Revert addition of g_key_file_has_key_full
[glib.git] / glib / gvariant.c
blobfe1cd9f0c7df27b712a1928a51bb91777e29bffd
1 /*
2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the licence, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
23 /* Prologue {{{1 */
25 #include "config.h"
27 #include <glib/gvariant-serialiser.h>
28 #include "gvariant-internal.h"
29 #include <glib/gvariant-core.h>
30 #include <glib/gtestutils.h>
31 #include <glib/gstrfuncs.h>
32 #include <glib/ghash.h>
33 #include <glib/gmem.h>
35 #include <string.h>
38 /**
39 * SECTION:gvariant
40 * @title: GVariant
41 * @short_description: strongly typed value datatype
42 * @see_also: GVariantType
44 * #GVariant is a variant datatype; it stores a value along with
45 * information about the type of that value. The range of possible
46 * values is determined by the type. The type system used by #GVariant
47 * is #GVariantType.
49 * #GVariant instances always have a type and a value (which are given
50 * at construction time). The type and value of a #GVariant instance
51 * can never change other than by the #GVariant itself being
52 * destroyed. A #GVariant cannot contain a pointer.
54 * #GVariant is reference counted using g_variant_ref() and
55 * g_variant_unref(). #GVariant also has floating reference counts --
56 * see g_variant_ref_sink().
58 * #GVariant is completely threadsafe. A #GVariant instance can be
59 * concurrently accessed in any way from any number of threads without
60 * problems.
62 * #GVariant is heavily optimised for dealing with data in serialised
63 * form. It works particularly well with data located in memory-mapped
64 * files. It can perform nearly all deserialisation operations in a
65 * small constant time, usually touching only a single memory page.
66 * Serialised #GVariant data can also be sent over the network.
68 * #GVariant is largely compatible with D-Bus. Almost all types of
69 * #GVariant instances can be sent over D-Bus. See #GVariantType for
70 * exceptions.
72 * For convenience to C programmers, #GVariant features powerful
73 * varargs-based value construction and destruction. This feature is
74 * designed to be embedded in other libraries.
76 * There is a Python-inspired text language for describing #GVariant
77 * values. #GVariant includes a printer for this language and a parser
78 * with type inferencing.
80 * <refsect2>
81 * <title>Memory Use</title>
82 * <para>
83 * #GVariant tries to be quite efficient with respect to memory use.
84 * This section gives a rough idea of how much memory is used by the
85 * current implementation. The information here is subject to change
86 * in the future.
87 * </para>
88 * <para>
89 * The memory allocated by #GVariant can be grouped into 4 broad
90 * purposes: memory for serialised data, memory for the type
91 * information cache, buffer management memory and memory for the
92 * #GVariant structure itself.
93 * </para>
94 * <refsect3>
95 * <title>Serialised Data Memory</title>
96 * <para>
97 * This is the memory that is used for storing GVariant data in
98 * serialised form. This is what would be sent over the network or
99 * what would end up on disk.
100 * </para>
101 * <para>
102 * The amount of memory required to store a boolean is 1 byte. 16,
103 * 32 and 64 bit integers and double precision floating point numbers
104 * use their "natural" size. Strings (including object path and
105 * signature strings) are stored with a nul terminator, and as such
106 * use the length of the string plus 1 byte.
107 * </para>
108 * <para>
109 * Maybe types use no space at all to represent the null value and
110 * use the same amount of space (sometimes plus one byte) as the
111 * equivalent non-maybe-typed value to represent the non-null case.
112 * </para>
113 * <para>
114 * Arrays use the amount of space required to store each of their
115 * members, concatenated. Additionally, if the items stored in an
116 * array are not of a fixed-size (ie: strings, other arrays, etc)
117 * then an additional framing offset is stored for each item. The
118 * size of this offset is either 1, 2 or 4 bytes depending on the
119 * overall size of the container. Additionally, extra padding bytes
120 * are added as required for alignment of child values.
121 * </para>
122 * <para>
123 * Tuples (including dictionary entries) use the amount of space
124 * required to store each of their members, concatenated, plus one
125 * framing offset (as per arrays) for each non-fixed-sized item in
126 * the tuple, except for the last one. Additionally, extra padding
127 * bytes are added as required for alignment of child values.
128 * </para>
129 * <para>
130 * Variants use the same amount of space as the item inside of the
131 * variant, plus 1 byte, plus the length of the type string for the
132 * item inside the variant.
133 * </para>
134 * <para>
135 * As an example, consider a dictionary mapping strings to variants.
136 * In the case that the dictionary is empty, 0 bytes are required for
137 * the serialisation.
138 * </para>
139 * <para>
140 * If we add an item "width" that maps to the int32 value of 500 then
141 * we will use 4 byte to store the int32 (so 6 for the variant
142 * containing it) and 6 bytes for the string. The variant must be
143 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
144 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
145 * for the dictionary entry. An additional 1 byte is added to the
146 * array as a framing offset making a total of 15 bytes.
147 * </para>
148 * <para>
149 * If we add another entry, "title" that maps to a nullable string
150 * that happens to have a value of null, then we use 0 bytes for the
151 * null value (and 3 bytes for the variant to contain it along with
152 * its type string) plus 6 bytes for the string. Again, we need 2
153 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
154 * </para>
155 * <para>
156 * We now require extra padding between the two items in the array.
157 * After the 14 bytes of the first item, that's 2 bytes required. We
158 * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
159 * + 2 = 29 bytes to encode the entire two-item dictionary.
160 * </para>
161 * </refsect3>
162 * <refsect3>
163 * <title>Type Information Cache</title>
164 * <para>
165 * For each GVariant type that currently exists in the program a type
166 * information structure is kept in the type information cache. The
167 * type information structure is required for rapid deserialisation.
168 * </para>
169 * <para>
170 * Continuing with the above example, if a #GVariant exists with the
171 * type "a{sv}" then a type information struct will exist for
172 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
173 * will share the same type information. Additionally, all
174 * single-digit types are stored in read-only static memory and do
175 * not contribute to the writable memory footprint of a program using
176 * #GVariant.
177 * </para>
178 * <para>
179 * Aside from the type information structures stored in read-only
180 * memory, there are two forms of type information. One is used for
181 * container types where there is a single element type: arrays and
182 * maybe types. The other is used for container types where there
183 * are multiple element types: tuples and dictionary entries.
184 * </para>
185 * <para>
186 * Array type info structures are 6 * sizeof (void *), plus the
187 * memory required to store the type string itself. This means that
188 * on 32bit systems, the cache entry for "a{sv}" would require 30
189 * bytes of memory (plus malloc overhead).
190 * </para>
191 * <para>
192 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
193 * sizeof (void *) for each item in the tuple, plus the memory
194 * required to store the type string itself. A 2-item tuple, for
195 * example, would have a type information structure that consumed
196 * writable memory in the size of 14 * sizeof (void *) (plus type
197 * string) This means that on 32bit systems, the cache entry for
198 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
199 * </para>
200 * <para>
201 * This means that in total, for our "a{sv}" example, 91 bytes of
202 * type information would be allocated.
203 * </para>
204 * <para>
205 * The type information cache, additionally, uses a #GHashTable to
206 * store and lookup the cached items and stores a pointer to this
207 * hash table in static storage. The hash table is freed when there
208 * are zero items in the type cache.
209 * </para>
210 * <para>
211 * Although these sizes may seem large it is important to remember
212 * that a program will probably only have a very small number of
213 * different types of values in it and that only one type information
214 * structure is required for many different values of the same type.
215 * </para>
216 * </refsect3>
217 * <refsect3>
218 * <title>Buffer Management Memory</title>
219 * <para>
220 * #GVariant uses an internal buffer management structure to deal
221 * with the various different possible sources of serialised data
222 * that it uses. The buffer is responsible for ensuring that the
223 * correct call is made when the data is no longer in use by
224 * #GVariant. This may involve a g_free() or a g_slice_free() or
225 * even g_mapped_file_unref().
226 * </para>
227 * <para>
228 * One buffer management structure is used for each chunk of
229 * serialised data. The size of the buffer management structure is 4
230 * * (void *). On 32bit systems, that's 16 bytes.
231 * </para>
232 * </refsect3>
233 * <refsect3>
234 * <title>GVariant structure</title>
235 * <para>
236 * The size of a #GVariant structure is 6 * (void *). On 32 bit
237 * systems, that's 24 bytes.
238 * </para>
239 * <para>
240 * #GVariant structures only exist if they are explicitly created
241 * with API calls. For example, if a #GVariant is constructed out of
242 * serialised data for the example given above (with the dictionary)
243 * then although there are 9 individual values that comprise the
244 * entire dictionary (two keys, two values, two variants containing
245 * the values, two dictionary entries, plus the dictionary itself),
246 * only 1 #GVariant instance exists -- the one refering to the
247 * dictionary.
248 * </para>
249 * <para>
250 * If calls are made to start accessing the other values then
251 * #GVariant instances will exist for those values only for as long
252 * as they are in use (ie: until you call g_variant_unref()). The
253 * type information is shared. The serialised data and the buffer
254 * management structure for that serialised data is shared by the
255 * child.
256 * </para>
257 * </refsect3>
258 * <refsect3>
259 * <title>Summary</title>
260 * <para>
261 * To put the entire example together, for our dictionary mapping
262 * strings to variants (with two entries, as given above), we are
263 * using 91 bytes of memory for type information, 29 byes of memory
264 * for the serialised data, 16 bytes for buffer management and 24
265 * bytes for the #GVariant instance, or a total of 160 bytes, plus
266 * malloc overhead. If we were to use g_variant_get_child_value() to
267 * access the two dictionary entries, we would use an additional 48
268 * bytes. If we were to have other dictionaries of the same type, we
269 * would use more memory for the serialised data and buffer
270 * management for those dictionaries, but the type information would
271 * be shared.
272 * </para>
273 * </refsect3>
274 * </refsect2>
277 /* definition of GVariant structure is in gvariant-core.c */
279 /* this is a g_return_val_if_fail() for making
280 * sure a (GVariant *) has the required type.
282 #define TYPE_CHECK(value, TYPE, val) \
283 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
284 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
285 "g_variant_is_of_type (" #value \
286 ", " #TYPE ")"); \
287 return val; \
290 /* Numeric Type Constructor/Getters {{{1 */
291 /* < private >
292 * g_variant_new_from_trusted:
293 * @type: the #GVariantType
294 * @data: the data to use
295 * @size: the size of @data
296 * @returns: a new floating #GVariant
298 * Constructs a new trusted #GVariant instance from the provided data.
299 * This is used to implement g_variant_new_* for all the basic types.
301 static GVariant *
302 g_variant_new_from_trusted (const GVariantType *type,
303 gconstpointer data,
304 gsize size)
306 GVariant *value;
307 GBuffer *buffer;
309 buffer = g_buffer_new_from_data (data, size);
310 value = g_variant_new_from_buffer (type, buffer, TRUE);
311 g_buffer_unref (buffer);
313 return value;
317 * g_variant_new_boolean:
318 * @value: a #gboolean value
319 * @returns: (transfer none): a floating reference to a new boolean #GVariant instance
321 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
323 * Since: 2.24
325 GVariant *
326 g_variant_new_boolean (gboolean value)
328 guchar v = value;
330 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
334 * g_variant_get_boolean:
335 * @value: a boolean #GVariant instance
336 * @returns: %TRUE or %FALSE
338 * Returns the boolean value of @value.
340 * It is an error to call this function with a @value of any type
341 * other than %G_VARIANT_TYPE_BOOLEAN.
343 * Since: 2.24
345 gboolean
346 g_variant_get_boolean (GVariant *value)
348 const guchar *data;
350 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
352 data = g_variant_get_data (value);
354 return data != NULL ? *data != 0 : FALSE;
357 /* the constructors and accessors for byte, int{16,32,64}, handles and
358 * doubles all look pretty much exactly the same, so we reduce
359 * copy/pasting here.
361 #define NUMERIC_TYPE(TYPE, type, ctype) \
362 GVariant *g_variant_new_##type (ctype value) { \
363 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
364 &value, sizeof value); \
366 ctype g_variant_get_##type (GVariant *value) { \
367 const ctype *data; \
368 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
369 data = g_variant_get_data (value); \
370 return data != NULL ? *data : 0; \
375 * g_variant_new_byte:
376 * @value: a #guint8 value
377 * @returns: (transfer none): a floating reference to a new byte #GVariant instance
379 * Creates a new byte #GVariant instance.
381 * Since: 2.24
384 * g_variant_get_byte:
385 * @value: a byte #GVariant instance
386 * @returns: a #guchar
388 * Returns the byte value of @value.
390 * It is an error to call this function with a @value of any type
391 * other than %G_VARIANT_TYPE_BYTE.
393 * Since: 2.24
395 NUMERIC_TYPE (BYTE, byte, guchar)
398 * g_variant_new_int16:
399 * @value: a #gint16 value
400 * @returns: (transfer none): a floating reference to a new int16 #GVariant instance
402 * Creates a new int16 #GVariant instance.
404 * Since: 2.24
407 * g_variant_get_int16:
408 * @value: a int16 #GVariant instance
409 * @returns: a #gint16
411 * Returns the 16-bit signed integer value of @value.
413 * It is an error to call this function with a @value of any type
414 * other than %G_VARIANT_TYPE_INT16.
416 * Since: 2.24
418 NUMERIC_TYPE (INT16, int16, gint16)
421 * g_variant_new_uint16:
422 * @value: a #guint16 value
423 * @returns: (transfer none): a floating reference to a new uint16 #GVariant instance
425 * Creates a new uint16 #GVariant instance.
427 * Since: 2.24
430 * g_variant_get_uint16:
431 * @value: a uint16 #GVariant instance
432 * @returns: a #guint16
434 * Returns the 16-bit unsigned integer value of @value.
436 * It is an error to call this function with a @value of any type
437 * other than %G_VARIANT_TYPE_UINT16.
439 * Since: 2.24
441 NUMERIC_TYPE (UINT16, uint16, guint16)
444 * g_variant_new_int32:
445 * @value: a #gint32 value
446 * @returns: (transfer none): a floating reference to a new int32 #GVariant instance
448 * Creates a new int32 #GVariant instance.
450 * Since: 2.24
453 * g_variant_get_int32:
454 * @value: a int32 #GVariant instance
455 * @returns: a #gint32
457 * Returns the 32-bit signed integer value of @value.
459 * It is an error to call this function with a @value of any type
460 * other than %G_VARIANT_TYPE_INT32.
462 * Since: 2.24
464 NUMERIC_TYPE (INT32, int32, gint32)
467 * g_variant_new_uint32:
468 * @value: a #guint32 value
469 * @returns: (transfer none): a floating reference to a new uint32 #GVariant instance
471 * Creates a new uint32 #GVariant instance.
473 * Since: 2.24
476 * g_variant_get_uint32:
477 * @value: a uint32 #GVariant instance
478 * @returns: a #guint32
480 * Returns the 32-bit unsigned integer value of @value.
482 * It is an error to call this function with a @value of any type
483 * other than %G_VARIANT_TYPE_UINT32.
485 * Since: 2.24
487 NUMERIC_TYPE (UINT32, uint32, guint32)
490 * g_variant_new_int64:
491 * @value: a #gint64 value
492 * @returns: (transfer none): a floating reference to a new int64 #GVariant instance
494 * Creates a new int64 #GVariant instance.
496 * Since: 2.24
499 * g_variant_get_int64:
500 * @value: a int64 #GVariant instance
501 * @returns: a #gint64
503 * Returns the 64-bit signed integer value of @value.
505 * It is an error to call this function with a @value of any type
506 * other than %G_VARIANT_TYPE_INT64.
508 * Since: 2.24
510 NUMERIC_TYPE (INT64, int64, gint64)
513 * g_variant_new_uint64:
514 * @value: a #guint64 value
515 * @returns: (transfer none): a floating reference to a new uint64 #GVariant instance
517 * Creates a new uint64 #GVariant instance.
519 * Since: 2.24
522 * g_variant_get_uint64:
523 * @value: a uint64 #GVariant instance
524 * @returns: a #guint64
526 * Returns the 64-bit unsigned integer value of @value.
528 * It is an error to call this function with a @value of any type
529 * other than %G_VARIANT_TYPE_UINT64.
531 * Since: 2.24
533 NUMERIC_TYPE (UINT64, uint64, guint64)
536 * g_variant_new_handle:
537 * @value: a #gint32 value
538 * @returns: (transfer none): a floating reference to a new handle #GVariant instance
540 * Creates a new handle #GVariant instance.
542 * By convention, handles are indexes into an array of file descriptors
543 * that are sent alongside a D-Bus message. If you're not interacting
544 * with D-Bus, you probably don't need them.
546 * Since: 2.24
549 * g_variant_get_handle:
550 * @value: a handle #GVariant instance
551 * @returns: a #gint32
553 * Returns the 32-bit signed integer value of @value.
555 * It is an error to call this function with a @value of any type other
556 * than %G_VARIANT_TYPE_HANDLE.
558 * By convention, handles are indexes into an array of file descriptors
559 * that are sent alongside a D-Bus message. If you're not interacting
560 * with D-Bus, you probably don't need them.
562 * Since: 2.24
564 NUMERIC_TYPE (HANDLE, handle, gint32)
567 * g_variant_new_double:
568 * @value: a #gdouble floating point value
569 * @returns: (transfer none): a floating reference to a new double #GVariant instance
571 * Creates a new double #GVariant instance.
573 * Since: 2.24
576 * g_variant_get_double:
577 * @value: a double #GVariant instance
578 * @returns: a #gdouble
580 * Returns the double precision floating point value of @value.
582 * It is an error to call this function with a @value of any type
583 * other than %G_VARIANT_TYPE_DOUBLE.
585 * Since: 2.24
587 NUMERIC_TYPE (DOUBLE, double, gdouble)
589 /* Container type Constructor / Deconstructors {{{1 */
591 * g_variant_new_maybe:
592 * @child_type: (allow-none): the #GVariantType of the child, or %NULL
593 * @child: (allow-none): the child value, or %NULL
594 * @returns: (transfer none): a floating reference to a new #GVariant maybe instance
596 * Depending on if @child is %NULL, either wraps @child inside of a
597 * maybe container or creates a Nothing instance for the given @type.
599 * At least one of @child_type and @child must be non-%NULL.
600 * If @child_type is non-%NULL then it must be a definite type.
601 * If they are both non-%NULL then @child_type must be the type
602 * of @child.
604 * If @child is a floating reference (see g_variant_ref_sink()), the new
605 * instance takes ownership of @child.
607 * Since: 2.24
609 GVariant *
610 g_variant_new_maybe (const GVariantType *child_type,
611 GVariant *child)
613 GVariantType *maybe_type;
614 GVariant *value;
616 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
617 (child_type), 0);
618 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
619 g_return_val_if_fail (child_type == NULL || child == NULL ||
620 g_variant_is_of_type (child, child_type),
621 NULL);
623 if (child_type == NULL)
624 child_type = g_variant_get_type (child);
626 maybe_type = g_variant_type_new_maybe (child_type);
628 if (child != NULL)
630 GVariant **children;
631 gboolean trusted;
633 children = g_new (GVariant *, 1);
634 children[0] = g_variant_ref_sink (child);
635 trusted = g_variant_is_trusted (children[0]);
637 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
639 else
640 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
642 g_variant_type_free (maybe_type);
644 return value;
648 * g_variant_get_maybe:
649 * @value: a maybe-typed value
650 * @returns: (allow-none) (transfer full): the contents of @value, or %NULL
652 * Given a maybe-typed #GVariant instance, extract its value. If the
653 * value is Nothing, then this function returns %NULL.
655 * Since: 2.24
657 GVariant *
658 g_variant_get_maybe (GVariant *value)
660 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
662 if (g_variant_n_children (value))
663 return g_variant_get_child_value (value, 0);
665 return NULL;
669 * g_variant_new_variant: (constructor)
670 * @value: a #GVariant instance
671 * @returns: (transfer none): a floating reference to a new variant #GVariant instance
673 * Boxes @value. The result is a #GVariant instance representing a
674 * variant containing the original value.
676 * If @child is a floating reference (see g_variant_ref_sink()), the new
677 * instance takes ownership of @child.
679 * Since: 2.24
681 GVariant *
682 g_variant_new_variant (GVariant *value)
684 g_return_val_if_fail (value != NULL, NULL);
686 g_variant_ref_sink (value);
688 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
689 g_memdup (&value, sizeof value),
690 1, g_variant_is_trusted (value));
694 * g_variant_get_variant:
695 * @value: a variant #GVariant instance
696 * @returns: (transfer full): the item contained in the variant
698 * Unboxes @value. The result is the #GVariant instance that was
699 * contained in @value.
701 * Since: 2.24
703 GVariant *
704 g_variant_get_variant (GVariant *value)
706 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
708 return g_variant_get_child_value (value, 0);
712 * g_variant_new_array:
713 * @child_type: (allow-none): the element type of the new array
714 * @children: (allow-none) (array length=n_children): an array of
715 * #GVariant pointers, the children
716 * @n_children: the length of @children
717 * @returns: (transfer none): a floating reference to a new #GVariant array
719 * Creates a new #GVariant array from @children.
721 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
722 * child type is determined by inspecting the first element of the
723 * @children array. If @child_type is non-%NULL then it must be a
724 * definite type.
726 * The items of the array are taken from the @children array. No entry
727 * in the @children array may be %NULL.
729 * All items in the array must have the same type, which must be the
730 * same as @child_type, if given.
732 * If the @children are floating references (see g_variant_ref_sink()), the
733 * new instance takes ownership of them as if via g_variant_ref_sink().
735 * Since: 2.24
737 GVariant *
738 g_variant_new_array (const GVariantType *child_type,
739 GVariant * const *children,
740 gsize n_children)
742 GVariantType *array_type;
743 GVariant **my_children;
744 gboolean trusted;
745 GVariant *value;
746 gsize i;
748 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
749 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
750 g_return_val_if_fail (child_type == NULL ||
751 g_variant_type_is_definite (child_type), NULL);
753 my_children = g_new (GVariant *, n_children);
754 trusted = TRUE;
756 if (child_type == NULL)
757 child_type = g_variant_get_type (children[0]);
758 array_type = g_variant_type_new_array (child_type);
760 for (i = 0; i < n_children; i++)
762 TYPE_CHECK (children[i], child_type, NULL);
763 my_children[i] = g_variant_ref_sink (children[i]);
764 trusted &= g_variant_is_trusted (children[i]);
767 value = g_variant_new_from_children (array_type, my_children,
768 n_children, trusted);
769 g_variant_type_free (array_type);
771 return value;
774 /*< private >
775 * g_variant_make_tuple_type:
776 * @children: (array length=n_children): an array of GVariant *
777 * @n_children: the length of @children
779 * Return the type of a tuple containing @children as its items.
781 static GVariantType *
782 g_variant_make_tuple_type (GVariant * const *children,
783 gsize n_children)
785 const GVariantType **types;
786 GVariantType *type;
787 gsize i;
789 types = g_new (const GVariantType *, n_children);
791 for (i = 0; i < n_children; i++)
792 types[i] = g_variant_get_type (children[i]);
794 type = g_variant_type_new_tuple (types, n_children);
795 g_free (types);
797 return type;
801 * g_variant_new_tuple:
802 * @children: (array length=n_children): the items to make the tuple out of
803 * @n_children: the length of @children
804 * @returns: (transfer none): a floating reference to a new #GVariant tuple
806 * Creates a new tuple #GVariant out of the items in @children. The
807 * type is determined from the types of @children. No entry in the
808 * @children array may be %NULL.
810 * If @n_children is 0 then the unit tuple is constructed.
812 * If the @children are floating references (see g_variant_ref_sink()), the
813 * new instance takes ownership of them as if via g_variant_ref_sink().
815 * Since: 2.24
817 GVariant *
818 g_variant_new_tuple (GVariant * const *children,
819 gsize n_children)
821 GVariantType *tuple_type;
822 GVariant **my_children;
823 gboolean trusted;
824 GVariant *value;
825 gsize i;
827 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
829 my_children = g_new (GVariant *, n_children);
830 trusted = TRUE;
832 for (i = 0; i < n_children; i++)
834 my_children[i] = g_variant_ref_sink (children[i]);
835 trusted &= g_variant_is_trusted (children[i]);
838 tuple_type = g_variant_make_tuple_type (children, n_children);
839 value = g_variant_new_from_children (tuple_type, my_children,
840 n_children, trusted);
841 g_variant_type_free (tuple_type);
843 return value;
846 /*< private >
847 * g_variant_make_dict_entry_type:
848 * @key: a #GVariant, the key
849 * @val: a #GVariant, the value
851 * Return the type of a dictionary entry containing @key and @val as its
852 * children.
854 static GVariantType *
855 g_variant_make_dict_entry_type (GVariant *key,
856 GVariant *val)
858 return g_variant_type_new_dict_entry (g_variant_get_type (key),
859 g_variant_get_type (val));
863 * g_variant_new_dict_entry: (constructor)
864 * @key: a basic #GVariant, the key
865 * @value: a #GVariant, the value
866 * @returns: (transfer none): a floating reference to a new dictionary entry #GVariant
868 * Creates a new dictionary entry #GVariant. @key and @value must be
869 * non-%NULL. @key must be a value of a basic type (ie: not a container).
871 * If the @key or @value are floating references (see g_variant_ref_sink()),
872 * the new instance takes ownership of them as if via g_variant_ref_sink().
874 * Since: 2.24
876 GVariant *
877 g_variant_new_dict_entry (GVariant *key,
878 GVariant *value)
880 GVariantType *dict_type;
881 GVariant **children;
882 gboolean trusted;
884 g_return_val_if_fail (key != NULL && value != NULL, NULL);
885 g_return_val_if_fail (!g_variant_is_container (key), NULL);
887 children = g_new (GVariant *, 2);
888 children[0] = g_variant_ref_sink (key);
889 children[1] = g_variant_ref_sink (value);
890 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
892 dict_type = g_variant_make_dict_entry_type (key, value);
893 value = g_variant_new_from_children (dict_type, children, 2, trusted);
894 g_variant_type_free (dict_type);
896 return value;
900 * g_variant_lookup: (skip)
901 * @dictionary: a dictionary #GVariant
902 * @key: the key to lookup in the dictionary
903 * @format_string: a GVariant format string
904 * @...: the arguments to unpack the value into
906 * Looks up a value in a dictionary #GVariant.
908 * This function is a wrapper around g_variant_lookup_value() and
909 * g_variant_get(). In the case that %NULL would have been returned,
910 * this function returns %FALSE. Otherwise, it unpacks the returned
911 * value and returns %TRUE.
913 * See g_variant_get() for information about @format_string.
915 * Returns: %TRUE if a value was unpacked
917 * Since: 2.28
919 gboolean
920 g_variant_lookup (GVariant *dictionary,
921 const gchar *key,
922 const gchar *format_string,
923 ...)
925 GVariantType *type;
926 GVariant *value;
928 /* flatten */
929 g_variant_get_data (dictionary);
931 type = g_variant_format_string_scan_type (format_string, NULL, NULL);
932 value = g_variant_lookup_value (dictionary, key, type);
933 g_variant_type_free (type);
935 if (value)
937 va_list ap;
939 va_start (ap, format_string);
940 g_variant_get_va (value, format_string, NULL, &ap);
941 g_variant_unref (value);
942 va_end (ap);
944 return TRUE;
947 else
948 return FALSE;
952 * g_variant_lookup_value:
953 * @dictionary: a dictionary #GVariant
954 * @key: the key to lookup in the dictionary
955 * @expected_type: (allow-none): a #GVariantType, or %NULL
957 * Looks up a value in a dictionary #GVariant.
959 * This function works with dictionaries of the type
960 * <literal>a{s*}</literal> (and equally well with type
961 * <literal>a{o*}</literal>, but we only further discuss the string case
962 * for sake of clarity).
964 * In the event that @dictionary has the type <literal>a{sv}</literal>,
965 * the @expected_type string specifies what type of value is expected to
966 * be inside of the variant. If the value inside the variant has a
967 * different type then %NULL is returned. In the event that @dictionary
968 * has a value type other than <literal>v</literal> then @expected_type
969 * must directly match the key type and it is used to unpack the value
970 * directly or an error occurs.
972 * In either case, if @key is not found in @dictionary, %NULL is
973 * returned.
975 * If the key is found and the value has the correct type, it is
976 * returned. If @expected_type was specified then any non-%NULL return
977 * value will have this type.
979 * Returns: (transfer full): the value of the dictionary key, or %NULL
981 * Since: 2.28
983 GVariant *
984 g_variant_lookup_value (GVariant *dictionary,
985 const gchar *key,
986 const GVariantType *expected_type)
988 GVariantIter iter;
989 GVariant *entry;
990 GVariant *value;
992 g_return_val_if_fail (g_variant_is_of_type (dictionary,
993 G_VARIANT_TYPE ("a{s*}")) ||
994 g_variant_is_of_type (dictionary,
995 G_VARIANT_TYPE ("a{o*}")),
996 NULL);
998 g_variant_iter_init (&iter, dictionary);
1000 while ((entry = g_variant_iter_next_value (&iter)))
1002 GVariant *entry_key;
1003 gboolean matches;
1005 entry_key = g_variant_get_child_value (entry, 0);
1006 matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1007 g_variant_unref (entry_key);
1009 if (matches)
1010 break;
1012 g_variant_unref (entry);
1015 if (entry == NULL)
1016 return NULL;
1018 value = g_variant_get_child_value (entry, 1);
1019 g_variant_unref (entry);
1021 if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1023 GVariant *tmp;
1025 tmp = g_variant_get_variant (value);
1026 g_variant_unref (value);
1028 if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1030 g_variant_unref (tmp);
1031 tmp = NULL;
1034 value = tmp;
1037 g_return_val_if_fail (expected_type == NULL || value == NULL ||
1038 g_variant_is_of_type (value, expected_type), NULL);
1040 return value;
1044 * g_variant_get_fixed_array:
1045 * @value: a #GVariant array with fixed-sized elements
1046 * @n_elements: (out): a pointer to the location to store the number of items
1047 * @element_size: the size of each element
1048 * @returns: (array length=n_elements): a pointer to the fixed array
1050 * Provides access to the serialised data for an array of fixed-sized
1051 * items.
1053 * @value must be an array with fixed-sized elements. Numeric types are
1054 * fixed-size as are tuples containing only other fixed-sized types.
1056 * @element_size must be the size of a single element in the array. For
1057 * example, if calling this function for an array of 32 bit integers,
1058 * you might say <code>sizeof (gint32)</code>. This value isn't used
1059 * except for the purpose of a double-check that the form of the
1060 * seralised data matches the caller's expectation.
1062 * @n_elements, which must be non-%NULL is set equal to the number of
1063 * items in the array.
1065 * Since: 2.24
1067 gconstpointer
1068 g_variant_get_fixed_array (GVariant *value,
1069 gsize *n_elements,
1070 gsize element_size)
1072 GVariantTypeInfo *array_info;
1073 gsize array_element_size;
1074 gconstpointer data;
1075 gsize size;
1077 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1079 g_return_val_if_fail (n_elements != NULL, NULL);
1080 g_return_val_if_fail (element_size > 0, NULL);
1082 array_info = g_variant_get_type_info (value);
1083 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1085 g_return_val_if_fail (array_element_size, NULL);
1087 if G_UNLIKELY (array_element_size != element_size)
1089 if (array_element_size)
1090 g_critical ("g_variant_get_fixed_array: assertion "
1091 "`g_variant_array_has_fixed_size (value, element_size)' "
1092 "failed: array size %"G_GSIZE_FORMAT" does not match "
1093 "given element_size %"G_GSIZE_FORMAT".",
1094 array_element_size, element_size);
1095 else
1096 g_critical ("g_variant_get_fixed_array: assertion "
1097 "`g_variant_array_has_fixed_size (value, element_size)' "
1098 "failed: array does not have fixed size.");
1101 data = g_variant_get_data (value);
1102 size = g_variant_get_size (value);
1104 if (size % element_size)
1105 *n_elements = 0;
1106 else
1107 *n_elements = size / element_size;
1109 if (*n_elements)
1110 return data;
1112 return NULL;
1115 /* String type constructor/getters/validation {{{1 */
1117 * g_variant_new_string:
1118 * @string: a normal utf8 nul-terminated string
1119 * @returns: (transfer none): a floating reference to a new string #GVariant instance
1121 * Creates a string #GVariant with the contents of @string.
1123 * @string must be valid utf8.
1125 * Since: 2.24
1127 GVariant *
1128 g_variant_new_string (const gchar *string)
1130 g_return_val_if_fail (string != NULL, NULL);
1131 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1133 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1134 string, strlen (string) + 1);
1138 * g_variant_new_object_path:
1139 * @object_path: a normal C nul-terminated string
1140 * @returns: (transfer none): a floating reference to a new object path #GVariant instance
1142 * Creates a D-Bus object path #GVariant with the contents of @string.
1143 * @string must be a valid D-Bus object path. Use
1144 * g_variant_is_object_path() if you're not sure.
1146 * Since: 2.24
1148 GVariant *
1149 g_variant_new_object_path (const gchar *object_path)
1151 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1153 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1154 object_path, strlen (object_path) + 1);
1158 * g_variant_is_object_path:
1159 * @string: a normal C nul-terminated string
1160 * @returns: %TRUE if @string is a D-Bus object path
1162 * Determines if a given string is a valid D-Bus object path. You
1163 * should ensure that a string is a valid D-Bus object path before
1164 * passing it to g_variant_new_object_path().
1166 * A valid object path starts with '/' followed by zero or more
1167 * sequences of characters separated by '/' characters. Each sequence
1168 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
1169 * (including the one following the final '/' character) may be empty.
1171 * Since: 2.24
1173 gboolean
1174 g_variant_is_object_path (const gchar *string)
1176 g_return_val_if_fail (string != NULL, FALSE);
1178 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1182 * g_variant_new_signature:
1183 * @signature: a normal C nul-terminated string
1184 * @returns: (transfer none): a floating reference to a new signature #GVariant instance
1186 * Creates a D-Bus type signature #GVariant with the contents of
1187 * @string. @string must be a valid D-Bus type signature. Use
1188 * g_variant_is_signature() if you're not sure.
1190 * Since: 2.24
1192 GVariant *
1193 g_variant_new_signature (const gchar *signature)
1195 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1197 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1198 signature, strlen (signature) + 1);
1202 * g_variant_is_signature:
1203 * @string: a normal C nul-terminated string
1204 * @returns: %TRUE if @string is a D-Bus type signature
1206 * Determines if a given string is a valid D-Bus type signature. You
1207 * should ensure that a string is a valid D-Bus type signature before
1208 * passing it to g_variant_new_signature().
1210 * D-Bus type signatures consist of zero or more definite #GVariantType
1211 * strings in sequence.
1213 * Since: 2.24
1215 gboolean
1216 g_variant_is_signature (const gchar *string)
1218 g_return_val_if_fail (string != NULL, FALSE);
1220 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1224 * g_variant_get_string:
1225 * @value: a string #GVariant instance
1226 * @length: (allow-none) (default 0) (out): a pointer to a #gsize,
1227 * to store the length
1228 * @returns: (transfer none): the constant string, utf8 encoded
1230 * Returns the string value of a #GVariant instance with a string
1231 * type. This includes the types %G_VARIANT_TYPE_STRING,
1232 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1234 * The string will always be utf8 encoded.
1236 * If @length is non-%NULL then the length of the string (in bytes) is
1237 * returned there. For trusted values, this information is already
1238 * known. For untrusted values, a strlen() will be performed.
1240 * It is an error to call this function with a @value of any type
1241 * other than those three.
1243 * The return value remains valid as long as @value exists.
1245 * Since: 2.24
1247 const gchar *
1248 g_variant_get_string (GVariant *value,
1249 gsize *length)
1251 gconstpointer data;
1252 gsize size;
1254 g_return_val_if_fail (value != NULL, NULL);
1255 g_return_val_if_fail (
1256 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1257 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1258 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1260 data = g_variant_get_data (value);
1261 size = g_variant_get_size (value);
1263 if (!g_variant_is_trusted (value))
1265 switch (g_variant_classify (value))
1267 case G_VARIANT_CLASS_STRING:
1268 if (g_variant_serialiser_is_string (data, size))
1269 break;
1271 data = "";
1272 size = 1;
1273 break;
1275 case G_VARIANT_CLASS_OBJECT_PATH:
1276 if (g_variant_serialiser_is_object_path (data, size))
1277 break;
1279 data = "/";
1280 size = 2;
1281 break;
1283 case G_VARIANT_CLASS_SIGNATURE:
1284 if (g_variant_serialiser_is_signature (data, size))
1285 break;
1287 data = "";
1288 size = 1;
1289 break;
1291 default:
1292 g_assert_not_reached ();
1296 if (length)
1297 *length = size - 1;
1299 return data;
1303 * g_variant_dup_string:
1304 * @value: a string #GVariant instance
1305 * @length: (out): a pointer to a #gsize, to store the length
1306 * @returns: (transfer full): a newly allocated string, utf8 encoded
1308 * Similar to g_variant_get_string() except that instead of returning
1309 * a constant string, the string is duplicated.
1311 * The string will always be utf8 encoded.
1313 * The return value must be freed using g_free().
1315 * Since: 2.24
1317 gchar *
1318 g_variant_dup_string (GVariant *value,
1319 gsize *length)
1321 return g_strdup (g_variant_get_string (value, length));
1325 * g_variant_new_strv:
1326 * @strv: (array length=length) (element-type utf8): an array of strings
1327 * @length: the length of @strv, or -1
1328 * @returns: (transfer none): a new floating #GVariant instance
1330 * Constructs an array of strings #GVariant from the given array of
1331 * strings.
1333 * If @length is -1 then @strv is %NULL-terminated.
1335 * Since: 2.24
1337 GVariant *
1338 g_variant_new_strv (const gchar * const *strv,
1339 gssize length)
1341 GVariant **strings;
1342 gsize i;
1344 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1346 if (length < 0)
1347 length = g_strv_length ((gchar **) strv);
1349 strings = g_new (GVariant *, length);
1350 for (i = 0; i < length; i++)
1351 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1353 return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1354 strings, length, TRUE);
1358 * g_variant_get_strv:
1359 * @value: an array of strings #GVariant
1360 * @length: (out) (allow-none): the length of the result, or %NULL
1361 * @returns: (array length=length zero-terminated=1) (transfer container): an array of constant
1362 * strings
1364 * Gets the contents of an array of strings #GVariant. This call
1365 * makes a shallow copy; the return result should be released with
1366 * g_free(), but the individual strings must not be modified.
1368 * If @length is non-%NULL then the number of elements in the result
1369 * is stored there. In any case, the resulting array will be
1370 * %NULL-terminated.
1372 * For an empty array, @length will be set to 0 and a pointer to a
1373 * %NULL pointer will be returned.
1375 * Since: 2.24
1377 const gchar **
1378 g_variant_get_strv (GVariant *value,
1379 gsize *length)
1381 const gchar **strv;
1382 gsize n;
1383 gsize i;
1385 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1387 g_variant_get_data (value);
1388 n = g_variant_n_children (value);
1389 strv = g_new (const gchar *, n + 1);
1391 for (i = 0; i < n; i++)
1393 GVariant *string;
1395 string = g_variant_get_child_value (value, i);
1396 strv[i] = g_variant_get_string (string, NULL);
1397 g_variant_unref (string);
1399 strv[i] = NULL;
1401 if (length)
1402 *length = n;
1404 return strv;
1408 * g_variant_dup_strv:
1409 * @value: an array of strings #GVariant
1410 * @length: (out) (allow-none): the length of the result, or %NULL
1411 * @returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1413 * Gets the contents of an array of strings #GVariant. This call
1414 * makes a deep copy; the return result should be released with
1415 * g_strfreev().
1417 * If @length is non-%NULL then the number of elements in the result
1418 * is stored there. In any case, the resulting array will be
1419 * %NULL-terminated.
1421 * For an empty array, @length will be set to 0 and a pointer to a
1422 * %NULL pointer will be returned.
1424 * Since: 2.24
1426 gchar **
1427 g_variant_dup_strv (GVariant *value,
1428 gsize *length)
1430 gchar **strv;
1431 gsize n;
1432 gsize i;
1434 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1436 n = g_variant_n_children (value);
1437 strv = g_new (gchar *, n + 1);
1439 for (i = 0; i < n; i++)
1441 GVariant *string;
1443 string = g_variant_get_child_value (value, i);
1444 strv[i] = g_variant_dup_string (string, NULL);
1445 g_variant_unref (string);
1447 strv[i] = NULL;
1449 if (length)
1450 *length = n;
1452 return strv;
1456 * g_variant_new_objv:
1457 * @strv: (array length=length) (element-type utf8): an array of strings
1458 * @length: the length of @strv, or -1
1459 * @returns: (transfer none): a new floating #GVariant instance
1461 * Constructs an array of object paths #GVariant from the given array of
1462 * strings.
1464 * Each string must be a valid #GVariant object path; see
1465 * g_variant_is_object_path().
1467 * If @length is -1 then @strv is %NULL-terminated.
1469 * Since: 2.30
1471 GVariant *
1472 g_variant_new_objv (const gchar * const *strv,
1473 gssize length)
1475 GVariant **strings;
1476 gsize i;
1478 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1480 if (length < 0)
1481 length = g_strv_length ((gchar **) strv);
1483 strings = g_new (GVariant *, length);
1484 for (i = 0; i < length; i++)
1485 strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1487 return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1488 strings, length, TRUE);
1492 * g_variant_get_objv:
1493 * @value: an array of object paths #GVariant
1494 * @length: (out) (allow-none): the length of the result, or %NULL
1495 * @returns: (array length=length zero-terminated=1) (transfer container): an array of constant
1496 * strings
1498 * Gets the contents of an array of object paths #GVariant. This call
1499 * makes a shallow copy; the return result should be released with
1500 * g_free(), but the individual strings must not be modified.
1502 * If @length is non-%NULL then the number of elements in the result
1503 * is stored there. In any case, the resulting array will be
1504 * %NULL-terminated.
1506 * For an empty array, @length will be set to 0 and a pointer to a
1507 * %NULL pointer will be returned.
1509 * Since: 2.30
1511 const gchar **
1512 g_variant_get_objv (GVariant *value,
1513 gsize *length)
1515 const gchar **strv;
1516 gsize n;
1517 gsize i;
1519 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1521 g_variant_get_data (value);
1522 n = g_variant_n_children (value);
1523 strv = g_new (const gchar *, n + 1);
1525 for (i = 0; i < n; i++)
1527 GVariant *string;
1529 string = g_variant_get_child_value (value, i);
1530 strv[i] = g_variant_get_string (string, NULL);
1531 g_variant_unref (string);
1533 strv[i] = NULL;
1535 if (length)
1536 *length = n;
1538 return strv;
1542 * g_variant_dup_objv:
1543 * @value: an array of object paths #GVariant
1544 * @length: (out) (allow-none): the length of the result, or %NULL
1545 * @returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1547 * Gets the contents of an array of object paths #GVariant. This call
1548 * makes a deep copy; the return result should be released with
1549 * g_strfreev().
1551 * If @length is non-%NULL then the number of elements in the result
1552 * is stored there. In any case, the resulting array will be
1553 * %NULL-terminated.
1555 * For an empty array, @length will be set to 0 and a pointer to a
1556 * %NULL pointer will be returned.
1558 * Since: 2.30
1560 gchar **
1561 g_variant_dup_objv (GVariant *value,
1562 gsize *length)
1564 gchar **strv;
1565 gsize n;
1566 gsize i;
1568 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1570 n = g_variant_n_children (value);
1571 strv = g_new (gchar *, n + 1);
1573 for (i = 0; i < n; i++)
1575 GVariant *string;
1577 string = g_variant_get_child_value (value, i);
1578 strv[i] = g_variant_dup_string (string, NULL);
1579 g_variant_unref (string);
1581 strv[i] = NULL;
1583 if (length)
1584 *length = n;
1586 return strv;
1591 * g_variant_new_bytestring:
1592 * @string: (array zero-terminated=1): a normal nul-terminated string in no particular encoding
1593 * @returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1595 * Creates an array-of-bytes #GVariant with the contents of @string.
1596 * This function is just like g_variant_new_string() except that the
1597 * string need not be valid utf8.
1599 * The nul terminator character at the end of the string is stored in
1600 * the array.
1602 * Since: 2.26
1604 GVariant *
1605 g_variant_new_bytestring (const gchar *string)
1607 g_return_val_if_fail (string != NULL, NULL);
1609 return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1610 string, strlen (string) + 1);
1614 * g_variant_get_bytestring:
1615 * @value: an array-of-bytes #GVariant instance
1616 * @returns: (transfer none) (array zero-terminated=1): the constant string
1618 * Returns the string value of a #GVariant instance with an
1619 * array-of-bytes type. The string has no particular encoding.
1621 * If the array does not end with a nul terminator character, the empty
1622 * string is returned. For this reason, you can always trust that a
1623 * non-%NULL nul-terminated string will be returned by this function.
1625 * If the array contains a nul terminator character somewhere other than
1626 * the last byte then the returned string is the string, up to the first
1627 * such nul character.
1629 * It is an error to call this function with a @value that is not an
1630 * array of bytes.
1632 * The return value remains valid as long as @value exists.
1634 * Since: 2.26
1636 const gchar *
1637 g_variant_get_bytestring (GVariant *value)
1639 const gchar *string;
1640 gsize size;
1642 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1644 /* Won't be NULL since this is an array type */
1645 string = g_variant_get_data (value);
1646 size = g_variant_get_size (value);
1648 if (size && string[size - 1] == '\0')
1649 return string;
1650 else
1651 return "";
1655 * g_variant_dup_bytestring:
1656 * @value: an array-of-bytes #GVariant instance
1657 * @length: (out) (allow-none) (default NULL): a pointer to a #gsize, to store
1658 * the length (not including the nul terminator)
1659 * @returns: (transfer full) (array zero-terminated=1): a newly allocated string
1661 * Similar to g_variant_get_bytestring() except that instead of
1662 * returning a constant string, the string is duplicated.
1664 * The return value must be freed using g_free().
1666 * Since: 2.26
1668 gchar *
1669 g_variant_dup_bytestring (GVariant *value,
1670 gsize *length)
1672 const gchar *original = g_variant_get_bytestring (value);
1673 gsize size;
1675 /* don't crash in case get_bytestring() had an assert failure */
1676 if (original == NULL)
1677 return NULL;
1679 size = strlen (original);
1681 if (length)
1682 *length = size;
1684 return g_memdup (original, size + 1);
1688 * g_variant_new_bytestring_array:
1689 * @strv: (array length=length): an array of strings
1690 * @length: the length of @strv, or -1
1691 * @returns: (transfer none): a new floating #GVariant instance
1693 * Constructs an array of bytestring #GVariant from the given array of
1694 * strings.
1696 * If @length is -1 then @strv is %NULL-terminated.
1698 * Since: 2.26
1700 GVariant *
1701 g_variant_new_bytestring_array (const gchar * const *strv,
1702 gssize length)
1704 GVariant **strings;
1705 gsize i;
1707 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1709 if (length < 0)
1710 length = g_strv_length ((gchar **) strv);
1712 strings = g_new (GVariant *, length);
1713 for (i = 0; i < length; i++)
1714 strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1716 return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1717 strings, length, TRUE);
1721 * g_variant_get_bytestring_array:
1722 * @value: an array of array of bytes #GVariant ('aay')
1723 * @length: (out) (allow-none): the length of the result, or %NULL
1724 * @returns: (array length=length) (transfer container): an array of constant strings
1726 * Gets the contents of an array of array of bytes #GVariant. This call
1727 * makes a shallow copy; the return result should be released with
1728 * g_free(), but the individual strings must not be modified.
1730 * If @length is non-%NULL then the number of elements in the result is
1731 * stored there. In any case, the resulting array will be
1732 * %NULL-terminated.
1734 * For an empty array, @length will be set to 0 and a pointer to a
1735 * %NULL pointer will be returned.
1737 * Since: 2.26
1739 const gchar **
1740 g_variant_get_bytestring_array (GVariant *value,
1741 gsize *length)
1743 const gchar **strv;
1744 gsize n;
1745 gsize i;
1747 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1749 g_variant_get_data (value);
1750 n = g_variant_n_children (value);
1751 strv = g_new (const gchar *, n + 1);
1753 for (i = 0; i < n; i++)
1755 GVariant *string;
1757 string = g_variant_get_child_value (value, i);
1758 strv[i] = g_variant_get_bytestring (string);
1759 g_variant_unref (string);
1761 strv[i] = NULL;
1763 if (length)
1764 *length = n;
1766 return strv;
1770 * g_variant_dup_bytestring_array:
1771 * @value: an array of array of bytes #GVariant ('aay')
1772 * @length: (out) (allow-none): the length of the result, or %NULL
1773 * @returns: (array length=length) (transfer full): an array of strings
1775 * Gets the contents of an array of array of bytes #GVariant. This call
1776 * makes a deep copy; the return result should be released with
1777 * g_strfreev().
1779 * If @length is non-%NULL then the number of elements in the result is
1780 * stored there. In any case, the resulting array will be
1781 * %NULL-terminated.
1783 * For an empty array, @length will be set to 0 and a pointer to a
1784 * %NULL pointer will be returned.
1786 * Since: 2.26
1788 gchar **
1789 g_variant_dup_bytestring_array (GVariant *value,
1790 gsize *length)
1792 gchar **strv;
1793 gsize n;
1794 gsize i;
1796 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1798 g_variant_get_data (value);
1799 n = g_variant_n_children (value);
1800 strv = g_new (gchar *, n + 1);
1802 for (i = 0; i < n; i++)
1804 GVariant *string;
1806 string = g_variant_get_child_value (value, i);
1807 strv[i] = g_variant_dup_bytestring (string, NULL);
1808 g_variant_unref (string);
1810 strv[i] = NULL;
1812 if (length)
1813 *length = n;
1815 return strv;
1818 /* Type checking and querying {{{1 */
1820 * g_variant_get_type:
1821 * @value: a #GVariant
1822 * @returns: a #GVariantType
1824 * Determines the type of @value.
1826 * The return value is valid for the lifetime of @value and must not
1827 * be freed.
1829 * Since: 2.24
1831 const GVariantType *
1832 g_variant_get_type (GVariant *value)
1834 GVariantTypeInfo *type_info;
1836 g_return_val_if_fail (value != NULL, NULL);
1838 type_info = g_variant_get_type_info (value);
1840 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
1844 * g_variant_get_type_string:
1845 * @value: a #GVariant
1846 * @returns: the type string for the type of @value
1848 * Returns the type string of @value. Unlike the result of calling
1849 * g_variant_type_peek_string(), this string is nul-terminated. This
1850 * string belongs to #GVariant and must not be freed.
1852 * Since: 2.24
1854 const gchar *
1855 g_variant_get_type_string (GVariant *value)
1857 GVariantTypeInfo *type_info;
1859 g_return_val_if_fail (value != NULL, NULL);
1861 type_info = g_variant_get_type_info (value);
1863 return g_variant_type_info_get_type_string (type_info);
1867 * g_variant_is_of_type:
1868 * @value: a #GVariant instance
1869 * @type: a #GVariantType
1870 * @returns: %TRUE if the type of @value matches @type
1872 * Checks if a value has a type matching the provided type.
1874 * Since: 2.24
1876 gboolean
1877 g_variant_is_of_type (GVariant *value,
1878 const GVariantType *type)
1880 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
1884 * g_variant_is_container:
1885 * @value: a #GVariant instance
1886 * @returns: %TRUE if @value is a container
1888 * Checks if @value is a container.
1890 gboolean
1891 g_variant_is_container (GVariant *value)
1893 return g_variant_type_is_container (g_variant_get_type (value));
1898 * g_variant_classify:
1899 * @value: a #GVariant
1900 * @returns: the #GVariantClass of @value
1902 * Classifies @value according to its top-level type.
1904 * Since: 2.24
1907 * GVariantClass:
1908 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
1909 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
1910 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
1911 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
1912 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
1913 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
1914 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
1915 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
1916 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
1917 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
1918 * point value.
1919 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
1920 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
1921 * string.
1922 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
1923 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
1924 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
1925 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
1926 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
1927 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
1929 * The range of possible top-level types of #GVariant instances.
1931 * Since: 2.24
1933 GVariantClass
1934 g_variant_classify (GVariant *value)
1936 g_return_val_if_fail (value != NULL, 0);
1938 return *g_variant_get_type_string (value);
1941 /* Pretty printer {{{1 */
1942 /* This function is not introspectable because if @string is NULL,
1943 @returns is (transfer full), otherwise it is (transfer none), which
1944 is not supported by GObjectIntrospection */
1946 * g_variant_print_string: (skip)
1947 * @value: a #GVariant
1948 * @string: (allow-none) (default NULL): a #GString, or %NULL
1949 * @type_annotate: %TRUE if type information should be included in
1950 * the output
1951 * @returns: a #GString containing the string
1953 * Behaves as g_variant_print(), but operates on a #GString.
1955 * If @string is non-%NULL then it is appended to and returned. Else,
1956 * a new empty #GString is allocated and it is returned.
1958 * Since: 2.24
1960 GString *
1961 g_variant_print_string (GVariant *value,
1962 GString *string,
1963 gboolean type_annotate)
1965 if G_UNLIKELY (string == NULL)
1966 string = g_string_new (NULL);
1968 switch (g_variant_classify (value))
1970 case G_VARIANT_CLASS_MAYBE:
1971 if (type_annotate)
1972 g_string_append_printf (string, "@%s ",
1973 g_variant_get_type_string (value));
1975 if (g_variant_n_children (value))
1977 gchar *printed_child;
1978 GVariant *element;
1980 /* Nested maybes:
1982 * Consider the case of the type "mmi". In this case we could
1983 * write "just just 4", but "4" alone is totally unambiguous,
1984 * so we try to drop "just" where possible.
1986 * We have to be careful not to always drop "just", though,
1987 * since "nothing" needs to be distinguishable from "just
1988 * nothing". The case where we need to ensure we keep the
1989 * "just" is actually exactly the case where we have a nested
1990 * Nothing.
1992 * Instead of searching for that nested Nothing, we just print
1993 * the contained value into a separate string and see if we
1994 * end up with "nothing" at the end of it. If so, we need to
1995 * add "just" at our level.
1997 element = g_variant_get_child_value (value, 0);
1998 printed_child = g_variant_print (element, FALSE);
1999 g_variant_unref (element);
2001 if (g_str_has_suffix (printed_child, "nothing"))
2002 g_string_append (string, "just ");
2003 g_string_append (string, printed_child);
2004 g_free (printed_child);
2006 else
2007 g_string_append (string, "nothing");
2009 break;
2011 case G_VARIANT_CLASS_ARRAY:
2012 /* it's an array so the first character of the type string is 'a'
2014 * if the first two characters are 'ay' then it's a bytestring.
2015 * under certain conditions we print those as strings.
2017 if (g_variant_get_type_string (value)[1] == 'y')
2019 const gchar *str;
2020 gsize size;
2021 gsize i;
2023 /* first determine if it is a byte string.
2024 * that's when there's a single nul character: at the end.
2026 str = g_variant_get_data (value);
2027 size = g_variant_get_size (value);
2029 for (i = 0; i < size; i++)
2030 if (str[i] == '\0')
2031 break;
2033 /* first nul byte is the last byte -> it's a byte string. */
2034 if (i == size - 1)
2036 gchar *escaped = g_strescape (str, NULL);
2038 /* use double quotes only if a ' is in the string */
2039 if (strchr (str, '\''))
2040 g_string_append_printf (string, "b\"%s\"", escaped);
2041 else
2042 g_string_append_printf (string, "b'%s'", escaped);
2044 g_free (escaped);
2045 break;
2048 else
2049 /* fall through and handle normally... */;
2053 * if the first two characters are 'a{' then it's an array of
2054 * dictionary entries (ie: a dictionary) so we print that
2055 * differently.
2057 if (g_variant_get_type_string (value)[1] == '{')
2058 /* dictionary */
2060 const gchar *comma = "";
2061 gsize n, i;
2063 if ((n = g_variant_n_children (value)) == 0)
2065 if (type_annotate)
2066 g_string_append_printf (string, "@%s ",
2067 g_variant_get_type_string (value));
2068 g_string_append (string, "{}");
2069 break;
2072 g_string_append_c (string, '{');
2073 for (i = 0; i < n; i++)
2075 GVariant *entry, *key, *val;
2077 g_string_append (string, comma);
2078 comma = ", ";
2080 entry = g_variant_get_child_value (value, i);
2081 key = g_variant_get_child_value (entry, 0);
2082 val = g_variant_get_child_value (entry, 1);
2083 g_variant_unref (entry);
2085 g_variant_print_string (key, string, type_annotate);
2086 g_variant_unref (key);
2087 g_string_append (string, ": ");
2088 g_variant_print_string (val, string, type_annotate);
2089 g_variant_unref (val);
2090 type_annotate = FALSE;
2092 g_string_append_c (string, '}');
2094 else
2095 /* normal (non-dictionary) array */
2097 const gchar *comma = "";
2098 gsize n, i;
2100 if ((n = g_variant_n_children (value)) == 0)
2102 if (type_annotate)
2103 g_string_append_printf (string, "@%s ",
2104 g_variant_get_type_string (value));
2105 g_string_append (string, "[]");
2106 break;
2109 g_string_append_c (string, '[');
2110 for (i = 0; i < n; i++)
2112 GVariant *element;
2114 g_string_append (string, comma);
2115 comma = ", ";
2117 element = g_variant_get_child_value (value, i);
2119 g_variant_print_string (element, string, type_annotate);
2120 g_variant_unref (element);
2121 type_annotate = FALSE;
2123 g_string_append_c (string, ']');
2126 break;
2128 case G_VARIANT_CLASS_TUPLE:
2130 gsize n, i;
2132 n = g_variant_n_children (value);
2134 g_string_append_c (string, '(');
2135 for (i = 0; i < n; i++)
2137 GVariant *element;
2139 element = g_variant_get_child_value (value, i);
2140 g_variant_print_string (element, string, type_annotate);
2141 g_string_append (string, ", ");
2142 g_variant_unref (element);
2145 /* for >1 item: remove final ", "
2146 * for 1 item: remove final " ", but leave the ","
2147 * for 0 items: there is only "(", so remove nothing
2149 g_string_truncate (string, string->len - (n > 0) - (n > 1));
2150 g_string_append_c (string, ')');
2152 break;
2154 case G_VARIANT_CLASS_DICT_ENTRY:
2156 GVariant *element;
2158 g_string_append_c (string, '{');
2160 element = g_variant_get_child_value (value, 0);
2161 g_variant_print_string (element, string, type_annotate);
2162 g_variant_unref (element);
2164 g_string_append (string, ", ");
2166 element = g_variant_get_child_value (value, 1);
2167 g_variant_print_string (element, string, type_annotate);
2168 g_variant_unref (element);
2170 g_string_append_c (string, '}');
2172 break;
2174 case G_VARIANT_CLASS_VARIANT:
2176 GVariant *child = g_variant_get_variant (value);
2178 /* Always annotate types in nested variants, because they are
2179 * (by nature) of variable type.
2181 g_string_append_c (string, '<');
2182 g_variant_print_string (child, string, TRUE);
2183 g_string_append_c (string, '>');
2185 g_variant_unref (child);
2187 break;
2189 case G_VARIANT_CLASS_BOOLEAN:
2190 if (g_variant_get_boolean (value))
2191 g_string_append (string, "true");
2192 else
2193 g_string_append (string, "false");
2194 break;
2196 case G_VARIANT_CLASS_STRING:
2198 const gchar *str = g_variant_get_string (value, NULL);
2199 gunichar quote = strchr (str, '\'') ? '"' : '\'';
2201 g_string_append_c (string, quote);
2203 while (*str)
2205 gunichar c = g_utf8_get_char (str);
2207 if (c == quote || c == '\\')
2208 g_string_append_c (string, '\\');
2210 if (g_unichar_isprint (c))
2211 g_string_append_unichar (string, c);
2213 else
2215 g_string_append_c (string, '\\');
2216 if (c < 0x10000)
2217 switch (c)
2219 case '\a':
2220 g_string_append_c (string, 'a');
2221 break;
2223 case '\b':
2224 g_string_append_c (string, 'b');
2225 break;
2227 case '\f':
2228 g_string_append_c (string, 'f');
2229 break;
2231 case '\n':
2232 g_string_append_c (string, 'n');
2233 break;
2235 case '\r':
2236 g_string_append_c (string, 'r');
2237 break;
2239 case '\t':
2240 g_string_append_c (string, 't');
2241 break;
2243 case '\v':
2244 g_string_append_c (string, 'v');
2245 break;
2247 default:
2248 g_string_append_printf (string, "u%04x", c);
2249 break;
2251 else
2252 g_string_append_printf (string, "U%08x", c);
2255 str = g_utf8_next_char (str);
2258 g_string_append_c (string, quote);
2260 break;
2262 case G_VARIANT_CLASS_BYTE:
2263 if (type_annotate)
2264 g_string_append (string, "byte ");
2265 g_string_append_printf (string, "0x%02x",
2266 g_variant_get_byte (value));
2267 break;
2269 case G_VARIANT_CLASS_INT16:
2270 if (type_annotate)
2271 g_string_append (string, "int16 ");
2272 g_string_append_printf (string, "%"G_GINT16_FORMAT,
2273 g_variant_get_int16 (value));
2274 break;
2276 case G_VARIANT_CLASS_UINT16:
2277 if (type_annotate)
2278 g_string_append (string, "uint16 ");
2279 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2280 g_variant_get_uint16 (value));
2281 break;
2283 case G_VARIANT_CLASS_INT32:
2284 /* Never annotate this type because it is the default for numbers
2285 * (and this is a *pretty* printer)
2287 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2288 g_variant_get_int32 (value));
2289 break;
2291 case G_VARIANT_CLASS_HANDLE:
2292 if (type_annotate)
2293 g_string_append (string, "handle ");
2294 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2295 g_variant_get_handle (value));
2296 break;
2298 case G_VARIANT_CLASS_UINT32:
2299 if (type_annotate)
2300 g_string_append (string, "uint32 ");
2301 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2302 g_variant_get_uint32 (value));
2303 break;
2305 case G_VARIANT_CLASS_INT64:
2306 if (type_annotate)
2307 g_string_append (string, "int64 ");
2308 g_string_append_printf (string, "%"G_GINT64_FORMAT,
2309 g_variant_get_int64 (value));
2310 break;
2312 case G_VARIANT_CLASS_UINT64:
2313 if (type_annotate)
2314 g_string_append (string, "uint64 ");
2315 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2316 g_variant_get_uint64 (value));
2317 break;
2319 case G_VARIANT_CLASS_DOUBLE:
2321 gchar buffer[100];
2322 gint i;
2324 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2326 for (i = 0; buffer[i]; i++)
2327 if (buffer[i] == '.' || buffer[i] == 'e' ||
2328 buffer[i] == 'n' || buffer[i] == 'N')
2329 break;
2331 /* if there is no '.' or 'e' in the float then add one */
2332 if (buffer[i] == '\0')
2334 buffer[i++] = '.';
2335 buffer[i++] = '0';
2336 buffer[i++] = '\0';
2339 g_string_append (string, buffer);
2341 break;
2343 case G_VARIANT_CLASS_OBJECT_PATH:
2344 if (type_annotate)
2345 g_string_append (string, "objectpath ");
2346 g_string_append_printf (string, "\'%s\'",
2347 g_variant_get_string (value, NULL));
2348 break;
2350 case G_VARIANT_CLASS_SIGNATURE:
2351 if (type_annotate)
2352 g_string_append (string, "signature ");
2353 g_string_append_printf (string, "\'%s\'",
2354 g_variant_get_string (value, NULL));
2355 break;
2357 default:
2358 g_assert_not_reached ();
2361 return string;
2365 * g_variant_print:
2366 * @value: a #GVariant
2367 * @type_annotate: %TRUE if type information should be included in
2368 * the output
2369 * @returns: (transfer full): a newly-allocated string holding the result.
2371 * Pretty-prints @value in the format understood by g_variant_parse().
2373 * The format is described <link linkend='gvariant-text'>here</link>.
2375 * If @type_annotate is %TRUE, then type information is included in
2376 * the output.
2378 gchar *
2379 g_variant_print (GVariant *value,
2380 gboolean type_annotate)
2382 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2383 FALSE);
2386 /* Hash, Equal, Compare {{{1 */
2388 * g_variant_hash:
2389 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2390 * @returns: a hash value corresponding to @value
2392 * Generates a hash value for a #GVariant instance.
2394 * The output of this function is guaranteed to be the same for a given
2395 * value only per-process. It may change between different processor
2396 * architectures or even different versions of GLib. Do not use this
2397 * function as a basis for building protocols or file formats.
2399 * The type of @value is #gconstpointer only to allow use of this
2400 * function with #GHashTable. @value must be a #GVariant.
2402 * Since: 2.24
2404 guint
2405 g_variant_hash (gconstpointer value_)
2407 GVariant *value = (GVariant *) value_;
2409 switch (g_variant_classify (value))
2411 case G_VARIANT_CLASS_STRING:
2412 case G_VARIANT_CLASS_OBJECT_PATH:
2413 case G_VARIANT_CLASS_SIGNATURE:
2414 return g_str_hash (g_variant_get_string (value, NULL));
2416 case G_VARIANT_CLASS_BOOLEAN:
2417 /* this is a very odd thing to hash... */
2418 return g_variant_get_boolean (value);
2420 case G_VARIANT_CLASS_BYTE:
2421 return g_variant_get_byte (value);
2423 case G_VARIANT_CLASS_INT16:
2424 case G_VARIANT_CLASS_UINT16:
2426 const guint16 *ptr;
2428 ptr = g_variant_get_data (value);
2430 if (ptr)
2431 return *ptr;
2432 else
2433 return 0;
2436 case G_VARIANT_CLASS_INT32:
2437 case G_VARIANT_CLASS_UINT32:
2438 case G_VARIANT_CLASS_HANDLE:
2440 const guint *ptr;
2442 ptr = g_variant_get_data (value);
2444 if (ptr)
2445 return *ptr;
2446 else
2447 return 0;
2450 case G_VARIANT_CLASS_INT64:
2451 case G_VARIANT_CLASS_UINT64:
2452 case G_VARIANT_CLASS_DOUBLE:
2453 /* need a separate case for these guys because otherwise
2454 * performance could be quite bad on big endian systems
2457 const guint *ptr;
2459 ptr = g_variant_get_data (value);
2461 if (ptr)
2462 return ptr[0] + ptr[1];
2463 else
2464 return 0;
2467 default:
2468 g_return_val_if_fail (!g_variant_is_container (value), 0);
2469 g_assert_not_reached ();
2474 * g_variant_equal:
2475 * @one: (type GVariant): a #GVariant instance
2476 * @two: (type GVariant): a #GVariant instance
2477 * @returns: %TRUE if @one and @two are equal
2479 * Checks if @one and @two have the same type and value.
2481 * The types of @one and @two are #gconstpointer only to allow use of
2482 * this function with #GHashTable. They must each be a #GVariant.
2484 * Since: 2.24
2486 gboolean
2487 g_variant_equal (gconstpointer one,
2488 gconstpointer two)
2490 gboolean equal;
2492 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2494 if (g_variant_get_type_info ((GVariant *) one) !=
2495 g_variant_get_type_info ((GVariant *) two))
2496 return FALSE;
2498 /* if both values are trusted to be in their canonical serialised form
2499 * then a simple memcmp() of their serialised data will answer the
2500 * question.
2502 * if not, then this might generate a false negative (since it is
2503 * possible for two different byte sequences to represent the same
2504 * value). for now we solve this by pretty-printing both values and
2505 * comparing the result.
2507 if (g_variant_is_trusted ((GVariant *) one) &&
2508 g_variant_is_trusted ((GVariant *) two))
2510 gconstpointer data_one, data_two;
2511 gsize size_one, size_two;
2513 size_one = g_variant_get_size ((GVariant *) one);
2514 size_two = g_variant_get_size ((GVariant *) two);
2516 if (size_one != size_two)
2517 return FALSE;
2519 data_one = g_variant_get_data ((GVariant *) one);
2520 data_two = g_variant_get_data ((GVariant *) two);
2522 equal = memcmp (data_one, data_two, size_one) == 0;
2524 else
2526 gchar *strone, *strtwo;
2528 strone = g_variant_print ((GVariant *) one, FALSE);
2529 strtwo = g_variant_print ((GVariant *) two, FALSE);
2530 equal = strcmp (strone, strtwo) == 0;
2531 g_free (strone);
2532 g_free (strtwo);
2535 return equal;
2539 * g_variant_compare:
2540 * @one: (type GVariant): a basic-typed #GVariant instance
2541 * @two: (type GVariant): a #GVariant instance of the same type
2542 * @returns: negative value if a &lt; b;
2543 * zero if a = b;
2544 * positive value if a &gt; b.
2546 * Compares @one and @two.
2548 * The types of @one and @two are #gconstpointer only to allow use of
2549 * this function with #GTree, #GPtrArray, etc. They must each be a
2550 * #GVariant.
2552 * Comparison is only defined for basic types (ie: booleans, numbers,
2553 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2554 * ordered in the usual way. Strings are in ASCII lexographical order.
2556 * It is a programmer error to attempt to compare container values or
2557 * two values that have types that are not exactly equal. For example,
2558 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2559 * integer. Also note that this function is not particularly
2560 * well-behaved when it comes to comparison of doubles; in particular,
2561 * the handling of incomparable values (ie: NaN) is undefined.
2563 * If you only require an equality comparison, g_variant_equal() is more
2564 * general.
2566 * Since: 2.26
2568 gint
2569 g_variant_compare (gconstpointer one,
2570 gconstpointer two)
2572 GVariant *a = (GVariant *) one;
2573 GVariant *b = (GVariant *) two;
2575 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2577 switch (g_variant_classify (a))
2579 case G_VARIANT_CLASS_BYTE:
2580 return ((gint) g_variant_get_byte (a)) -
2581 ((gint) g_variant_get_byte (b));
2583 case G_VARIANT_CLASS_INT16:
2584 return ((gint) g_variant_get_int16 (a)) -
2585 ((gint) g_variant_get_int16 (b));
2587 case G_VARIANT_CLASS_UINT16:
2588 return ((gint) g_variant_get_uint16 (a)) -
2589 ((gint) g_variant_get_uint16 (b));
2591 case G_VARIANT_CLASS_INT32:
2593 gint32 a_val = g_variant_get_int32 (a);
2594 gint32 b_val = g_variant_get_int32 (b);
2596 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2599 case G_VARIANT_CLASS_UINT32:
2601 guint32 a_val = g_variant_get_uint32 (a);
2602 guint32 b_val = g_variant_get_uint32 (b);
2604 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2607 case G_VARIANT_CLASS_INT64:
2609 gint64 a_val = g_variant_get_int64 (a);
2610 gint64 b_val = g_variant_get_int64 (b);
2612 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2615 case G_VARIANT_CLASS_UINT64:
2617 guint64 a_val = g_variant_get_int32 (a);
2618 guint64 b_val = g_variant_get_int32 (b);
2620 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2623 case G_VARIANT_CLASS_DOUBLE:
2625 gdouble a_val = g_variant_get_double (a);
2626 gdouble b_val = g_variant_get_double (b);
2628 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2631 case G_VARIANT_CLASS_STRING:
2632 case G_VARIANT_CLASS_OBJECT_PATH:
2633 case G_VARIANT_CLASS_SIGNATURE:
2634 return strcmp (g_variant_get_string (a, NULL),
2635 g_variant_get_string (b, NULL));
2637 default:
2638 g_return_val_if_fail (!g_variant_is_container (a), 0);
2639 g_assert_not_reached ();
2643 /* GVariantIter {{{1 */
2645 * GVariantIter: (skip)
2647 * #GVariantIter is an opaque data structure and can only be accessed
2648 * using the following functions.
2650 struct stack_iter
2652 GVariant *value;
2653 gssize n, i;
2655 const gchar *loop_format;
2657 gsize padding[3];
2658 gsize magic;
2661 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2663 struct heap_iter
2665 struct stack_iter iter;
2667 GVariant *value_ref;
2668 gsize magic;
2671 #define GVSI(i) ((struct stack_iter *) (i))
2672 #define GVHI(i) ((struct heap_iter *) (i))
2673 #define GVSI_MAGIC ((gsize) 3579507750u)
2674 #define GVHI_MAGIC ((gsize) 1450270775u)
2675 #define is_valid_iter(i) (i != NULL && \
2676 GVSI(i)->magic == GVSI_MAGIC)
2677 #define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
2678 is_valid_iter(i))
2681 * g_variant_iter_new:
2682 * @value: a container #GVariant
2683 * @returns: (transfer full): a new heap-allocated #GVariantIter
2685 * Creates a heap-allocated #GVariantIter for iterating over the items
2686 * in @value.
2688 * Use g_variant_iter_free() to free the return value when you no longer
2689 * need it.
2691 * A reference is taken to @value and will be released only when
2692 * g_variant_iter_free() is called.
2694 * Since: 2.24
2696 GVariantIter *
2697 g_variant_iter_new (GVariant *value)
2699 GVariantIter *iter;
2701 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2702 GVHI(iter)->value_ref = g_variant_ref (value);
2703 GVHI(iter)->magic = GVHI_MAGIC;
2705 g_variant_iter_init (iter, value);
2707 return iter;
2711 * g_variant_iter_init: (skip)
2712 * @iter: a pointer to a #GVariantIter
2713 * @value: a container #GVariant
2714 * @returns: the number of items in @value
2716 * Initialises (without allocating) a #GVariantIter. @iter may be
2717 * completely uninitialised prior to this call; its old value is
2718 * ignored.
2720 * The iterator remains valid for as long as @value exists, and need not
2721 * be freed in any way.
2723 * Since: 2.24
2725 gsize
2726 g_variant_iter_init (GVariantIter *iter,
2727 GVariant *value)
2729 GVSI(iter)->magic = GVSI_MAGIC;
2730 GVSI(iter)->value = value;
2731 GVSI(iter)->n = g_variant_n_children (value);
2732 GVSI(iter)->i = -1;
2733 GVSI(iter)->loop_format = NULL;
2735 return GVSI(iter)->n;
2739 * g_variant_iter_copy:
2740 * @iter: a #GVariantIter
2741 * @returns: (transfer full): a new heap-allocated #GVariantIter
2743 * Creates a new heap-allocated #GVariantIter to iterate over the
2744 * container that was being iterated over by @iter. Iteration begins on
2745 * the new iterator from the current position of the old iterator but
2746 * the two copies are independent past that point.
2748 * Use g_variant_iter_free() to free the return value when you no longer
2749 * need it.
2751 * A reference is taken to the container that @iter is iterating over
2752 * and will be releated only when g_variant_iter_free() is called.
2754 * Since: 2.24
2756 GVariantIter *
2757 g_variant_iter_copy (GVariantIter *iter)
2759 GVariantIter *copy;
2761 g_return_val_if_fail (is_valid_iter (iter), 0);
2763 copy = g_variant_iter_new (GVSI(iter)->value);
2764 GVSI(copy)->i = GVSI(iter)->i;
2766 return copy;
2770 * g_variant_iter_n_children:
2771 * @iter: a #GVariantIter
2772 * @returns: the number of children in the container
2774 * Queries the number of child items in the container that we are
2775 * iterating over. This is the total number of items -- not the number
2776 * of items remaining.
2778 * This function might be useful for preallocation of arrays.
2780 * Since: 2.24
2782 gsize
2783 g_variant_iter_n_children (GVariantIter *iter)
2785 g_return_val_if_fail (is_valid_iter (iter), 0);
2787 return GVSI(iter)->n;
2791 * g_variant_iter_free:
2792 * @iter: (transfer full): a heap-allocated #GVariantIter
2794 * Frees a heap-allocated #GVariantIter. Only call this function on
2795 * iterators that were returned by g_variant_iter_new() or
2796 * g_variant_iter_copy().
2798 * Since: 2.24
2800 void
2801 g_variant_iter_free (GVariantIter *iter)
2803 g_return_if_fail (is_valid_heap_iter (iter));
2805 g_variant_unref (GVHI(iter)->value_ref);
2806 GVHI(iter)->magic = 0;
2808 g_slice_free (struct heap_iter, GVHI(iter));
2812 * g_variant_iter_next_value:
2813 * @iter: a #GVariantIter
2814 * @returns: (allow-none) (transfer full): a #GVariant, or %NULL
2816 * Gets the next item in the container. If no more items remain then
2817 * %NULL is returned.
2819 * Use g_variant_unref() to drop your reference on the return value when
2820 * you no longer need it.
2822 * <example>
2823 * <title>Iterating with g_variant_iter_next_value()</title>
2824 * <programlisting>
2825 * /<!-- -->* recursively iterate a container *<!-- -->/
2826 * void
2827 * iterate_container_recursive (GVariant *container)
2829 * GVariantIter iter;
2830 * GVariant *child;
2832 * g_variant_iter_init (&iter, container);
2833 * while ((child = g_variant_iter_next_value (&iter)))
2835 * g_print ("type '%s'\n", g_variant_get_type_string (child));
2837 * if (g_variant_is_container (child))
2838 * iterate_container_recursive (child);
2840 * g_variant_unref (child);
2843 * </programlisting>
2844 * </example>
2846 * Since: 2.24
2848 GVariant *
2849 g_variant_iter_next_value (GVariantIter *iter)
2851 g_return_val_if_fail (is_valid_iter (iter), FALSE);
2853 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
2855 g_critical ("g_variant_iter_next_value: must not be called again "
2856 "after NULL has already been returned.");
2857 return NULL;
2860 GVSI(iter)->i++;
2862 if (GVSI(iter)->i < GVSI(iter)->n)
2863 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
2865 return NULL;
2868 /* GVariantBuilder {{{1 */
2870 * GVariantBuilder:
2872 * A utility type for constructing container-type #GVariant instances.
2874 * This is an opaque structure and may only be accessed using the
2875 * following functions.
2877 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
2878 * access it from more than one thread.
2881 struct stack_builder
2883 GVariantBuilder *parent;
2884 GVariantType *type;
2886 /* type constraint explicitly specified by 'type'.
2887 * for tuple types, this moves along as we add more items.
2889 const GVariantType *expected_type;
2891 /* type constraint implied by previous array item.
2893 const GVariantType *prev_item_type;
2895 /* constraints on the number of children. max = -1 for unlimited. */
2896 gsize min_items;
2897 gsize max_items;
2899 /* dynamically-growing pointer array */
2900 GVariant **children;
2901 gsize allocated_children;
2902 gsize offset;
2904 /* set to '1' if all items in the container will have the same type
2905 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
2907 guint uniform_item_types : 1;
2909 /* set to '1' initially and changed to '0' if an untrusted value is
2910 * added
2912 guint trusted : 1;
2914 gsize magic;
2917 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
2919 struct heap_builder
2921 GVariantBuilder builder;
2922 gsize magic;
2924 gint ref_count;
2927 #define GVSB(b) ((struct stack_builder *) (b))
2928 #define GVHB(b) ((struct heap_builder *) (b))
2929 #define GVSB_MAGIC ((gsize) 1033660112u)
2930 #define GVHB_MAGIC ((gsize) 3087242682u)
2931 #define is_valid_builder(b) (b != NULL && \
2932 GVSB(b)->magic == GVSB_MAGIC)
2933 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
2936 * g_variant_builder_new:
2937 * @type: a container type
2938 * @returns: (transfer full): a #GVariantBuilder
2940 * Allocates and initialises a new #GVariantBuilder.
2942 * You should call g_variant_builder_unref() on the return value when it
2943 * is no longer needed. The memory will not be automatically freed by
2944 * any other call.
2946 * In most cases it is easier to place a #GVariantBuilder directly on
2947 * the stack of the calling function and initialise it with
2948 * g_variant_builder_init().
2950 * Since: 2.24
2952 GVariantBuilder *
2953 g_variant_builder_new (const GVariantType *type)
2955 GVariantBuilder *builder;
2957 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
2958 g_variant_builder_init (builder, type);
2959 GVHB(builder)->magic = GVHB_MAGIC;
2960 GVHB(builder)->ref_count = 1;
2962 return builder;
2966 * g_variant_builder_unref:
2967 * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
2969 * Decreases the reference count on @builder.
2971 * In the event that there are no more references, releases all memory
2972 * associated with the #GVariantBuilder.
2974 * Don't call this on stack-allocated #GVariantBuilder instances or bad
2975 * things will happen.
2977 * Since: 2.24
2979 void
2980 g_variant_builder_unref (GVariantBuilder *builder)
2982 g_return_if_fail (is_valid_heap_builder (builder));
2984 if (--GVHB(builder)->ref_count)
2985 return;
2987 g_variant_builder_clear (builder);
2988 GVHB(builder)->magic = 0;
2990 g_slice_free (struct heap_builder, GVHB(builder));
2994 * g_variant_builder_ref:
2995 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
2996 * @returns: (transfer full): a new reference to @builder
2998 * Increases the reference count on @builder.
3000 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3001 * things will happen.
3003 * Since: 2.24
3005 GVariantBuilder *
3006 g_variant_builder_ref (GVariantBuilder *builder)
3008 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3010 GVHB(builder)->ref_count++;
3012 return builder;
3016 * g_variant_builder_clear: (skip)
3017 * @builder: a #GVariantBuilder
3019 * Releases all memory associated with a #GVariantBuilder without
3020 * freeing the #GVariantBuilder structure itself.
3022 * It typically only makes sense to do this on a stack-allocated
3023 * #GVariantBuilder if you want to abort building the value part-way
3024 * through. This function need not be called if you call
3025 * g_variant_builder_end() and it also doesn't need to be called on
3026 * builders allocated with g_variant_builder_new (see
3027 * g_variant_builder_unref() for that).
3029 * This function leaves the #GVariantBuilder structure set to all-zeros.
3030 * It is valid to call this function on either an initialised
3031 * #GVariantBuilder or one that is set to all-zeros but it is not valid
3032 * to call this function on uninitialised memory.
3034 * Since: 2.24
3036 void
3037 g_variant_builder_clear (GVariantBuilder *builder)
3039 gsize i;
3041 if (GVSB(builder)->magic == 0)
3042 /* all-zeros case */
3043 return;
3045 g_return_if_fail (is_valid_builder (builder));
3047 g_variant_type_free (GVSB(builder)->type);
3049 for (i = 0; i < GVSB(builder)->offset; i++)
3050 g_variant_unref (GVSB(builder)->children[i]);
3052 g_free (GVSB(builder)->children);
3054 if (GVSB(builder)->parent)
3056 g_variant_builder_clear (GVSB(builder)->parent);
3057 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3060 memset (builder, 0, sizeof (GVariantBuilder));
3064 * g_variant_builder_init: (skip)
3065 * @builder: a #GVariantBuilder
3066 * @type: a container type
3068 * Initialises a #GVariantBuilder structure.
3070 * @type must be non-%NULL. It specifies the type of container to
3071 * construct. It can be an indefinite type such as
3072 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3073 * Maybe, array, tuple, dictionary entry and variant-typed values may be
3074 * constructed.
3076 * After the builder is initialised, values are added using
3077 * g_variant_builder_add_value() or g_variant_builder_add().
3079 * After all the child values are added, g_variant_builder_end() frees
3080 * the memory associated with the builder and returns the #GVariant that
3081 * was created.
3083 * This function completely ignores the previous contents of @builder.
3084 * On one hand this means that it is valid to pass in completely
3085 * uninitialised memory. On the other hand, this means that if you are
3086 * initialising over top of an existing #GVariantBuilder you need to
3087 * first call g_variant_builder_clear() in order to avoid leaking
3088 * memory.
3090 * You must not call g_variant_builder_ref() or
3091 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3092 * with this function. If you ever pass a reference to a
3093 * #GVariantBuilder outside of the control of your own code then you
3094 * should assume that the person receiving that reference may try to use
3095 * reference counting; you should use g_variant_builder_new() instead of
3096 * this function.
3098 * Since: 2.24
3100 void
3101 g_variant_builder_init (GVariantBuilder *builder,
3102 const GVariantType *type)
3104 g_return_if_fail (type != NULL);
3105 g_return_if_fail (g_variant_type_is_container (type));
3107 memset (builder, 0, sizeof (GVariantBuilder));
3109 GVSB(builder)->type = g_variant_type_copy (type);
3110 GVSB(builder)->magic = GVSB_MAGIC;
3111 GVSB(builder)->trusted = TRUE;
3113 switch (*(const gchar *) type)
3115 case G_VARIANT_CLASS_VARIANT:
3116 GVSB(builder)->uniform_item_types = TRUE;
3117 GVSB(builder)->allocated_children = 1;
3118 GVSB(builder)->expected_type = NULL;
3119 GVSB(builder)->min_items = 1;
3120 GVSB(builder)->max_items = 1;
3121 break;
3123 case G_VARIANT_CLASS_ARRAY:
3124 GVSB(builder)->uniform_item_types = TRUE;
3125 GVSB(builder)->allocated_children = 8;
3126 GVSB(builder)->expected_type =
3127 g_variant_type_element (GVSB(builder)->type);
3128 GVSB(builder)->min_items = 0;
3129 GVSB(builder)->max_items = -1;
3130 break;
3132 case G_VARIANT_CLASS_MAYBE:
3133 GVSB(builder)->uniform_item_types = TRUE;
3134 GVSB(builder)->allocated_children = 1;
3135 GVSB(builder)->expected_type =
3136 g_variant_type_element (GVSB(builder)->type);
3137 GVSB(builder)->min_items = 0;
3138 GVSB(builder)->max_items = 1;
3139 break;
3141 case G_VARIANT_CLASS_DICT_ENTRY:
3142 GVSB(builder)->uniform_item_types = FALSE;
3143 GVSB(builder)->allocated_children = 2;
3144 GVSB(builder)->expected_type =
3145 g_variant_type_key (GVSB(builder)->type);
3146 GVSB(builder)->min_items = 2;
3147 GVSB(builder)->max_items = 2;
3148 break;
3150 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3151 GVSB(builder)->uniform_item_types = FALSE;
3152 GVSB(builder)->allocated_children = 8;
3153 GVSB(builder)->expected_type = NULL;
3154 GVSB(builder)->min_items = 0;
3155 GVSB(builder)->max_items = -1;
3156 break;
3158 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3159 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3160 GVSB(builder)->expected_type =
3161 g_variant_type_first (GVSB(builder)->type);
3162 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3163 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3164 GVSB(builder)->uniform_item_types = FALSE;
3165 break;
3167 default:
3168 g_assert_not_reached ();
3171 GVSB(builder)->children = g_new (GVariant *,
3172 GVSB(builder)->allocated_children);
3175 static void
3176 g_variant_builder_make_room (struct stack_builder *builder)
3178 if (builder->offset == builder->allocated_children)
3180 builder->allocated_children *= 2;
3181 builder->children = g_renew (GVariant *, builder->children,
3182 builder->allocated_children);
3187 * g_variant_builder_add_value:
3188 * @builder: a #GVariantBuilder
3189 * @value: a #GVariant
3191 * Adds @value to @builder.
3193 * It is an error to call this function in any way that would create an
3194 * inconsistent value to be constructed. Some examples of this are
3195 * putting different types of items into an array, putting the wrong
3196 * types or number of items in a tuple, putting more than one value into
3197 * a variant, etc.
3199 * If @value is a floating reference (see g_variant_ref_sink()),
3200 * the @builder instance takes ownership of @value.
3202 * Since: 2.24
3204 void
3205 g_variant_builder_add_value (GVariantBuilder *builder,
3206 GVariant *value)
3208 g_return_if_fail (is_valid_builder (builder));
3209 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3210 g_return_if_fail (!GVSB(builder)->expected_type ||
3211 g_variant_is_of_type (value,
3212 GVSB(builder)->expected_type));
3213 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3214 g_variant_is_of_type (value,
3215 GVSB(builder)->prev_item_type));
3217 GVSB(builder)->trusted &= g_variant_is_trusted (value);
3219 if (!GVSB(builder)->uniform_item_types)
3221 /* advance our expected type pointers */
3222 if (GVSB(builder)->expected_type)
3223 GVSB(builder)->expected_type =
3224 g_variant_type_next (GVSB(builder)->expected_type);
3226 if (GVSB(builder)->prev_item_type)
3227 GVSB(builder)->prev_item_type =
3228 g_variant_type_next (GVSB(builder)->prev_item_type);
3230 else
3231 GVSB(builder)->prev_item_type = g_variant_get_type (value);
3233 g_variant_builder_make_room (GVSB(builder));
3235 GVSB(builder)->children[GVSB(builder)->offset++] =
3236 g_variant_ref_sink (value);
3240 * g_variant_builder_open:
3241 * @builder: a #GVariantBuilder
3242 * @type: a #GVariantType
3244 * Opens a subcontainer inside the given @builder. When done adding
3245 * items to the subcontainer, g_variant_builder_close() must be called.
3247 * It is an error to call this function in any way that would cause an
3248 * inconsistent value to be constructed (ie: adding too many values or
3249 * a value of an incorrect type).
3251 * Since: 2.24
3253 void
3254 g_variant_builder_open (GVariantBuilder *builder,
3255 const GVariantType *type)
3257 GVariantBuilder *parent;
3259 g_return_if_fail (is_valid_builder (builder));
3260 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3261 g_return_if_fail (!GVSB(builder)->expected_type ||
3262 g_variant_type_is_subtype_of (type,
3263 GVSB(builder)->expected_type));
3264 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3265 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3266 type));
3268 parent = g_slice_dup (GVariantBuilder, builder);
3269 g_variant_builder_init (builder, type);
3270 GVSB(builder)->parent = parent;
3272 /* push the prev_item_type down into the subcontainer */
3273 if (GVSB(parent)->prev_item_type)
3275 if (!GVSB(builder)->uniform_item_types)
3276 /* tuples and dict entries */
3277 GVSB(builder)->prev_item_type =
3278 g_variant_type_first (GVSB(parent)->prev_item_type);
3280 else if (!g_variant_type_is_variant (GVSB(builder)->type))
3281 /* maybes and arrays */
3282 GVSB(builder)->prev_item_type =
3283 g_variant_type_element (GVSB(parent)->prev_item_type);
3288 * g_variant_builder_close:
3289 * @builder: a #GVariantBuilder
3291 * Closes the subcontainer inside the given @builder that was opened by
3292 * the most recent call to g_variant_builder_open().
3294 * It is an error to call this function in any way that would create an
3295 * inconsistent value to be constructed (ie: too few values added to the
3296 * subcontainer).
3298 * Since: 2.24
3300 void
3301 g_variant_builder_close (GVariantBuilder *builder)
3303 GVariantBuilder *parent;
3305 g_return_if_fail (is_valid_builder (builder));
3306 g_return_if_fail (GVSB(builder)->parent != NULL);
3308 parent = GVSB(builder)->parent;
3309 GVSB(builder)->parent = NULL;
3311 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3312 *builder = *parent;
3314 g_slice_free (GVariantBuilder, parent);
3317 /*< private >
3318 * g_variant_make_maybe_type:
3319 * @element: a #GVariant
3321 * Return the type of a maybe containing @element.
3323 static GVariantType *
3324 g_variant_make_maybe_type (GVariant *element)
3326 return g_variant_type_new_maybe (g_variant_get_type (element));
3329 /*< private >
3330 * g_variant_make_array_type:
3331 * @element: a #GVariant
3333 * Return the type of an array containing @element.
3335 static GVariantType *
3336 g_variant_make_array_type (GVariant *element)
3338 return g_variant_type_new_array (g_variant_get_type (element));
3342 * g_variant_builder_end:
3343 * @builder: a #GVariantBuilder
3344 * @returns: (transfer none): a new, floating, #GVariant
3346 * Ends the builder process and returns the constructed value.
3348 * It is not permissible to use @builder in any way after this call
3349 * except for reference counting operations (in the case of a
3350 * heap-allocated #GVariantBuilder) or by reinitialising it with
3351 * g_variant_builder_init() (in the case of stack-allocated).
3353 * It is an error to call this function in any way that would create an
3354 * inconsistent value to be constructed (ie: insufficient number of
3355 * items added to a container with a specific number of children
3356 * required). It is also an error to call this function if the builder
3357 * was created with an indefinite array or maybe type and no children
3358 * have been added; in this case it is impossible to infer the type of
3359 * the empty array.
3361 * Since: 2.24
3363 GVariant *
3364 g_variant_builder_end (GVariantBuilder *builder)
3366 GVariantType *my_type;
3367 GVariant *value;
3369 g_return_val_if_fail (is_valid_builder (builder), NULL);
3370 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3371 NULL);
3372 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3373 GVSB(builder)->prev_item_type != NULL ||
3374 g_variant_type_is_definite (GVSB(builder)->type),
3375 NULL);
3377 if (g_variant_type_is_definite (GVSB(builder)->type))
3378 my_type = g_variant_type_copy (GVSB(builder)->type);
3380 else if (g_variant_type_is_maybe (GVSB(builder)->type))
3381 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3383 else if (g_variant_type_is_array (GVSB(builder)->type))
3384 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3386 else if (g_variant_type_is_tuple (GVSB(builder)->type))
3387 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3388 GVSB(builder)->offset);
3390 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3391 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3392 GVSB(builder)->children[1]);
3393 else
3394 g_assert_not_reached ();
3396 value = g_variant_new_from_children (my_type,
3397 g_renew (GVariant *,
3398 GVSB(builder)->children,
3399 GVSB(builder)->offset),
3400 GVSB(builder)->offset,
3401 GVSB(builder)->trusted);
3402 GVSB(builder)->children = NULL;
3403 GVSB(builder)->offset = 0;
3405 g_variant_builder_clear (builder);
3406 g_variant_type_free (my_type);
3408 return value;
3411 /* Format strings {{{1 */
3412 /*< private >
3413 * g_variant_format_string_scan:
3414 * @string: a string that may be prefixed with a format string
3415 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
3416 * or %NULL
3417 * @endptr: (allow-none) (default NULL): location to store the end pointer,
3418 * or %NULL
3419 * @returns: %TRUE if there was a valid format string
3421 * Checks the string pointed to by @string for starting with a properly
3422 * formed #GVariant varargs format string. If no valid format string is
3423 * found then %FALSE is returned.
3425 * If @string does start with a valid format string then %TRUE is
3426 * returned. If @endptr is non-%NULL then it is updated to point to the
3427 * first character after the format string.
3429 * If @limit is non-%NULL then @limit (and any charater after it) will
3430 * not be accessed and the effect is otherwise equivalent to if the
3431 * character at @limit were nul.
3433 * See the section on <link linkend='gvariant-format-strings'>GVariant
3434 * Format Strings</link>.
3436 * Since: 2.24
3438 gboolean
3439 g_variant_format_string_scan (const gchar *string,
3440 const gchar *limit,
3441 const gchar **endptr)
3443 #define next_char() (string == limit ? '\0' : *string++)
3444 #define peek_char() (string == limit ? '\0' : *string)
3445 char c;
3447 switch (next_char())
3449 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
3450 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
3451 case 'g': case 'v': case '*': case '?': case 'r':
3452 break;
3454 case 'm':
3455 return g_variant_format_string_scan (string, limit, endptr);
3457 case 'a':
3458 case '@':
3459 return g_variant_type_string_scan (string, limit, endptr);
3461 case '(':
3462 while (peek_char() != ')')
3463 if (!g_variant_format_string_scan (string, limit, &string))
3464 return FALSE;
3466 next_char(); /* consume ')' */
3467 break;
3469 case '{':
3470 c = next_char();
3472 if (c == '&')
3474 c = next_char ();
3476 if (c != 's' && c != 'o' && c != 'g')
3477 return FALSE;
3479 else
3481 if (c == '@')
3482 c = next_char ();
3484 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
3485 * The terminating null character is considered to be
3486 * part of the string.
3488 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
3489 return FALSE;
3492 if (!g_variant_format_string_scan (string, limit, &string))
3493 return FALSE;
3495 if (next_char() != '}')
3496 return FALSE;
3498 break;
3500 case '^':
3501 if ((c = next_char()) == 'a')
3503 if ((c = next_char()) == '&')
3505 if ((c = next_char()) == 'a')
3507 if ((c = next_char()) == 'y')
3508 break; /* '^a&ay' */
3511 else if (c == 's' || c == 'o')
3512 break; /* '^a&s', '^a&o' */
3515 else if (c == 'a')
3517 if ((c = next_char()) == 'y')
3518 break; /* '^aay' */
3521 else if (c == 's' || c == 'o')
3522 break; /* '^as', '^ao' */
3524 else if (c == 'y')
3525 break; /* '^ay' */
3527 else if (c == '&')
3529 if ((c = next_char()) == 'a')
3531 if ((c = next_char()) == 'y')
3532 break; /* '^&ay' */
3536 return FALSE;
3538 case '&':
3539 c = next_char();
3541 if (c != 's' && c != 'o' && c != 'g')
3542 return FALSE;
3544 break;
3546 default:
3547 return FALSE;
3550 if (endptr != NULL)
3551 *endptr = string;
3553 #undef next_char
3554 #undef peek_char
3556 return TRUE;
3559 /*< private >
3560 * g_variant_format_string_scan_type:
3561 * @string: a string that may be prefixed with a format string
3562 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
3563 * or %NULL
3564 * @endptr: (allow-none) (default NULL): location to store the end pointer,
3565 * or %NULL
3566 * @returns: (allow-none): a #GVariantType if there was a valid format string
3568 * If @string starts with a valid format string then this function will
3569 * return the type that the format string corresponds to. Otherwise
3570 * this function returns %NULL.
3572 * Use g_variant_type_free() to free the return value when you no longer
3573 * need it.
3575 * This function is otherwise exactly like
3576 * g_variant_format_string_scan().
3578 * Since: 2.24
3580 GVariantType *
3581 g_variant_format_string_scan_type (const gchar *string,
3582 const gchar *limit,
3583 const gchar **endptr)
3585 const gchar *my_end;
3586 gchar *dest;
3587 gchar *new;
3589 if (endptr == NULL)
3590 endptr = &my_end;
3592 if (!g_variant_format_string_scan (string, limit, endptr))
3593 return NULL;
3595 dest = new = g_malloc (*endptr - string + 1);
3596 while (string != *endptr)
3598 if (*string != '@' && *string != '&' && *string != '^')
3599 *dest++ = *string;
3600 string++;
3602 *dest = '\0';
3604 return (GVariantType *) G_VARIANT_TYPE (new);
3607 static gboolean
3608 valid_format_string (const gchar *format_string,
3609 gboolean single,
3610 GVariant *value)
3612 const gchar *endptr;
3613 GVariantType *type;
3615 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
3617 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
3619 if (single)
3620 g_critical ("`%s' is not a valid GVariant format string",
3621 format_string);
3622 else
3623 g_critical ("`%s' does not have a valid GVariant format "
3624 "string as a prefix", format_string);
3626 if (type != NULL)
3627 g_variant_type_free (type);
3629 return FALSE;
3632 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
3634 gchar *fragment;
3635 gchar *typestr;
3637 fragment = g_strndup (format_string, endptr - format_string);
3638 typestr = g_variant_type_dup_string (type);
3640 g_critical ("the GVariant format string `%s' has a type of "
3641 "`%s' but the given value has a type of `%s'",
3642 fragment, typestr, g_variant_get_type_string (value));
3644 g_variant_type_free (type);
3646 return FALSE;
3649 g_variant_type_free (type);
3651 return TRUE;
3654 /* Variable Arguments {{{1 */
3655 /* We consider 2 main classes of format strings:
3657 * - recursive format strings
3658 * these are ones that result in recursion and the collection of
3659 * possibly more than one argument. Maybe types, tuples,
3660 * dictionary entries.
3662 * - leaf format string
3663 * these result in the collection of a single argument.
3665 * Leaf format strings are further subdivided into two categories:
3667 * - single non-null pointer ("nnp")
3668 * these either collect or return a single non-null pointer.
3670 * - other
3671 * these collect or return something else (bool, number, etc).
3673 * Based on the above, the varargs handling code is split into 4 main parts:
3675 * - nnp handling code
3676 * - leaf handling code (which may invoke nnp code)
3677 * - generic handling code (may be recursive, may invoke leaf code)
3678 * - user-facing API (which invokes the generic code)
3680 * Each section implements some of the following functions:
3682 * - skip:
3683 * collect the arguments for the format string as if
3684 * g_variant_new() had been called, but do nothing with them. used
3685 * for skipping over arguments when constructing a Nothing maybe
3686 * type.
3688 * - new:
3689 * create a GVariant *
3691 * - get:
3692 * unpack a GVariant *
3694 * - free (nnp only):
3695 * free a previously allocated item
3698 static gboolean
3699 g_variant_format_string_is_leaf (const gchar *str)
3701 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
3704 static gboolean
3705 g_variant_format_string_is_nnp (const gchar *str)
3707 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
3708 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
3709 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
3712 /* Single non-null pointer ("nnp") {{{2 */
3713 static void
3714 g_variant_valist_free_nnp (const gchar *str,
3715 gpointer ptr)
3717 switch (*str)
3719 case 'a':
3720 g_variant_iter_free (ptr);
3721 break;
3723 case '^':
3724 if (str[2] != '&') /* '^as', '^ao' */
3725 g_strfreev (ptr);
3726 else /* '^a&s', '^a&o' */
3727 g_free (ptr);
3728 break;
3730 case 's':
3731 case 'o':
3732 case 'g':
3733 g_free (ptr);
3734 break;
3736 case '@':
3737 case '*':
3738 case '?':
3739 case 'v':
3740 g_variant_unref (ptr);
3741 break;
3743 case '&':
3744 break;
3746 default:
3747 g_assert_not_reached ();
3751 static gchar
3752 g_variant_scan_convenience (const gchar **str,
3753 gboolean *constant,
3754 guint *arrays)
3756 *constant = FALSE;
3757 *arrays = 0;
3759 for (;;)
3761 char c = *(*str)++;
3763 if (c == '&')
3764 *constant = TRUE;
3766 else if (c == 'a')
3767 (*arrays)++;
3769 else
3770 return c;
3774 static GVariant *
3775 g_variant_valist_new_nnp (const gchar **str,
3776 gpointer ptr)
3778 if (**str == '&')
3779 (*str)++;
3781 switch (*(*str)++)
3783 case 'a':
3784 if (ptr != NULL)
3786 const GVariantType *type;
3787 GVariant *value;
3789 value = g_variant_builder_end (ptr);
3790 type = g_variant_get_type (value);
3792 if G_UNLIKELY (!g_variant_type_is_array (type))
3793 g_error ("g_variant_new: expected array GVariantBuilder but "
3794 "the built value has type `%s'",
3795 g_variant_get_type_string (value));
3797 type = g_variant_type_element (type);
3799 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
3800 g_error ("g_variant_new: expected GVariantBuilder array element "
3801 "type `%s' but the built value has element type `%s'",
3802 g_variant_type_dup_string ((GVariantType *) *str),
3803 g_variant_get_type_string (value) + 1);
3805 g_variant_type_string_scan (*str, NULL, str);
3807 return value;
3809 else
3811 /* special case: NULL pointer for empty array */
3813 const GVariantType *type = (GVariantType *) *str;
3815 g_variant_type_string_scan (*str, NULL, str);
3817 if G_UNLIKELY (!g_variant_type_is_definite (type))
3818 g_error ("g_variant_new: NULL pointer given with indefinite "
3819 "array type; unable to determine which type of empty "
3820 "array to construct.");
3822 return g_variant_new_array (type, NULL, 0);
3825 case 's':
3827 GVariant *value;
3829 value = g_variant_new_string (ptr);
3831 if (value == NULL)
3832 value = g_variant_new_string ("[Invalid UTF-8]");
3834 return value;
3837 case 'o':
3838 return g_variant_new_object_path (ptr);
3840 case 'g':
3841 return g_variant_new_signature (ptr);
3843 case '^':
3845 gboolean constant;
3846 guint arrays;
3847 gchar type;
3849 type = g_variant_scan_convenience (str, &constant, &arrays);
3851 if (type == 's')
3852 return g_variant_new_strv (ptr, -1);
3854 if (type == 'o')
3855 return g_variant_new_objv (ptr, -1);
3857 if (arrays > 1)
3858 return g_variant_new_bytestring_array (ptr, -1);
3860 return g_variant_new_bytestring (ptr);
3863 case '@':
3864 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
3865 g_error ("g_variant_new: expected GVariant of type `%s' but "
3866 "received value has type `%s'",
3867 g_variant_type_dup_string ((GVariantType *) *str),
3868 g_variant_get_type_string (ptr));
3870 g_variant_type_string_scan (*str, NULL, str);
3872 return ptr;
3874 case '*':
3875 return ptr;
3877 case '?':
3878 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
3879 g_error ("g_variant_new: format string `?' expects basic-typed "
3880 "GVariant, but received value has type `%s'",
3881 g_variant_get_type_string (ptr));
3883 return ptr;
3885 case 'r':
3886 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
3887 g_error ("g_variant_new: format string `r` expects tuple-typed "
3888 "GVariant, but received value has type `%s'",
3889 g_variant_get_type_string (ptr));
3891 return ptr;
3893 case 'v':
3894 return g_variant_new_variant (ptr);
3896 default:
3897 g_assert_not_reached ();
3901 static gpointer
3902 g_variant_valist_get_nnp (const gchar **str,
3903 GVariant *value)
3905 switch (*(*str)++)
3907 case 'a':
3908 g_variant_type_string_scan (*str, NULL, str);
3909 return g_variant_iter_new (value);
3911 case '&':
3912 (*str)++;
3913 return (gchar *) g_variant_get_string (value, NULL);
3915 case 's':
3916 case 'o':
3917 case 'g':
3918 return g_variant_dup_string (value, NULL);
3920 case '^':
3922 gboolean constant;
3923 guint arrays;
3924 gchar type;
3926 type = g_variant_scan_convenience (str, &constant, &arrays);
3928 if (type == 's')
3930 if (constant)
3931 return g_variant_get_strv (value, NULL);
3932 else
3933 return g_variant_dup_strv (value, NULL);
3936 else if (type == 'o')
3938 if (constant)
3939 return g_variant_get_objv (value, NULL);
3940 else
3941 return g_variant_dup_objv (value, NULL);
3944 else if (arrays > 1)
3946 if (constant)
3947 return g_variant_get_bytestring_array (value, NULL);
3948 else
3949 return g_variant_dup_bytestring_array (value, NULL);
3952 else
3954 if (constant)
3955 return (gchar *) g_variant_get_bytestring (value);
3956 else
3957 return g_variant_dup_bytestring (value, NULL);
3961 case '@':
3962 g_variant_type_string_scan (*str, NULL, str);
3963 /* fall through */
3965 case '*':
3966 case '?':
3967 case 'r':
3968 return g_variant_ref (value);
3970 case 'v':
3971 return g_variant_get_variant (value);
3973 default:
3974 g_assert_not_reached ();
3978 /* Leaves {{{2 */
3979 static void
3980 g_variant_valist_skip_leaf (const gchar **str,
3981 va_list *app)
3983 if (g_variant_format_string_is_nnp (*str))
3985 g_variant_format_string_scan (*str, NULL, str);
3986 va_arg (*app, gpointer);
3987 return;
3990 switch (*(*str)++)
3992 case 'b':
3993 case 'y':
3994 case 'n':
3995 case 'q':
3996 case 'i':
3997 case 'u':
3998 case 'h':
3999 va_arg (*app, int);
4000 return;
4002 case 'x':
4003 case 't':
4004 va_arg (*app, guint64);
4005 return;
4007 case 'd':
4008 va_arg (*app, gdouble);
4009 return;
4011 default:
4012 g_assert_not_reached ();
4016 static GVariant *
4017 g_variant_valist_new_leaf (const gchar **str,
4018 va_list *app)
4020 if (g_variant_format_string_is_nnp (*str))
4021 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
4023 switch (*(*str)++)
4025 case 'b':
4026 return g_variant_new_boolean (va_arg (*app, gboolean));
4028 case 'y':
4029 return g_variant_new_byte (va_arg (*app, guint));
4031 case 'n':
4032 return g_variant_new_int16 (va_arg (*app, gint));
4034 case 'q':
4035 return g_variant_new_uint16 (va_arg (*app, guint));
4037 case 'i':
4038 return g_variant_new_int32 (va_arg (*app, gint));
4040 case 'u':
4041 return g_variant_new_uint32 (va_arg (*app, guint));
4043 case 'x':
4044 return g_variant_new_int64 (va_arg (*app, gint64));
4046 case 't':
4047 return g_variant_new_uint64 (va_arg (*app, guint64));
4049 case 'h':
4050 return g_variant_new_handle (va_arg (*app, gint));
4052 case 'd':
4053 return g_variant_new_double (va_arg (*app, gdouble));
4055 default:
4056 g_assert_not_reached ();
4060 /* The code below assumes this */
4061 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
4062 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
4064 static void
4065 g_variant_valist_get_leaf (const gchar **str,
4066 GVariant *value,
4067 gboolean free,
4068 va_list *app)
4070 gpointer ptr = va_arg (*app, gpointer);
4072 if (ptr == NULL)
4074 g_variant_format_string_scan (*str, NULL, str);
4075 return;
4078 if (g_variant_format_string_is_nnp (*str))
4080 gpointer *nnp = (gpointer *) ptr;
4082 if (free && *nnp != NULL)
4083 g_variant_valist_free_nnp (*str, *nnp);
4085 *nnp = NULL;
4087 if (value != NULL)
4088 *nnp = g_variant_valist_get_nnp (str, value);
4089 else
4090 g_variant_format_string_scan (*str, NULL, str);
4092 return;
4095 if (value != NULL)
4097 switch (*(*str)++)
4099 case 'b':
4100 *(gboolean *) ptr = g_variant_get_boolean (value);
4101 return;
4103 case 'y':
4104 *(guchar *) ptr = g_variant_get_byte (value);
4105 return;
4107 case 'n':
4108 *(gint16 *) ptr = g_variant_get_int16 (value);
4109 return;
4111 case 'q':
4112 *(guint16 *) ptr = g_variant_get_uint16 (value);
4113 return;
4115 case 'i':
4116 *(gint32 *) ptr = g_variant_get_int32 (value);
4117 return;
4119 case 'u':
4120 *(guint32 *) ptr = g_variant_get_uint32 (value);
4121 return;
4123 case 'x':
4124 *(gint64 *) ptr = g_variant_get_int64 (value);
4125 return;
4127 case 't':
4128 *(guint64 *) ptr = g_variant_get_uint64 (value);
4129 return;
4131 case 'h':
4132 *(gint32 *) ptr = g_variant_get_handle (value);
4133 return;
4135 case 'd':
4136 *(gdouble *) ptr = g_variant_get_double (value);
4137 return;
4140 else
4142 switch (*(*str)++)
4144 case 'y':
4145 *(guchar *) ptr = 0;
4146 return;
4148 case 'n':
4149 case 'q':
4150 *(guint16 *) ptr = 0;
4151 return;
4153 case 'i':
4154 case 'u':
4155 case 'h':
4156 case 'b':
4157 *(guint32 *) ptr = 0;
4158 return;
4160 case 'x':
4161 case 't':
4162 case 'd':
4163 *(guint64 *) ptr = 0;
4164 return;
4168 g_assert_not_reached ();
4171 /* Generic (recursive) {{{2 */
4172 static void
4173 g_variant_valist_skip (const gchar **str,
4174 va_list *app)
4176 if (g_variant_format_string_is_leaf (*str))
4177 g_variant_valist_skip_leaf (str, app);
4179 else if (**str == 'm') /* maybe */
4181 (*str)++;
4183 if (!g_variant_format_string_is_nnp (*str))
4184 va_arg (*app, gboolean);
4186 g_variant_valist_skip (str, app);
4188 else /* tuple, dictionary entry */
4190 g_assert (**str == '(' || **str == '{');
4191 (*str)++;
4192 while (**str != ')' && **str != '}')
4193 g_variant_valist_skip (str, app);
4194 (*str)++;
4198 static GVariant *
4199 g_variant_valist_new (const gchar **str,
4200 va_list *app)
4202 if (g_variant_format_string_is_leaf (*str))
4203 return g_variant_valist_new_leaf (str, app);
4205 if (**str == 'm') /* maybe */
4207 GVariantType *type = NULL;
4208 GVariant *value = NULL;
4210 (*str)++;
4212 if (g_variant_format_string_is_nnp (*str))
4214 gpointer nnp = va_arg (*app, gpointer);
4216 if (nnp != NULL)
4217 value = g_variant_valist_new_nnp (str, nnp);
4218 else
4219 type = g_variant_format_string_scan_type (*str, NULL, str);
4221 else
4223 gboolean just = va_arg (*app, gboolean);
4225 if (just)
4226 value = g_variant_valist_new (str, app);
4227 else
4229 type = g_variant_format_string_scan_type (*str, NULL, NULL);
4230 g_variant_valist_skip (str, app);
4234 value = g_variant_new_maybe (type, value);
4236 if (type != NULL)
4237 g_variant_type_free (type);
4239 return value;
4241 else /* tuple, dictionary entry */
4243 GVariantBuilder b;
4245 if (**str == '(')
4246 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
4247 else
4249 g_assert (**str == '{');
4250 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
4253 (*str)++; /* '(' */
4254 while (**str != ')' && **str != '}')
4255 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
4256 (*str)++; /* ')' */
4258 return g_variant_builder_end (&b);
4262 static void
4263 g_variant_valist_get (const gchar **str,
4264 GVariant *value,
4265 gboolean free,
4266 va_list *app)
4268 if (g_variant_format_string_is_leaf (*str))
4269 g_variant_valist_get_leaf (str, value, free, app);
4271 else if (**str == 'm')
4273 (*str)++;
4275 if (value != NULL)
4276 value = g_variant_get_maybe (value);
4278 if (!g_variant_format_string_is_nnp (*str))
4280 gboolean *ptr = va_arg (*app, gboolean *);
4282 if (ptr != NULL)
4283 *ptr = value != NULL;
4286 g_variant_valist_get (str, value, free, app);
4288 if (value != NULL)
4289 g_variant_unref (value);
4292 else /* tuple, dictionary entry */
4294 gint index = 0;
4296 g_assert (**str == '(' || **str == '{');
4298 (*str)++;
4299 while (**str != ')' && **str != '}')
4301 if (value != NULL)
4303 GVariant *child = g_variant_get_child_value (value, index++);
4304 g_variant_valist_get (str, child, free, app);
4305 g_variant_unref (child);
4307 else
4308 g_variant_valist_get (str, NULL, free, app);
4310 (*str)++;
4314 /* User-facing API {{{2 */
4316 * g_variant_new: (skip)
4317 * @format_string: a #GVariant format string
4318 * @...: arguments, as per @format_string
4319 * @returns: a new floating #GVariant instance
4321 * Creates a new #GVariant instance.
4323 * Think of this function as an analogue to g_strdup_printf().
4325 * The type of the created instance and the arguments that are
4326 * expected by this function are determined by @format_string. See the
4327 * section on <link linkend='gvariant-format-strings'>GVariant Format
4328 * Strings</link>. Please note that the syntax of the format string is
4329 * very likely to be extended in the future.
4331 * The first character of the format string must not be '*' '?' '@' or
4332 * 'r'; in essence, a new #GVariant must always be constructed by this
4333 * function (and not merely passed through it unmodified).
4335 * Since: 2.24
4337 GVariant *
4338 g_variant_new (const gchar *format_string,
4339 ...)
4341 GVariant *value;
4342 va_list ap;
4344 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
4345 format_string[0] != '?' && format_string[0] != '@' &&
4346 format_string[0] != '*' && format_string[0] != 'r',
4347 NULL);
4349 va_start (ap, format_string);
4350 value = g_variant_new_va (format_string, NULL, &ap);
4351 va_end (ap);
4353 return value;
4357 * g_variant_new_va: (skip)
4358 * @format_string: a string that is prefixed with a format string
4359 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4360 * or %NULL
4361 * @app: a pointer to a #va_list
4362 * @returns: a new, usually floating, #GVariant
4364 * This function is intended to be used by libraries based on
4365 * #GVariant that want to provide g_variant_new()-like functionality
4366 * to their users.
4368 * The API is more general than g_variant_new() to allow a wider range
4369 * of possible uses.
4371 * @format_string must still point to a valid format string, but it only
4372 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
4373 * non-%NULL then it is updated to point to the first character past the
4374 * end of the format string.
4376 * @app is a pointer to a #va_list. The arguments, according to
4377 * @format_string, are collected from this #va_list and the list is left
4378 * pointing to the argument following the last.
4380 * These two generalisations allow mixing of multiple calls to
4381 * g_variant_new_va() and g_variant_get_va() within a single actual
4382 * varargs call by the user.
4384 * The return value will be floating if it was a newly created GVariant
4385 * instance (for example, if the format string was "(ii)"). In the case
4386 * that the format_string was '*', '?', 'r', or a format starting with
4387 * '@' then the collected #GVariant pointer will be returned unmodified,
4388 * without adding any additional references.
4390 * In order to behave correctly in all cases it is necessary for the
4391 * calling function to g_variant_ref_sink() the return result before
4392 * returning control to the user that originally provided the pointer.
4393 * At this point, the caller will have their own full reference to the
4394 * result. This can also be done by adding the result to a container,
4395 * or by passing it to another g_variant_new() call.
4397 * Since: 2.24
4399 GVariant *
4400 g_variant_new_va (const gchar *format_string,
4401 const gchar **endptr,
4402 va_list *app)
4404 GVariant *value;
4406 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
4407 NULL);
4408 g_return_val_if_fail (app != NULL, NULL);
4410 value = g_variant_valist_new (&format_string, app);
4412 if (endptr != NULL)
4413 *endptr = format_string;
4415 return value;
4419 * g_variant_get: (skip)
4420 * @value: a #GVariant instance
4421 * @format_string: a #GVariant format string
4422 * @...: arguments, as per @format_string
4424 * Deconstructs a #GVariant instance.
4426 * Think of this function as an analogue to scanf().
4428 * The arguments that are expected by this function are entirely
4429 * determined by @format_string. @format_string also restricts the
4430 * permissible types of @value. It is an error to give a value with
4431 * an incompatible type. See the section on <link
4432 * linkend='gvariant-format-strings'>GVariant Format Strings</link>.
4433 * Please note that the syntax of the format string is very likely to be
4434 * extended in the future.
4436 * Since: 2.24
4438 void
4439 g_variant_get (GVariant *value,
4440 const gchar *format_string,
4441 ...)
4443 va_list ap;
4445 g_return_if_fail (valid_format_string (format_string, TRUE, value));
4447 /* if any direct-pointer-access formats are in use, flatten first */
4448 if (strchr (format_string, '&'))
4449 g_variant_get_data (value);
4451 va_start (ap, format_string);
4452 g_variant_get_va (value, format_string, NULL, &ap);
4453 va_end (ap);
4457 * g_variant_get_va: (skip)
4458 * @value: a #GVariant
4459 * @format_string: a string that is prefixed with a format string
4460 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4461 * or %NULL
4462 * @app: a pointer to a #va_list
4464 * This function is intended to be used by libraries based on #GVariant
4465 * that want to provide g_variant_get()-like functionality to their
4466 * users.
4468 * The API is more general than g_variant_get() to allow a wider range
4469 * of possible uses.
4471 * @format_string must still point to a valid format string, but it only
4472 * need to be nul-terminated if @endptr is %NULL. If @endptr is
4473 * non-%NULL then it is updated to point to the first character past the
4474 * end of the format string.
4476 * @app is a pointer to a #va_list. The arguments, according to
4477 * @format_string, are collected from this #va_list and the list is left
4478 * pointing to the argument following the last.
4480 * These two generalisations allow mixing of multiple calls to
4481 * g_variant_new_va() and g_variant_get_va() within a single actual
4482 * varargs call by the user.
4484 * Since: 2.24
4486 void
4487 g_variant_get_va (GVariant *value,
4488 const gchar *format_string,
4489 const gchar **endptr,
4490 va_list *app)
4492 g_return_if_fail (valid_format_string (format_string, !endptr, value));
4493 g_return_if_fail (value != NULL);
4494 g_return_if_fail (app != NULL);
4496 /* if any direct-pointer-access formats are in use, flatten first */
4497 if (strchr (format_string, '&'))
4498 g_variant_get_data (value);
4500 g_variant_valist_get (&format_string, value, FALSE, app);
4502 if (endptr != NULL)
4503 *endptr = format_string;
4506 /* Varargs-enabled Utility Functions {{{1 */
4509 * g_variant_builder_add: (skp)
4510 * @builder: a #GVariantBuilder
4511 * @format_string: a #GVariant varargs format string
4512 * @...: arguments, as per @format_string
4514 * Adds to a #GVariantBuilder.
4516 * This call is a convenience wrapper that is exactly equivalent to
4517 * calling g_variant_new() followed by g_variant_builder_add_value().
4519 * This function might be used as follows:
4521 * <programlisting>
4522 * GVariant *
4523 * make_pointless_dictionary (void)
4525 * GVariantBuilder *builder;
4526 * int i;
4528 * builder = g_variant_builder_new (G_VARIANT_TYPE_ARRAY);
4529 * for (i = 0; i < 16; i++)
4531 * gchar buf[3];
4533 * sprintf (buf, "%d", i);
4534 * g_variant_builder_add (builder, "{is}", i, buf);
4537 * return g_variant_builder_end (builder);
4539 * </programlisting>
4541 * Since: 2.24
4543 void
4544 g_variant_builder_add (GVariantBuilder *builder,
4545 const gchar *format_string,
4546 ...)
4548 GVariant *variant;
4549 va_list ap;
4551 va_start (ap, format_string);
4552 variant = g_variant_new_va (format_string, NULL, &ap);
4553 va_end (ap);
4555 g_variant_builder_add_value (builder, variant);
4559 * g_variant_get_child: (skip)
4560 * @value: a container #GVariant
4561 * @index_: the index of the child to deconstruct
4562 * @format_string: a #GVariant format string
4563 * @...: arguments, as per @format_string
4565 * Reads a child item out of a container #GVariant instance and
4566 * deconstructs it according to @format_string. This call is
4567 * essentially a combination of g_variant_get_child_value() and
4568 * g_variant_get().
4570 * Since: 2.24
4572 void
4573 g_variant_get_child (GVariant *value,
4574 gsize index_,
4575 const gchar *format_string,
4576 ...)
4578 GVariant *child;
4579 va_list ap;
4581 child = g_variant_get_child_value (value, index_);
4582 g_return_if_fail (valid_format_string (format_string, TRUE, child));
4584 va_start (ap, format_string);
4585 g_variant_get_va (child, format_string, NULL, &ap);
4586 va_end (ap);
4588 g_variant_unref (child);
4592 * g_variant_iter_next: (skip)
4593 * @iter: a #GVariantIter
4594 * @format_string: a GVariant format string
4595 * @...: the arguments to unpack the value into
4596 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4597 * value
4599 * Gets the next item in the container and unpacks it into the variable
4600 * argument list according to @format_string, returning %TRUE.
4602 * If no more items remain then %FALSE is returned.
4604 * All of the pointers given on the variable arguments list of this
4605 * function are assumed to point at uninitialised memory. It is the
4606 * responsibility of the caller to free all of the values returned by
4607 * the unpacking process.
4609 * See the section on <link linkend='gvariant-format-strings'>GVariant
4610 * Format Strings</link>.
4612 * <example>
4613 * <title>Memory management with g_variant_iter_next()</title>
4614 * <programlisting>
4615 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4616 * void
4617 * iterate_dictionary (GVariant *dictionary)
4619 * GVariantIter iter;
4620 * GVariant *value;
4621 * gchar *key;
4623 * g_variant_iter_init (&iter, dictionary);
4624 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
4626 * g_print ("Item '%s' has type '%s'\n", key,
4627 * g_variant_get_type_string (value));
4629 * /<!-- -->* must free data for ourselves *<!-- -->/
4630 * g_variant_unref (value);
4631 * g_free (key);
4634 * </programlisting>
4635 * </example>
4637 * For a solution that is likely to be more convenient to C programmers
4638 * when dealing with loops, see g_variant_iter_loop().
4640 * Since: 2.24
4642 gboolean
4643 g_variant_iter_next (GVariantIter *iter,
4644 const gchar *format_string,
4645 ...)
4647 GVariant *value;
4649 value = g_variant_iter_next_value (iter);
4651 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
4652 FALSE);
4654 if (value != NULL)
4656 va_list ap;
4658 va_start (ap, format_string);
4659 g_variant_valist_get (&format_string, value, FALSE, &ap);
4660 va_end (ap);
4662 g_variant_unref (value);
4665 return value != NULL;
4669 * g_variant_iter_loop: (skip)
4670 * @iter: a #GVariantIter
4671 * @format_string: a GVariant format string
4672 * @...: the arguments to unpack the value into
4673 * @returns: %TRUE if a value was unpacked, or %FALSE if there as no
4674 * value
4676 * Gets the next item in the container and unpacks it into the variable
4677 * argument list according to @format_string, returning %TRUE.
4679 * If no more items remain then %FALSE is returned.
4681 * On the first call to this function, the pointers appearing on the
4682 * variable argument list are assumed to point at uninitialised memory.
4683 * On the second and later calls, it is assumed that the same pointers
4684 * will be given and that they will point to the memory as set by the
4685 * previous call to this function. This allows the previous values to
4686 * be freed, as appropriate.
4688 * This function is intended to be used with a while loop as
4689 * demonstrated in the following example. This function can only be
4690 * used when iterating over an array. It is only valid to call this
4691 * function with a string constant for the format string and the same
4692 * string constant must be used each time. Mixing calls to this
4693 * function and g_variant_iter_next() or g_variant_iter_next_value() on
4694 * the same iterator is not recommended.
4696 * See the section on <link linkend='gvariant-format-strings'>GVariant
4697 * Format Strings</link>.
4699 * <example>
4700 * <title>Memory management with g_variant_iter_loop()</title>
4701 * <programlisting>
4702 * /<!-- -->* Iterates a dictionary of type 'a{sv}' *<!-- -->/
4703 * void
4704 * iterate_dictionary (GVariant *dictionary)
4706 * GVariantIter iter;
4707 * GVariant *value;
4708 * gchar *key;
4710 * g_variant_iter_init (&iter, dictionary);
4711 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
4713 * g_print ("Item '%s' has type '%s'\n", key,
4714 * g_variant_get_type_string (value));
4716 * /<!-- -->* no need to free 'key' and 'value' here *<!-- -->/
4719 * </programlisting>
4720 * </example>
4722 * For most cases you should use g_variant_iter_next().
4724 * This function is really only useful when unpacking into #GVariant or
4725 * #GVariantIter in order to allow you to skip the call to
4726 * g_variant_unref() or g_variant_iter_free().
4728 * For example, if you are only looping over simple integer and string
4729 * types, g_variant_iter_next() is definitely preferred. For string
4730 * types, use the '&' prefix to avoid allocating any memory at all (and
4731 * thereby avoiding the need to free anything as well).
4733 * Since: 2.24
4735 gboolean
4736 g_variant_iter_loop (GVariantIter *iter,
4737 const gchar *format_string,
4738 ...)
4740 gboolean first_time = GVSI(iter)->loop_format == NULL;
4741 GVariant *value;
4742 va_list ap;
4744 g_return_val_if_fail (first_time ||
4745 format_string == GVSI(iter)->loop_format,
4746 FALSE);
4748 if (first_time)
4750 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
4751 GVSI(iter)->loop_format = format_string;
4753 if (strchr (format_string, '&'))
4754 g_variant_get_data (GVSI(iter)->value);
4757 value = g_variant_iter_next_value (iter);
4759 g_return_val_if_fail (!first_time ||
4760 valid_format_string (format_string, TRUE, value),
4761 FALSE);
4763 va_start (ap, format_string);
4764 g_variant_valist_get (&format_string, value, !first_time, &ap);
4765 va_end (ap);
4767 if (value != NULL)
4768 g_variant_unref (value);
4770 return value != NULL;
4773 /* Serialised data {{{1 */
4774 static GVariant *
4775 g_variant_deep_copy (GVariant *value)
4777 switch (g_variant_classify (value))
4779 case G_VARIANT_CLASS_MAYBE:
4780 case G_VARIANT_CLASS_ARRAY:
4781 case G_VARIANT_CLASS_TUPLE:
4782 case G_VARIANT_CLASS_DICT_ENTRY:
4783 case G_VARIANT_CLASS_VARIANT:
4785 GVariantBuilder builder;
4786 GVariantIter iter;
4787 GVariant *child;
4789 g_variant_builder_init (&builder, g_variant_get_type (value));
4790 g_variant_iter_init (&iter, value);
4792 while ((child = g_variant_iter_next_value (&iter)))
4794 g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
4795 g_variant_unref (child);
4798 return g_variant_builder_end (&builder);
4801 case G_VARIANT_CLASS_BOOLEAN:
4802 return g_variant_new_boolean (g_variant_get_boolean (value));
4804 case G_VARIANT_CLASS_BYTE:
4805 return g_variant_new_byte (g_variant_get_byte (value));
4807 case G_VARIANT_CLASS_INT16:
4808 return g_variant_new_int16 (g_variant_get_int16 (value));
4810 case G_VARIANT_CLASS_UINT16:
4811 return g_variant_new_uint16 (g_variant_get_uint16 (value));
4813 case G_VARIANT_CLASS_INT32:
4814 return g_variant_new_int32 (g_variant_get_int32 (value));
4816 case G_VARIANT_CLASS_UINT32:
4817 return g_variant_new_uint32 (g_variant_get_uint32 (value));
4819 case G_VARIANT_CLASS_INT64:
4820 return g_variant_new_int64 (g_variant_get_int64 (value));
4822 case G_VARIANT_CLASS_UINT64:
4823 return g_variant_new_uint64 (g_variant_get_uint64 (value));
4825 case G_VARIANT_CLASS_HANDLE:
4826 return g_variant_new_handle (g_variant_get_handle (value));
4828 case G_VARIANT_CLASS_DOUBLE:
4829 return g_variant_new_double (g_variant_get_double (value));
4831 case G_VARIANT_CLASS_STRING:
4832 return g_variant_new_string (g_variant_get_string (value, NULL));
4834 case G_VARIANT_CLASS_OBJECT_PATH:
4835 return g_variant_new_object_path (g_variant_get_string (value, NULL));
4837 case G_VARIANT_CLASS_SIGNATURE:
4838 return g_variant_new_signature (g_variant_get_string (value, NULL));
4841 g_assert_not_reached ();
4845 * g_variant_get_normal_form:
4846 * @value: a #GVariant
4847 * @returns: (transfer full): a trusted #GVariant
4849 * Gets a #GVariant instance that has the same value as @value and is
4850 * trusted to be in normal form.
4852 * If @value is already trusted to be in normal form then a new
4853 * reference to @value is returned.
4855 * If @value is not already trusted, then it is scanned to check if it
4856 * is in normal form. If it is found to be in normal form then it is
4857 * marked as trusted and a new reference to it is returned.
4859 * If @value is found not to be in normal form then a new trusted
4860 * #GVariant is created with the same value as @value.
4862 * It makes sense to call this function if you've received #GVariant
4863 * data from untrusted sources and you want to ensure your serialised
4864 * output is definitely in normal form.
4866 * Since: 2.24
4868 GVariant *
4869 g_variant_get_normal_form (GVariant *value)
4871 GVariant *trusted;
4873 if (g_variant_is_normal_form (value))
4874 return g_variant_ref (value);
4876 trusted = g_variant_deep_copy (value);
4877 g_assert (g_variant_is_trusted (trusted));
4879 return g_variant_ref_sink (trusted);
4883 * g_variant_byteswap:
4884 * @value: a #GVariant
4885 * @returns: (transfer full): the byteswapped form of @value
4887 * Performs a byteswapping operation on the contents of @value. The
4888 * result is that all multi-byte numeric data contained in @value is
4889 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
4890 * integers as well as file handles and double precision floating point
4891 * values.
4893 * This function is an identity mapping on any value that does not
4894 * contain multi-byte numeric data. That include strings, booleans,
4895 * bytes and containers containing only these things (recursively).
4897 * The returned value is always in normal form and is marked as trusted.
4899 * Since: 2.24
4901 GVariant *
4902 g_variant_byteswap (GVariant *value)
4904 GVariantTypeInfo *type_info;
4905 guint alignment;
4906 GVariant *new;
4908 type_info = g_variant_get_type_info (value);
4910 g_variant_type_info_query (type_info, &alignment, NULL);
4912 if (alignment)
4913 /* (potentially) contains multi-byte numeric data */
4915 GVariantSerialised serialised;
4916 GVariant *trusted;
4917 GBuffer *buffer;
4919 trusted = g_variant_get_normal_form (value);
4920 serialised.type_info = g_variant_get_type_info (trusted);
4921 serialised.size = g_variant_get_size (trusted);
4922 serialised.data = g_malloc (serialised.size);
4923 g_variant_store (trusted, serialised.data);
4924 g_variant_unref (trusted);
4926 g_variant_serialised_byteswap (serialised);
4928 buffer = g_buffer_new_take_data (serialised.data, serialised.size);
4929 new = g_variant_new_from_buffer (g_variant_get_type (value), buffer, TRUE);
4930 g_buffer_unref (buffer);
4932 else
4933 /* contains no multi-byte data */
4934 new = value;
4936 return g_variant_ref_sink (new);
4940 * g_variant_new_from_data:
4941 * @type: a definite #GVariantType
4942 * @data: (array length=size) (element-type guint8): the serialised data
4943 * @size: the size of @data
4944 * @trusted: %TRUE if @data is definitely in normal form
4945 * @notify: (scope async): function to call when @data is no longer needed
4946 * @user_data: data for @notify
4947 * @returns: (transfer none): a new floating #GVariant of type @type
4949 * Creates a new #GVariant instance from serialised data.
4951 * @type is the type of #GVariant instance that will be constructed.
4952 * The interpretation of @data depends on knowing the type.
4954 * @data is not modified by this function and must remain valid with an
4955 * unchanging value until such a time as @notify is called with
4956 * @user_data. If the contents of @data change before that time then
4957 * the result is undefined.
4959 * If @data is trusted to be serialised data in normal form then
4960 * @trusted should be %TRUE. This applies to serialised data created
4961 * within this process or read from a trusted location on the disk (such
4962 * as a file installed in /usr/lib alongside your application). You
4963 * should set trusted to %FALSE if @data is read from the network, a
4964 * file in the user's home directory, etc.
4966 * @notify will be called with @user_data when @data is no longer
4967 * needed. The exact time of this call is unspecified and might even be
4968 * before this function returns.
4970 * Since: 2.24
4972 GVariant *
4973 g_variant_new_from_data (const GVariantType *type,
4974 gconstpointer data,
4975 gsize size,
4976 gboolean trusted,
4977 GDestroyNotify notify,
4978 gpointer user_data)
4980 GVariant *value;
4981 GBuffer *buffer;
4983 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
4984 g_return_val_if_fail (data != NULL || size == 0, NULL);
4986 if (notify)
4987 buffer = g_buffer_new_from_pointer (data, size, notify, user_data);
4988 else
4989 buffer = g_buffer_new_from_static_data (data, size);
4991 value = g_variant_new_from_buffer (type, buffer, trusted);
4992 g_buffer_unref (buffer);
4994 return value;
4997 /* Epilogue {{{1 */
4998 /* vim:set foldmethod=marker: */