+ index
;
1576 memmove (entry
+ 1, entry
, (branch
->n_entries
- index
) * sizeof (entry
[0]));
1577 branch
->n_entries
+= 1;
1581 static inline SmcEntry
*
1582 smc_tree_branch_lookup_nearest_L (SmcBranch
*branch
,
1585 unsigned int n_nodes
= branch
->n_entries
, offs
= 0;
1586 SmcEntry
*check
= branch
->entries
;
1588 while (offs
< n_nodes
)
1590 unsigned int i
= (offs
+ n_nodes
) >> 1;
1591 check
= branch
->entries
+ i
;
1592 cmp
= key
< check
->key
? -1 : key
!= check
->key
;
1594 return check
; /* return exact match */
1597 else /* (cmp > 0) */
1600 /* check points at last mismatch, cmp > 0 indicates greater key */
1601 return cmp
> 0 ? check
+ 1 : check
; /* return insertion position for inexact match */
1605 smc_tree_insert (SmcKType key
,
1608 unsigned int ix0
, ix1
;
1611 g_mutex_lock (&smc_tree_mutex
);
1612 ix0
= SMC_TRUNK_HASH (key
);
1613 ix1
= SMC_BRANCH_HASH (key
);
1616 smc_tree_root
= calloc (SMC_TRUNK_COUNT
, sizeof (smc_tree_root
[0]));
1618 smc_tree_abort (errno
);
1620 if (!smc_tree_root
[ix0
])
1622 smc_tree_root
[ix0
] = calloc (SMC_BRANCH_COUNT
, sizeof (smc_tree_root
[0][0]));
1623 if (!smc_tree_root
[ix0
])
1624 smc_tree_abort (errno
);
1626 entry
= smc_tree_branch_lookup_nearest_L (&smc_tree_root
[ix0
][ix1
], key
);
1627 if (!entry
|| /* need create */
1628 entry
>= smc_tree_root
[ix0
][ix1
].entries
+ smc_tree_root
[ix0
][ix1
].n_entries
|| /* need append */
1629 entry
->key
!= key
) /* need insert */
1630 entry
= smc_tree_branch_grow_L (&smc_tree_root
[ix0
][ix1
], entry
- smc_tree_root
[ix0
][ix1
].entries
);
1632 entry
->value
= value
;
1633 g_mutex_unlock (&smc_tree_mutex
);
1637 smc_tree_lookup (SmcKType key
,
1640 SmcEntry
*entry
= NULL
;
1641 unsigned int ix0
= SMC_TRUNK_HASH (key
), ix1
= SMC_BRANCH_HASH (key
);
1642 gboolean found_one
= FALSE
;
1644 g_mutex_lock (&smc_tree_mutex
);
1645 if (smc_tree_root
&& smc_tree_root
[ix0
])
1647 entry
= smc_tree_branch_lookup_nearest_L (&smc_tree_root
[ix0
][ix1
], key
);
1649 entry
< smc_tree_root
[ix0
][ix1
].entries
+ smc_tree_root
[ix0
][ix1
].n_entries
&&
1653 *value_p
= entry
->value
;
1656 g_mutex_unlock (&smc_tree_mutex
);
1661 smc_tree_remove (SmcKType key
)
1663 unsigned int ix0
= SMC_TRUNK_HASH (key
), ix1
= SMC_BRANCH_HASH (key
);
1664 gboolean found_one
= FALSE
;
1665 g_mutex_lock (&smc_tree_mutex
);
1666 if (smc_tree_root
&& smc_tree_root
[ix0
])
1668 SmcEntry
*entry
= smc_tree_branch_lookup_nearest_L (&smc_tree_root
[ix0
][ix1
], key
);
1670 entry
< smc_tree_root
[ix0
][ix1
].entries
+ smc_tree_root
[ix0
][ix1
].n_entries
&&
1673 unsigned int i
= entry
- smc_tree_root
[ix0
][ix1
].entries
;
1674 smc_tree_root
[ix0
][ix1
].n_entries
-= 1;
1675 memmove (entry
, entry
+ 1, (smc_tree_root
[ix0
][ix1
].n_entries
- i
) * sizeof (entry
[0]));
1676 if (!smc_tree_root
[ix0
][ix1
].n_entries
)
1678 /* avoid useless pressure on the memory system */
1679 free (smc_tree_root
[ix0
][ix1
].entries
);
1680 smc_tree_root
[ix0
][ix1
].entries
= NULL
;
1685 g_mutex_unlock (&smc_tree_mutex
);
1689 #ifdef G_ENABLE_DEBUG
1691 g_slice_debug_tree_statistics (void)
1693 g_mutex_lock (&smc_tree_mutex
);
1696 unsigned int i
, j
, t
= 0, o
= 0, b
= 0, su
= 0, ex
= 0, en
= 4294967295u;
1698 for (i
= 0; i
< SMC_TRUNK_COUNT
; i
++)
1699 if (smc_tree_root
[i
])
1702 for (j
= 0; j
< SMC_BRANCH_COUNT
; j
++)
1703 if (smc_tree_root
[i
][j
].n_entries
)
1706 su
+= smc_tree_root
[i
][j
].n_entries
;
1707 en
= MIN (en
, smc_tree_root
[i
][j
].n_entries
);
1708 ex
= MAX (ex
, smc_tree_root
[i
][j
].n_entries
);
1710 else if (smc_tree_root
[i
][j
].entries
)
1711 o
++; /* formerly used, now empty */
1714 tf
= MAX (t
, 1.0); /* max(1) to be a valid divisor */
1715 bf
= MAX (b
, 1.0); /* max(1) to be a valid divisor */
1716 g_fprintf (stderr
, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t
, b
, o
);
1717 g_fprintf (stderr
, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
1719 100.0 - (SMC_BRANCH_COUNT
- b
/ tf
) / (0.01 * SMC_BRANCH_COUNT
));
1720 g_fprintf (stderr
, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
1724 g_fprintf (stderr
, "GSlice: MemChecker: root=NULL\n");
1725 g_mutex_unlock (&smc_tree_mutex
);
1727 /* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
1728 * PID %CPU %MEM VSZ RSS COMMAND
1729 * 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse
1730 * $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
1731 * 114017 103714 2354 344 0 108676 0
1732 * $ cat /proc/8887/status
1743 * (gdb) print g_slice_debug_tree_statistics ()
1744 * GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
1745 * GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
1746 * GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
1749 #endif /* G_ENABLE_DEBUG */