1 /* GObject - GLib Type, Object, Parameter and Signal Library
2 * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General
15 * Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 * MT safe with regards to reference counting.
28 #include "gtype-private.h"
29 #include "gvaluecollector.h"
31 #include "gparamspecs.h"
32 #include "gvaluetypes.h"
33 #include "gobject_trace.h"
34 #include "gconstructor.h"
39 * @short_description: The base object type
40 * @see_also: #GParamSpecObject, g_param_spec_object()
42 * GObject is the fundamental type providing the common attributes and
43 * methods for all object types in GTK+, Pango and other libraries
44 * based on GObject. The GObject class provides methods for object
45 * construction and destruction, property access methods, and signal
46 * support. Signals are described in detail [here][gobject-Signals].
48 * For a tutorial on implementing a new GObject class, see [How to define and
49 * implement a new GObject][howto-gobject]. For a list of naming conventions for
50 * GObjects and their methods, see the [GType conventions][gtype-conventions].
51 * For the high-level concepts behind GObject, read [Instantiable classed types:
52 * Objects][gtype-instantiable-classed].
54 * ## Floating references # {#floating-ref}
56 * GInitiallyUnowned is derived from GObject. The only difference between
57 * the two is that the initial reference of a GInitiallyUnowned is flagged
58 * as a "floating" reference. This means that it is not specifically
59 * claimed to be "owned" by any code portion. The main motivation for
60 * providing floating references is C convenience. In particular, it
61 * allows code to be written as:
62 * |[<!-- language="C" -->
63 * container = create_container ();
64 * container_add_child (container, create_child());
66 * If container_add_child() calls g_object_ref_sink() on the passed-in child,
67 * no reference of the newly created child is leaked. Without floating
68 * references, container_add_child() can only g_object_ref() the new child,
69 * so to implement this code without reference leaks, it would have to be
71 * |[<!-- language="C" -->
73 * container = create_container ();
74 * child = create_child ();
75 * container_add_child (container, child);
76 * g_object_unref (child);
78 * The floating reference can be converted into an ordinary reference by
79 * calling g_object_ref_sink(). For already sunken objects (objects that
80 * don't have a floating reference anymore), g_object_ref_sink() is equivalent
81 * to g_object_ref() and returns a new reference.
83 * Since floating references are useful almost exclusively for C convenience,
84 * language bindings that provide automated reference and memory ownership
85 * maintenance (such as smart pointers or garbage collection) should not
86 * expose floating references in their API.
88 * Some object implementations may need to save an objects floating state
89 * across certain code portions (an example is #GtkMenu), to achieve this,
90 * the following sequence can be used:
92 * |[<!-- language="C" -->
93 * // save floating state
94 * gboolean was_floating = g_object_is_floating (object);
95 * g_object_ref_sink (object);
96 * // protected code portion
100 * // restore floating state
102 * g_object_force_floating (object);
104 * g_object_unref (object); // release previously acquired reference
110 #define PARAM_SPEC_PARAM_ID(pspec) ((pspec)->param_id)
111 #define PARAM_SPEC_SET_PARAM_ID(pspec, id) ((pspec)->param_id = (id))
113 #define OBJECT_HAS_TOGGLE_REF_FLAG 0x1
114 #define OBJECT_HAS_TOGGLE_REF(object) \
115 ((g_datalist_get_flags (&(object)->qdata) & OBJECT_HAS_TOGGLE_REF_FLAG) != 0)
116 #define OBJECT_FLOATING_FLAG 0x2
118 #define CLASS_HAS_PROPS_FLAG 0x1
119 #define CLASS_HAS_PROPS(class) \
120 ((class)->flags & CLASS_HAS_PROPS_FLAG)
121 #define CLASS_HAS_CUSTOM_CONSTRUCTOR(class) \
122 ((class)->constructor != g_object_constructor)
123 #define CLASS_HAS_CUSTOM_CONSTRUCTED(class) \
124 ((class)->constructed != g_object_constructed)
126 #define CLASS_HAS_DERIVED_CLASS_FLAG 0x2
127 #define CLASS_HAS_DERIVED_CLASS(class) \
128 ((class)->flags & CLASS_HAS_DERIVED_CLASS_FLAG)
130 /* --- signals --- */
137 /* --- properties --- */
143 /* --- prototypes --- */
144 static void g_object_base_class_init (GObjectClass
*class);
145 static void g_object_base_class_finalize (GObjectClass
*class);
146 static void g_object_do_class_init (GObjectClass
*class);
147 static void g_object_init (GObject
*object
,
148 GObjectClass
*class);
149 static GObject
* g_object_constructor (GType type
,
150 guint n_construct_properties
,
151 GObjectConstructParam
*construct_params
);
152 static void g_object_constructed (GObject
*object
);
153 static void g_object_real_dispose (GObject
*object
);
154 static void g_object_finalize (GObject
*object
);
155 static void g_object_do_set_property (GObject
*object
,
159 static void g_object_do_get_property (GObject
*object
,
163 static void g_value_object_init (GValue
*value
);
164 static void g_value_object_free_value (GValue
*value
);
165 static void g_value_object_copy_value (const GValue
*src_value
,
167 static void g_value_object_transform_value (const GValue
*src_value
,
169 static gpointer
g_value_object_peek_pointer (const GValue
*value
);
170 static gchar
* g_value_object_collect_value (GValue
*value
,
171 guint n_collect_values
,
172 GTypeCValue
*collect_values
,
173 guint collect_flags
);
174 static gchar
* g_value_object_lcopy_value (const GValue
*value
,
175 guint n_collect_values
,
176 GTypeCValue
*collect_values
,
177 guint collect_flags
);
178 static void g_object_dispatch_properties_changed (GObject
*object
,
180 GParamSpec
**pspecs
);
181 static guint
object_floating_flag_handler (GObject
*object
,
184 static void object_interface_check_properties (gpointer check_data
,
187 /* --- typedefs --- */
188 typedef struct _GObjectNotifyQueue GObjectNotifyQueue
;
190 struct _GObjectNotifyQueue
194 guint16 freeze_count
;
197 /* --- variables --- */
198 G_LOCK_DEFINE_STATIC (closure_array_mutex
);
199 G_LOCK_DEFINE_STATIC (weak_refs_mutex
);
200 G_LOCK_DEFINE_STATIC (toggle_refs_mutex
);
201 static GQuark quark_closure_array
= 0;
202 static GQuark quark_weak_refs
= 0;
203 static GQuark quark_toggle_refs
= 0;
204 static GQuark quark_notify_queue
;
205 static GQuark quark_in_construction
;
206 static GParamSpecPool
*pspec_pool
= NULL
;
207 static gulong gobject_signals
[LAST_SIGNAL
] = { 0, };
208 static guint (*floating_flag_handler
) (GObject
*, gint
) = object_floating_flag_handler
;
209 /* qdata pointing to GSList<GWeakRef *>, protected by weak_locations_lock */
210 static GQuark quark_weak_locations
= 0;
211 static GRWLock weak_locations_lock
;
213 G_LOCK_DEFINE_STATIC(notify_lock
);
215 /* --- functions --- */
217 g_object_notify_queue_free (gpointer data
)
219 GObjectNotifyQueue
*nqueue
= data
;
221 g_slist_free (nqueue
->pspecs
);
222 g_slice_free (GObjectNotifyQueue
, nqueue
);
225 static GObjectNotifyQueue
*
226 g_object_notify_queue_freeze (GObject
*object
,
227 gboolean conditional
)
229 GObjectNotifyQueue
*nqueue
;
232 nqueue
= g_datalist_id_get_data (&object
->qdata
, quark_notify_queue
);
237 G_UNLOCK(notify_lock
);
241 nqueue
= g_slice_new0 (GObjectNotifyQueue
);
242 g_datalist_id_set_data_full (&object
->qdata
, quark_notify_queue
,
243 nqueue
, g_object_notify_queue_free
);
246 if (nqueue
->freeze_count
>= 65535)
247 g_critical("Free queue for %s (%p) is larger than 65535,"
248 " called g_object_freeze_notify() too often."
249 " Forgot to call g_object_thaw_notify() or infinite loop",
250 G_OBJECT_TYPE_NAME (object
), object
);
252 nqueue
->freeze_count
++;
253 G_UNLOCK(notify_lock
);
259 g_object_notify_queue_thaw (GObject
*object
,
260 GObjectNotifyQueue
*nqueue
)
262 GParamSpec
*pspecs_mem
[16], **pspecs
, **free_me
= NULL
;
266 g_return_if_fail (nqueue
->freeze_count
> 0);
267 g_return_if_fail (g_atomic_int_get(&object
->ref_count
) > 0);
271 /* Just make sure we never get into some nasty race condition */
272 if (G_UNLIKELY(nqueue
->freeze_count
== 0)) {
273 G_UNLOCK(notify_lock
);
274 g_warning ("%s: property-changed notification for %s(%p) is not frozen",
275 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), object
);
279 nqueue
->freeze_count
--;
280 if (nqueue
->freeze_count
) {
281 G_UNLOCK(notify_lock
);
285 pspecs
= nqueue
->n_pspecs
> 16 ? free_me
= g_new (GParamSpec
*, nqueue
->n_pspecs
) : pspecs_mem
;
287 for (slist
= nqueue
->pspecs
; slist
; slist
= slist
->next
)
289 pspecs
[n_pspecs
++] = slist
->data
;
291 g_datalist_id_set_data (&object
->qdata
, quark_notify_queue
, NULL
);
293 G_UNLOCK(notify_lock
);
296 G_OBJECT_GET_CLASS (object
)->dispatch_properties_changed (object
, n_pspecs
, pspecs
);
301 g_object_notify_queue_add (GObject
*object
,
302 GObjectNotifyQueue
*nqueue
,
307 g_assert (nqueue
->n_pspecs
< 65535);
309 if (g_slist_find (nqueue
->pspecs
, pspec
) == NULL
)
311 nqueue
->pspecs
= g_slist_prepend (nqueue
->pspecs
, pspec
);
315 G_UNLOCK(notify_lock
);
318 #ifdef G_ENABLE_DEBUG
319 G_LOCK_DEFINE_STATIC (debug_objects
);
320 static guint debug_objects_count
= 0;
321 static GHashTable
*debug_objects_ht
= NULL
;
324 debug_objects_foreach (gpointer key
,
328 GObject
*object
= value
;
330 g_message ("[%p] stale %s\tref_count=%u",
332 G_OBJECT_TYPE_NAME (object
),
336 #ifdef G_HAS_CONSTRUCTORS
337 #ifdef G_DEFINE_DESTRUCTOR_NEEDS_PRAGMA
338 #pragma G_DEFINE_DESTRUCTOR_PRAGMA_ARGS(debug_objects_atexit)
340 G_DEFINE_DESTRUCTOR(debug_objects_atexit
)
341 #endif /* G_HAS_CONSTRUCTORS */
344 debug_objects_atexit (void)
346 GOBJECT_IF_DEBUG (OBJECTS
,
348 G_LOCK (debug_objects
);
349 g_message ("stale GObjects: %u", debug_objects_count
);
350 g_hash_table_foreach (debug_objects_ht
, debug_objects_foreach
, NULL
);
351 G_UNLOCK (debug_objects
);
354 #endif /* G_ENABLE_DEBUG */
357 _g_object_type_init (void)
359 static gboolean initialized
= FALSE
;
360 static const GTypeFundamentalInfo finfo
= {
361 G_TYPE_FLAG_CLASSED
| G_TYPE_FLAG_INSTANTIATABLE
| G_TYPE_FLAG_DERIVABLE
| G_TYPE_FLAG_DEEP_DERIVABLE
,
364 sizeof (GObjectClass
),
365 (GBaseInitFunc
) g_object_base_class_init
,
366 (GBaseFinalizeFunc
) g_object_base_class_finalize
,
367 (GClassInitFunc
) g_object_do_class_init
,
368 NULL
/* class_destroy */,
369 NULL
/* class_data */,
372 (GInstanceInitFunc
) g_object_init
,
373 NULL
, /* value_table */
375 static const GTypeValueTable value_table
= {
376 g_value_object_init
, /* value_init */
377 g_value_object_free_value
, /* value_free */
378 g_value_object_copy_value
, /* value_copy */
379 g_value_object_peek_pointer
, /* value_peek_pointer */
380 "p", /* collect_format */
381 g_value_object_collect_value
, /* collect_value */
382 "p", /* lcopy_format */
383 g_value_object_lcopy_value
, /* lcopy_value */
387 g_return_if_fail (initialized
== FALSE
);
392 info
.value_table
= &value_table
;
393 type
= g_type_register_fundamental (G_TYPE_OBJECT
, g_intern_static_string ("GObject"), &info
, &finfo
, 0);
394 g_assert (type
== G_TYPE_OBJECT
);
395 g_value_register_transform_func (G_TYPE_OBJECT
, G_TYPE_OBJECT
, g_value_object_transform_value
);
398 /* We cannot use GOBJECT_IF_DEBUG here because of the G_HAS_CONSTRUCTORS
399 * conditional in between, as the C spec leaves conditionals inside macro
400 * expansions as undefined behavior. Only GCC and Clang are known to work
401 * but compilation breaks on MSVC.
403 * See: https://bugzilla.gnome.org/show_bug.cgi?id=769504
405 if (_g_type_debug_flags
& G_TYPE_DEBUG_OBJECTS
) \
407 debug_objects_ht
= g_hash_table_new (g_direct_hash
, NULL
);
408 # ifndef G_HAS_CONSTRUCTORS
409 g_atexit (debug_objects_atexit
);
410 # endif /* G_HAS_CONSTRUCTORS */
412 #endif /* G_ENABLE_DEBUG */
416 g_object_base_class_init (GObjectClass
*class)
418 GObjectClass
*pclass
= g_type_class_peek_parent (class);
420 /* Don't inherit HAS_DERIVED_CLASS flag from parent class */
421 class->flags
&= ~CLASS_HAS_DERIVED_CLASS_FLAG
;
424 pclass
->flags
|= CLASS_HAS_DERIVED_CLASS_FLAG
;
426 /* reset instance specific fields and methods that don't get inherited */
427 class->construct_properties
= pclass
? g_slist_copy (pclass
->construct_properties
) : NULL
;
428 class->get_property
= NULL
;
429 class->set_property
= NULL
;
433 g_object_base_class_finalize (GObjectClass
*class)
437 _g_signals_destroy (G_OBJECT_CLASS_TYPE (class));
439 g_slist_free (class->construct_properties
);
440 class->construct_properties
= NULL
;
441 list
= g_param_spec_pool_list_owned (pspec_pool
, G_OBJECT_CLASS_TYPE (class));
442 for (node
= list
; node
; node
= node
->next
)
444 GParamSpec
*pspec
= node
->data
;
446 g_param_spec_pool_remove (pspec_pool
, pspec
);
447 PARAM_SPEC_SET_PARAM_ID (pspec
, 0);
448 g_param_spec_unref (pspec
);
454 g_object_do_class_init (GObjectClass
*class)
456 /* read the comment about typedef struct CArray; on why not to change this quark */
457 quark_closure_array
= g_quark_from_static_string ("GObject-closure-array");
459 quark_weak_refs
= g_quark_from_static_string ("GObject-weak-references");
460 quark_weak_locations
= g_quark_from_static_string ("GObject-weak-locations");
461 quark_toggle_refs
= g_quark_from_static_string ("GObject-toggle-references");
462 quark_notify_queue
= g_quark_from_static_string ("GObject-notify-queue");
463 quark_in_construction
= g_quark_from_static_string ("GObject-in-construction");
464 pspec_pool
= g_param_spec_pool_new (TRUE
);
466 class->constructor
= g_object_constructor
;
467 class->constructed
= g_object_constructed
;
468 class->set_property
= g_object_do_set_property
;
469 class->get_property
= g_object_do_get_property
;
470 class->dispose
= g_object_real_dispose
;
471 class->finalize
= g_object_finalize
;
472 class->dispatch_properties_changed
= g_object_dispatch_properties_changed
;
473 class->notify
= NULL
;
477 * @gobject: the object which received the signal.
478 * @pspec: the #GParamSpec of the property which changed.
480 * The notify signal is emitted on an object when one of its
481 * properties has been changed. Note that getting this signal
482 * doesn't guarantee that the value of the property has actually
483 * changed, it may also be emitted when the setter for the property
484 * is called to reinstate the previous value.
486 * This signal is typically used to obtain change notification for a
487 * single property, by specifying the property name as a detail in the
488 * g_signal_connect() call, like this:
489 * |[<!-- language="C" -->
490 * g_signal_connect (text_view->buffer, "notify::paste-target-list",
491 * G_CALLBACK (gtk_text_view_target_list_notify),
494 * It is important to note that you must use
495 * [canonical][canonical-parameter-name] parameter names as
496 * detail strings for the notify signal.
498 gobject_signals
[NOTIFY
] =
499 g_signal_new (g_intern_static_string ("notify"),
500 G_TYPE_FROM_CLASS (class),
501 G_SIGNAL_RUN_FIRST
| G_SIGNAL_NO_RECURSE
| G_SIGNAL_DETAILED
| G_SIGNAL_NO_HOOKS
| G_SIGNAL_ACTION
,
502 G_STRUCT_OFFSET (GObjectClass
, notify
),
504 g_cclosure_marshal_VOID__PARAM
,
508 /* Install a check function that we'll use to verify that classes that
509 * implement an interface implement all properties for that interface
511 g_type_add_interface_check (NULL
, object_interface_check_properties
);
514 static inline gboolean
515 install_property_internal (GType g_type
,
519 if (g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, g_type
, FALSE
))
521 g_warning ("When installing property: type '%s' already has a property named '%s'",
522 g_type_name (g_type
),
527 g_param_spec_ref_sink (pspec
);
528 PARAM_SPEC_SET_PARAM_ID (pspec
, property_id
);
529 g_param_spec_pool_insert (pspec_pool
, pspec
, g_type
);
534 validate_pspec_to_install (GParamSpec
*pspec
)
536 g_return_val_if_fail (G_IS_PARAM_SPEC (pspec
), FALSE
);
537 g_return_val_if_fail (PARAM_SPEC_PARAM_ID (pspec
) == 0, FALSE
); /* paranoid */
539 g_return_val_if_fail (pspec
->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
), FALSE
);
541 if (pspec
->flags
& G_PARAM_CONSTRUCT
)
542 g_return_val_if_fail ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) == 0, FALSE
);
544 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
545 g_return_val_if_fail (pspec
->flags
& G_PARAM_WRITABLE
, FALSE
);
551 validate_and_install_class_property (GObjectClass
*class,
557 if (!validate_pspec_to_install (pspec
))
560 if (pspec
->flags
& G_PARAM_WRITABLE
)
561 g_return_val_if_fail (class->set_property
!= NULL
, FALSE
);
562 if (pspec
->flags
& G_PARAM_READABLE
)
563 g_return_val_if_fail (class->get_property
!= NULL
, FALSE
);
565 class->flags
|= CLASS_HAS_PROPS_FLAG
;
566 if (install_property_internal (oclass_type
, property_id
, pspec
))
568 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
569 class->construct_properties
= g_slist_append (class->construct_properties
, pspec
);
571 /* for property overrides of construct properties, we have to get rid
572 * of the overidden inherited construct property
574 pspec
= g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, parent_type
, TRUE
);
575 if (pspec
&& pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
576 class->construct_properties
= g_slist_remove (class->construct_properties
, pspec
);
585 * g_object_class_install_property:
586 * @oclass: a #GObjectClass
587 * @property_id: the id for the new property
588 * @pspec: the #GParamSpec for the new property
590 * Installs a new property.
592 * All properties should be installed during the class initializer. It
593 * is possible to install properties after that, but doing so is not
594 * recommend, and specifically, is not guaranteed to be thread-safe vs.
595 * use of properties on the same type on other threads.
597 * Note that it is possible to redefine a property in a derived class,
598 * by installing a property with the same name. This can be useful at times,
599 * e.g. to change the range of allowed values or the default value.
602 g_object_class_install_property (GObjectClass
*class,
606 GType oclass_type
, parent_type
;
608 g_return_if_fail (G_IS_OBJECT_CLASS (class));
609 g_return_if_fail (property_id
> 0);
611 oclass_type
= G_OBJECT_CLASS_TYPE (class);
612 parent_type
= g_type_parent (oclass_type
);
614 if (CLASS_HAS_DERIVED_CLASS (class))
615 g_error ("Attempt to add property %s::%s to class after it was derived", G_OBJECT_CLASS_NAME (class), pspec
->name
);
617 (void) validate_and_install_class_property (class,
625 * g_object_class_install_properties:
626 * @oclass: a #GObjectClass
627 * @n_pspecs: the length of the #GParamSpecs array
628 * @pspecs: (array length=n_pspecs): the #GParamSpecs array
629 * defining the new properties
631 * Installs new properties from an array of #GParamSpecs.
633 * All properties should be installed during the class initializer. It
634 * is possible to install properties after that, but doing so is not
635 * recommend, and specifically, is not guaranteed to be thread-safe vs.
636 * use of properties on the same type on other threads.
638 * The property id of each property is the index of each #GParamSpec in
641 * The property id of 0 is treated specially by #GObject and it should not
642 * be used to store a #GParamSpec.
644 * This function should be used if you plan to use a static array of
645 * #GParamSpecs and g_object_notify_by_pspec(). For instance, this
646 * class initialization:
648 * |[<!-- language="C" -->
650 * PROP_0, PROP_FOO, PROP_BAR, N_PROPERTIES
653 * static GParamSpec *obj_properties[N_PROPERTIES] = { NULL, };
656 * my_object_class_init (MyObjectClass *klass)
658 * GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
660 * obj_properties[PROP_FOO] =
661 * g_param_spec_int ("foo", "Foo", "Foo",
664 * G_PARAM_READWRITE);
666 * obj_properties[PROP_BAR] =
667 * g_param_spec_string ("bar", "Bar", "Bar",
669 * G_PARAM_READWRITE);
671 * gobject_class->set_property = my_object_set_property;
672 * gobject_class->get_property = my_object_get_property;
673 * g_object_class_install_properties (gobject_class,
679 * allows calling g_object_notify_by_pspec() to notify of property changes:
681 * |[<!-- language="C" -->
683 * my_object_set_foo (MyObject *self, gint foo)
685 * if (self->foo != foo)
688 * g_object_notify_by_pspec (G_OBJECT (self), obj_properties[PROP_FOO]);
696 g_object_class_install_properties (GObjectClass
*oclass
,
700 GType oclass_type
, parent_type
;
703 g_return_if_fail (G_IS_OBJECT_CLASS (oclass
));
704 g_return_if_fail (n_pspecs
> 1);
705 g_return_if_fail (pspecs
[0] == NULL
);
707 if (CLASS_HAS_DERIVED_CLASS (oclass
))
708 g_error ("Attempt to add properties to %s after it was derived",
709 G_OBJECT_CLASS_NAME (oclass
));
711 oclass_type
= G_OBJECT_CLASS_TYPE (oclass
);
712 parent_type
= g_type_parent (oclass_type
);
714 /* we skip the first element of the array as it would have a 0 prop_id */
715 for (i
= 1; i
< n_pspecs
; i
++)
717 GParamSpec
*pspec
= pspecs
[i
];
719 if (!validate_and_install_class_property (oclass
,
731 * g_object_interface_install_property:
732 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
733 * interface, or the default
734 * vtable for the interface.
735 * @pspec: the #GParamSpec for the new property
737 * Add a property to an interface; this is only useful for interfaces
738 * that are added to GObject-derived types. Adding a property to an
739 * interface forces all objects classes with that interface to have a
740 * compatible property. The compatible property could be a newly
741 * created #GParamSpec, but normally
742 * g_object_class_override_property() will be used so that the object
743 * class only needs to provide an implementation and inherits the
744 * property description, default value, bounds, and so forth from the
745 * interface property.
747 * This function is meant to be called from the interface's default
748 * vtable initialization function (the @class_init member of
749 * #GTypeInfo.) It must not be called after after @class_init has
750 * been called for any object types implementing this interface.
752 * If @pspec is a floating reference, it will be consumed.
757 g_object_interface_install_property (gpointer g_iface
,
760 GTypeInterface
*iface_class
= g_iface
;
762 g_return_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
));
763 g_return_if_fail (!G_IS_PARAM_SPEC_OVERRIDE (pspec
)); /* paranoid */
765 if (!validate_pspec_to_install (pspec
))
768 (void) install_property_internal (iface_class
->g_type
, 0, pspec
);
772 * g_object_class_find_property:
773 * @oclass: a #GObjectClass
774 * @property_name: the name of the property to look up
776 * Looks up the #GParamSpec for a property of a class.
778 * Returns: (transfer none): the #GParamSpec for the property, or
779 * %NULL if the class doesn't have a property of that name
782 g_object_class_find_property (GObjectClass
*class,
783 const gchar
*property_name
)
786 GParamSpec
*redirect
;
788 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL
);
789 g_return_val_if_fail (property_name
!= NULL
, NULL
);
791 pspec
= g_param_spec_pool_lookup (pspec_pool
,
793 G_OBJECT_CLASS_TYPE (class),
797 redirect
= g_param_spec_get_redirect_target (pspec
);
808 * g_object_interface_find_property:
809 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
810 * interface, or the default vtable for the interface
811 * @property_name: name of a property to lookup.
813 * Find the #GParamSpec with the given name for an
814 * interface. Generally, the interface vtable passed in as @g_iface
815 * will be the default vtable from g_type_default_interface_ref(), or,
816 * if you know the interface has already been loaded,
817 * g_type_default_interface_peek().
821 * Returns: (transfer none): the #GParamSpec for the property of the
822 * interface with the name @property_name, or %NULL if no
823 * such property exists.
826 g_object_interface_find_property (gpointer g_iface
,
827 const gchar
*property_name
)
829 GTypeInterface
*iface_class
= g_iface
;
831 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
), NULL
);
832 g_return_val_if_fail (property_name
!= NULL
, NULL
);
834 return g_param_spec_pool_lookup (pspec_pool
,
841 * g_object_class_override_property:
842 * @oclass: a #GObjectClass
843 * @property_id: the new property ID
844 * @name: the name of a property registered in a parent class or
845 * in an interface of this class.
847 * Registers @property_id as referring to a property with the name
848 * @name in a parent class or in an interface implemented by @oclass.
849 * This allows this class to "override" a property implementation in
850 * a parent class or to provide the implementation of a property from
853 * Internally, overriding is implemented by creating a property of type
854 * #GParamSpecOverride; generally operations that query the properties of
855 * the object class, such as g_object_class_find_property() or
856 * g_object_class_list_properties() will return the overridden
857 * property. However, in one case, the @construct_properties argument of
858 * the @constructor virtual function, the #GParamSpecOverride is passed
859 * instead, so that the @param_id field of the #GParamSpec will be
860 * correct. For virtually all uses, this makes no difference. If you
861 * need to get the overridden property, you can call
862 * g_param_spec_get_redirect_target().
867 g_object_class_override_property (GObjectClass
*oclass
,
871 GParamSpec
*overridden
= NULL
;
875 g_return_if_fail (G_IS_OBJECT_CLASS (oclass
));
876 g_return_if_fail (property_id
> 0);
877 g_return_if_fail (name
!= NULL
);
879 /* Find the overridden property; first check parent types
881 parent_type
= g_type_parent (G_OBJECT_CLASS_TYPE (oclass
));
882 if (parent_type
!= G_TYPE_NONE
)
883 overridden
= g_param_spec_pool_lookup (pspec_pool
,
892 /* Now check interfaces
894 ifaces
= g_type_interfaces (G_OBJECT_CLASS_TYPE (oclass
), &n_ifaces
);
895 while (n_ifaces
-- && !overridden
)
897 overridden
= g_param_spec_pool_lookup (pspec_pool
,
908 g_warning ("%s: Can't find property to override for '%s::%s'",
909 G_STRFUNC
, G_OBJECT_CLASS_NAME (oclass
), name
);
913 new = g_param_spec_override (name
, overridden
);
914 g_object_class_install_property (oclass
, property_id
, new);
918 * g_object_class_list_properties:
919 * @oclass: a #GObjectClass
920 * @n_properties: (out): return location for the length of the returned array
922 * Get an array of #GParamSpec* for all properties of a class.
924 * Returns: (array length=n_properties) (transfer container): an array of
925 * #GParamSpec* which should be freed after use
927 GParamSpec
** /* free result */
928 g_object_class_list_properties (GObjectClass
*class,
929 guint
*n_properties_p
)
934 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL
);
936 pspecs
= g_param_spec_pool_list (pspec_pool
,
937 G_OBJECT_CLASS_TYPE (class),
946 * g_object_interface_list_properties:
947 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
948 * interface, or the default vtable for the interface
949 * @n_properties_p: (out): location to store number of properties returned.
951 * Lists the properties of an interface.Generally, the interface
952 * vtable passed in as @g_iface will be the default vtable from
953 * g_type_default_interface_ref(), or, if you know the interface has
954 * already been loaded, g_type_default_interface_peek().
958 * Returns: (array length=n_properties_p) (transfer container): a
959 * pointer to an array of pointers to #GParamSpec
960 * structures. The paramspecs are owned by GLib, but the
961 * array should be freed with g_free() when you are done with
965 g_object_interface_list_properties (gpointer g_iface
,
966 guint
*n_properties_p
)
968 GTypeInterface
*iface_class
= g_iface
;
972 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
), NULL
);
974 pspecs
= g_param_spec_pool_list (pspec_pool
,
983 static inline gboolean
984 object_in_construction (GObject
*object
)
986 return g_datalist_id_get_data (&object
->qdata
, quark_in_construction
) != NULL
;
990 g_object_init (GObject
*object
,
993 object
->ref_count
= 1;
994 object
->qdata
= NULL
;
996 if (CLASS_HAS_PROPS (class))
998 /* freeze object's notification queue, g_object_newv() preserves pairedness */
999 g_object_notify_queue_freeze (object
, FALSE
);
1002 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1004 /* mark object in-construction for notify_queue_thaw() and to allow construct-only properties */
1005 g_datalist_id_set_data (&object
->qdata
, quark_in_construction
, object
);
1008 GOBJECT_IF_DEBUG (OBJECTS
,
1010 G_LOCK (debug_objects
);
1011 debug_objects_count
++;
1012 g_hash_table_add (debug_objects_ht
, object
);
1013 G_UNLOCK (debug_objects
);
1018 g_object_do_set_property (GObject
*object
,
1020 const GValue
*value
,
1023 switch (property_id
)
1026 G_OBJECT_WARN_INVALID_PROPERTY_ID (object
, property_id
, pspec
);
1032 g_object_do_get_property (GObject
*object
,
1037 switch (property_id
)
1040 G_OBJECT_WARN_INVALID_PROPERTY_ID (object
, property_id
, pspec
);
1046 g_object_real_dispose (GObject
*object
)
1048 g_signal_handlers_destroy (object
);
1049 g_datalist_id_set_data (&object
->qdata
, quark_closure_array
, NULL
);
1050 g_datalist_id_set_data (&object
->qdata
, quark_weak_refs
, NULL
);
1054 g_object_finalize (GObject
*object
)
1056 if (object_in_construction (object
))
1058 g_critical ("object %s %p finalized while still in-construction",
1059 G_OBJECT_TYPE_NAME (object
), object
);
1062 g_datalist_clear (&object
->qdata
);
1064 GOBJECT_IF_DEBUG (OBJECTS
,
1066 G_LOCK (debug_objects
);
1067 g_assert (g_hash_table_contains (debug_objects_ht
, object
));
1068 g_hash_table_remove (debug_objects_ht
, object
);
1069 debug_objects_count
--;
1070 G_UNLOCK (debug_objects
);
1075 g_object_dispatch_properties_changed (GObject
*object
,
1077 GParamSpec
**pspecs
)
1081 for (i
= 0; i
< n_pspecs
; i
++)
1082 g_signal_emit (object
, gobject_signals
[NOTIFY
], g_param_spec_get_name_quark (pspecs
[i
]), pspecs
[i
]);
1086 * g_object_run_dispose:
1087 * @object: a #GObject
1089 * Releases all references to other objects. This can be used to break
1092 * This function should only be called from object system implementations.
1095 g_object_run_dispose (GObject
*object
)
1097 g_return_if_fail (G_IS_OBJECT (object
));
1098 g_return_if_fail (object
->ref_count
> 0);
1100 g_object_ref (object
);
1101 TRACE (GOBJECT_OBJECT_DISPOSE(object
,G_TYPE_FROM_INSTANCE(object
), 0));
1102 G_OBJECT_GET_CLASS (object
)->dispose (object
);
1103 TRACE (GOBJECT_OBJECT_DISPOSE_END(object
,G_TYPE_FROM_INSTANCE(object
), 0));
1104 g_object_unref (object
);
1108 * g_object_freeze_notify:
1109 * @object: a #GObject
1111 * Increases the freeze count on @object. If the freeze count is
1112 * non-zero, the emission of "notify" signals on @object is
1113 * stopped. The signals are queued until the freeze count is decreased
1114 * to zero. Duplicate notifications are squashed so that at most one
1115 * #GObject::notify signal is emitted for each property modified while the
1118 * This is necessary for accessors that modify multiple properties to prevent
1119 * premature notification while the object is still being modified.
1122 g_object_freeze_notify (GObject
*object
)
1124 g_return_if_fail (G_IS_OBJECT (object
));
1126 if (g_atomic_int_get (&object
->ref_count
) == 0)
1129 g_object_ref (object
);
1130 g_object_notify_queue_freeze (object
, FALSE
);
1131 g_object_unref (object
);
1135 get_notify_pspec (GParamSpec
*pspec
)
1137 GParamSpec
*redirected
;
1139 /* we don't notify on non-READABLE parameters */
1140 if (~pspec
->flags
& G_PARAM_READABLE
)
1143 /* if the paramspec is redirected, notify on the target */
1144 redirected
= g_param_spec_get_redirect_target (pspec
);
1145 if (redirected
!= NULL
)
1148 /* else, notify normally */
1153 g_object_notify_by_spec_internal (GObject
*object
,
1156 GParamSpec
*notify_pspec
;
1158 notify_pspec
= get_notify_pspec (pspec
);
1160 if (notify_pspec
!= NULL
)
1162 GObjectNotifyQueue
*nqueue
;
1164 /* conditional freeze: only increase freeze count if already frozen */
1165 nqueue
= g_object_notify_queue_freeze (object
, TRUE
);
1169 /* we're frozen, so add to the queue and release our freeze */
1170 g_object_notify_queue_add (object
, nqueue
, notify_pspec
);
1171 g_object_notify_queue_thaw (object
, nqueue
);
1174 /* not frozen, so just dispatch the notification directly */
1175 G_OBJECT_GET_CLASS (object
)
1176 ->dispatch_properties_changed (object
, 1, ¬ify_pspec
);
1182 * @object: a #GObject
1183 * @property_name: the name of a property installed on the class of @object.
1185 * Emits a "notify" signal for the property @property_name on @object.
1187 * When possible, eg. when signaling a property change from within the class
1188 * that registered the property, you should use g_object_notify_by_pspec()
1191 * Note that emission of the notify signal may be blocked with
1192 * g_object_freeze_notify(). In this case, the signal emissions are queued
1193 * and will be emitted (in reverse order) when g_object_thaw_notify() is
1197 g_object_notify (GObject
*object
,
1198 const gchar
*property_name
)
1202 g_return_if_fail (G_IS_OBJECT (object
));
1203 g_return_if_fail (property_name
!= NULL
);
1204 if (g_atomic_int_get (&object
->ref_count
) == 0)
1207 g_object_ref (object
);
1208 /* We don't need to get the redirect target
1209 * (by, e.g. calling g_object_class_find_property())
1210 * because g_object_notify_queue_add() does that
1212 pspec
= g_param_spec_pool_lookup (pspec_pool
,
1214 G_OBJECT_TYPE (object
),
1218 g_warning ("%s: object class '%s' has no property named '%s'",
1220 G_OBJECT_TYPE_NAME (object
),
1223 g_object_notify_by_spec_internal (object
, pspec
);
1224 g_object_unref (object
);
1228 * g_object_notify_by_pspec:
1229 * @object: a #GObject
1230 * @pspec: the #GParamSpec of a property installed on the class of @object.
1232 * Emits a "notify" signal for the property specified by @pspec on @object.
1234 * This function omits the property name lookup, hence it is faster than
1235 * g_object_notify().
1237 * One way to avoid using g_object_notify() from within the
1238 * class that registered the properties, and using g_object_notify_by_pspec()
1239 * instead, is to store the GParamSpec used with
1240 * g_object_class_install_property() inside a static array, e.g.:
1242 *|[<!-- language="C" -->
1250 * static GParamSpec *properties[PROP_LAST];
1253 * my_object_class_init (MyObjectClass *klass)
1255 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1258 * G_PARAM_READWRITE);
1259 * g_object_class_install_property (gobject_class,
1261 * properties[PROP_FOO]);
1265 * and then notify a change on the "foo" property with:
1267 * |[<!-- language="C" -->
1268 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1274 g_object_notify_by_pspec (GObject
*object
,
1278 g_return_if_fail (G_IS_OBJECT (object
));
1279 g_return_if_fail (G_IS_PARAM_SPEC (pspec
));
1281 if (g_atomic_int_get (&object
->ref_count
) == 0)
1284 g_object_ref (object
);
1285 g_object_notify_by_spec_internal (object
, pspec
);
1286 g_object_unref (object
);
1290 * g_object_thaw_notify:
1291 * @object: a #GObject
1293 * Reverts the effect of a previous call to
1294 * g_object_freeze_notify(). The freeze count is decreased on @object
1295 * and when it reaches zero, queued "notify" signals are emitted.
1297 * Duplicate notifications for each property are squashed so that at most one
1298 * #GObject::notify signal is emitted for each property, in the reverse order
1299 * in which they have been queued.
1301 * It is an error to call this function when the freeze count is zero.
1304 g_object_thaw_notify (GObject
*object
)
1306 GObjectNotifyQueue
*nqueue
;
1308 g_return_if_fail (G_IS_OBJECT (object
));
1309 if (g_atomic_int_get (&object
->ref_count
) == 0)
1312 g_object_ref (object
);
1314 /* FIXME: Freezing is the only way to get at the notify queue.
1315 * So we freeze once and then thaw twice.
1317 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
1318 g_object_notify_queue_thaw (object
, nqueue
);
1319 g_object_notify_queue_thaw (object
, nqueue
);
1321 g_object_unref (object
);
1325 consider_issuing_property_deprecation_warning (const GParamSpec
*pspec
)
1327 static GHashTable
*already_warned_table
;
1328 static const gchar
*enable_diagnostic
;
1329 static GMutex already_warned_lock
;
1332 if (!(pspec
->flags
& G_PARAM_DEPRECATED
))
1335 if (g_once_init_enter (&enable_diagnostic
))
1337 const gchar
*value
= g_getenv ("G_ENABLE_DIAGNOSTIC");
1342 g_once_init_leave (&enable_diagnostic
, value
);
1345 if (enable_diagnostic
[0] == '0')
1348 /* We hash only on property names: this means that we could end up in
1349 * a situation where we fail to emit a warning about a pair of
1350 * same-named deprecated properties used on two separate types.
1351 * That's pretty unlikely to occur, and even if it does, you'll still
1352 * have seen the warning for the first one...
1354 * Doing it this way lets us hash directly on the (interned) property
1357 g_mutex_lock (&already_warned_lock
);
1359 if (already_warned_table
== NULL
)
1360 already_warned_table
= g_hash_table_new (NULL
, NULL
);
1362 already
= g_hash_table_contains (already_warned_table
, (gpointer
) pspec
->name
);
1364 g_hash_table_add (already_warned_table
, (gpointer
) pspec
->name
);
1366 g_mutex_unlock (&already_warned_lock
);
1369 g_warning ("The property %s:%s is deprecated and shouldn't be used "
1370 "anymore. It will be removed in a future version.",
1371 g_type_name (pspec
->owner_type
), pspec
->name
);
1375 object_get_property (GObject
*object
,
1379 GObjectClass
*class = g_type_class_peek (pspec
->owner_type
);
1380 guint param_id
= PARAM_SPEC_PARAM_ID (pspec
);
1381 GParamSpec
*redirect
;
1385 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1386 g_type_name (pspec
->owner_type
), pspec
->name
, g_type_name (pspec
->owner_type
));
1390 redirect
= g_param_spec_get_redirect_target (pspec
);
1394 consider_issuing_property_deprecation_warning (pspec
);
1396 class->get_property (object
, param_id
, value
, pspec
);
1400 object_set_property (GObject
*object
,
1402 const GValue
*value
,
1403 GObjectNotifyQueue
*nqueue
)
1405 GValue tmp_value
= G_VALUE_INIT
;
1406 GObjectClass
*class = g_type_class_peek (pspec
->owner_type
);
1407 guint param_id
= PARAM_SPEC_PARAM_ID (pspec
);
1408 GParamSpec
*redirect
;
1412 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1413 g_type_name (pspec
->owner_type
), pspec
->name
, g_type_name (pspec
->owner_type
));
1417 redirect
= g_param_spec_get_redirect_target (pspec
);
1421 /* provide a copy to work from, convert (if necessary) and validate */
1422 g_value_init (&tmp_value
, pspec
->value_type
);
1423 if (!g_value_transform (value
, &tmp_value
))
1424 g_warning ("unable to set property '%s' of type '%s' from value of type '%s'",
1426 g_type_name (pspec
->value_type
),
1427 G_VALUE_TYPE_NAME (value
));
1428 else if (g_param_value_validate (pspec
, &tmp_value
) && !(pspec
->flags
& G_PARAM_LAX_VALIDATION
))
1430 gchar
*contents
= g_strdup_value_contents (value
);
1432 g_warning ("value \"%s\" of type '%s' is invalid or out of range for property '%s' of type '%s'",
1434 G_VALUE_TYPE_NAME (value
),
1436 g_type_name (pspec
->value_type
));
1441 class->set_property (object
, param_id
, &tmp_value
, pspec
);
1443 if (~pspec
->flags
& G_PARAM_EXPLICIT_NOTIFY
)
1445 GParamSpec
*notify_pspec
;
1447 notify_pspec
= get_notify_pspec (pspec
);
1449 if (notify_pspec
!= NULL
)
1450 g_object_notify_queue_add (object
, nqueue
, notify_pspec
);
1453 g_value_unset (&tmp_value
);
1457 object_interface_check_properties (gpointer check_data
,
1460 GTypeInterface
*iface_class
= g_iface
;
1461 GObjectClass
*class;
1462 GType iface_type
= iface_class
->g_type
;
1463 GParamSpec
**pspecs
;
1466 class = g_type_class_ref (iface_class
->g_instance_type
);
1471 if (!G_IS_OBJECT_CLASS (class))
1474 pspecs
= g_param_spec_pool_list (pspec_pool
, iface_type
, &n
);
1478 GParamSpec
*class_pspec
= g_param_spec_pool_lookup (pspec_pool
,
1480 G_OBJECT_CLASS_TYPE (class),
1485 g_critical ("Object class %s doesn't implement property "
1486 "'%s' from interface '%s'",
1487 g_type_name (G_OBJECT_CLASS_TYPE (class)),
1489 g_type_name (iface_type
));
1494 /* We do a number of checks on the properties of an interface to
1495 * make sure that all classes implementing the interface are
1496 * overriding the properties in a sane way.
1498 * We do the checks in order of importance so that we can give
1499 * more useful error messages first.
1501 * First, we check that the implementation doesn't remove the
1502 * basic functionality (readability, writability) advertised by
1503 * the interface. Next, we check that it doesn't introduce
1504 * additional restrictions (such as construct-only). Finally, we
1505 * make sure the types are compatible.
1508 #define SUBSET(a,b,mask) (((a) & ~(b) & (mask)) == 0)
1509 /* If the property on the interface is readable then the
1510 * implementation must be readable. If the interface is writable
1511 * then the implementation must be writable.
1513 if (!SUBSET (pspecs
[n
]->flags
, class_pspec
->flags
, G_PARAM_READABLE
| G_PARAM_WRITABLE
))
1515 g_critical ("Flags for property '%s' on class '%s' remove functionality compared with the "
1516 "property on interface '%s'\n", pspecs
[n
]->name
,
1517 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type
));
1521 /* If the property on the interface is writable then we need to
1522 * make sure the implementation doesn't introduce new restrictions
1523 * on that writability (ie: construct-only).
1525 * If the interface was not writable to begin with then we don't
1526 * really have any problems here because "writable at construct
1527 * time only" is still more permissive than "read only".
1529 if (pspecs
[n
]->flags
& G_PARAM_WRITABLE
)
1531 if (!SUBSET (class_pspec
->flags
, pspecs
[n
]->flags
, G_PARAM_CONSTRUCT_ONLY
))
1533 g_critical ("Flags for property '%s' on class '%s' introduce additional restrictions on "
1534 "writability compared with the property on interface '%s'\n", pspecs
[n
]->name
,
1535 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type
));
1541 /* If the property on the interface is readable then we are
1542 * effectively advertising that reading the property will return a
1543 * value of a specific type. All implementations of the interface
1544 * need to return items of this type -- but may be more
1545 * restrictive. For example, it is legal to have:
1547 * GtkWidget *get_item();
1549 * that is implemented by a function that always returns a
1550 * GtkEntry. In short: readability implies that the
1551 * implementation value type must be equal or more restrictive.
1553 * Similarly, if the property on the interface is writable then
1554 * must be able to accept the property being set to any value of
1555 * that type, including subclasses. In this case, we may also be
1556 * less restrictive. For example, it is legal to have:
1558 * set_item (GtkEntry *);
1560 * that is implemented by a function that will actually work with
1561 * any GtkWidget. In short: writability implies that the
1562 * implementation value type must be equal or less restrictive.
1564 * In the case that the property is both readable and writable
1565 * then the only way that both of the above can be satisfied is
1566 * with a type that is exactly equal.
1568 switch (pspecs
[n
]->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
))
1570 case G_PARAM_READABLE
| G_PARAM_WRITABLE
:
1571 /* class pspec value type must have exact equality with interface */
1572 if (pspecs
[n
]->value_type
!= class_pspec
->value_type
)
1573 g_critical ("Read/writable property '%s' on class '%s' has type '%s' which is not exactly equal to the "
1574 "type '%s' of the property on the interface '%s'\n", pspecs
[n
]->name
,
1575 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1576 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1579 case G_PARAM_READABLE
:
1580 /* class pspec value type equal or more restrictive than interface */
1581 if (!g_type_is_a (class_pspec
->value_type
, pspecs
[n
]->value_type
))
1582 g_critical ("Read-only property '%s' on class '%s' has type '%s' which is not equal to or more "
1583 "restrictive than the type '%s' of the property on the interface '%s'\n", pspecs
[n
]->name
,
1584 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1585 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1588 case G_PARAM_WRITABLE
:
1589 /* class pspec value type equal or less restrictive than interface */
1590 if (!g_type_is_a (pspecs
[n
]->value_type
, class_pspec
->value_type
))
1591 g_critical ("Write-only property '%s' on class '%s' has type '%s' which is not equal to or less "
1592 "restrictive than the type '%s' of the property on the interface '%s' \n", pspecs
[n
]->name
,
1593 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1594 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1598 g_assert_not_reached ();
1605 g_type_class_unref (class);
1609 g_object_get_type (void)
1611 return G_TYPE_OBJECT
;
1615 * g_object_new: (skip)
1616 * @object_type: the type id of the #GObject subtype to instantiate
1617 * @first_property_name: the name of the first property
1618 * @...: the value of the first property, followed optionally by more
1619 * name/value pairs, followed by %NULL
1621 * Creates a new instance of a #GObject subtype and sets its properties.
1623 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1624 * which are not explicitly specified are set to their default values.
1626 * Returns: (transfer full) (type GObject.Object): a new instance of
1630 g_object_new (GType object_type
,
1631 const gchar
*first_property_name
,
1637 /* short circuit for calls supplying no properties */
1638 if (!first_property_name
)
1639 return g_object_new_with_properties (object_type
, 0, NULL
, NULL
);
1641 va_start (var_args
, first_property_name
);
1642 object
= g_object_new_valist (object_type
, first_property_name
, var_args
);
1649 g_object_new_with_custom_constructor (GObjectClass
*class,
1650 GObjectConstructParam
*params
,
1653 GObjectNotifyQueue
*nqueue
= NULL
;
1654 gboolean newly_constructed
;
1655 GObjectConstructParam
*cparams
;
1663 /* If we have ->constructed() then we have to do a lot more work.
1664 * It's possible that this is a singleton and it's also possible
1665 * that the user's constructor() will attempt to modify the values
1666 * that we pass in, so we'll need to allocate copies of them.
1667 * It's also possible that the user may attempt to call
1668 * g_object_set() from inside of their constructor, so we need to
1669 * add ourselves to a list of objects for which that is allowed
1670 * while their constructor() is running.
1673 /* Create the array of GObjectConstructParams for constructor() */
1674 n_cparams
= g_slist_length (class->construct_properties
);
1675 cparams
= g_new (GObjectConstructParam
, n_cparams
);
1676 cvalues
= g_new0 (GValue
, n_cparams
);
1680 /* As above, we may find the value in the passed-in params list.
1682 * If we have the value passed in then we can use the GValue from
1683 * it directly because it is safe to modify. If we use the
1684 * default value from the class, we had better not pass that in
1685 * and risk it being modified, so we create a new one.
1687 for (node
= class->construct_properties
; node
; node
= node
->next
)
1694 value
= NULL
; /* to silence gcc... */
1696 for (j
= 0; j
< n_params
; j
++)
1697 if (params
[j
].pspec
== pspec
)
1699 consider_issuing_property_deprecation_warning (pspec
);
1700 value
= params
[j
].value
;
1706 value
= &cvalues
[cvals_used
++];
1707 g_value_init (value
, pspec
->value_type
);
1708 g_param_value_set_default (pspec
, value
);
1711 cparams
[i
].pspec
= pspec
;
1712 cparams
[i
].value
= value
;
1716 /* construct object from construction parameters */
1717 object
= class->constructor (class->g_type_class
.g_type
, n_cparams
, cparams
);
1718 /* free construction values */
1720 while (cvals_used
--)
1721 g_value_unset (&cvalues
[cvals_used
]);
1724 /* There is code in the wild that relies on being able to return NULL
1725 * from its custom constructor. This was never a supported operation,
1726 * but since the code is already out there...
1730 g_critical ("Custom constructor for class %s returned NULL (which is invalid). "
1731 "Please use GInitable instead.", G_OBJECT_CLASS_NAME (class));
1735 /* g_object_init() will have marked the object as being in-construction.
1736 * Check if the returned object still is so marked, or if this is an
1737 * already-existing singleton (in which case we should not do 'constructed').
1739 newly_constructed
= object_in_construction (object
);
1740 if (newly_constructed
)
1741 g_datalist_id_set_data (&object
->qdata
, quark_in_construction
, NULL
);
1743 if (CLASS_HAS_PROPS (class))
1745 /* If this object was newly_constructed then g_object_init()
1746 * froze the queue. We need to freeze it here in order to get
1747 * the handle so that we can thaw it below (otherwise it will
1748 * be frozen forever).
1750 * We also want to do a freeze if we have any params to set,
1751 * even on a non-newly_constructed object.
1753 * It's possible that we have the case of non-newly created
1754 * singleton and all of the passed-in params were construct
1755 * properties so n_params > 0 but we will actually set no
1756 * properties. This is a pretty lame case to optimise, so
1757 * just ignore it and freeze anyway.
1759 if (newly_constructed
|| n_params
)
1760 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
1762 /* Remember: if it was newly_constructed then g_object_init()
1763 * already did a freeze, so we now have two. Release one.
1765 if (newly_constructed
)
1766 g_object_notify_queue_thaw (object
, nqueue
);
1769 /* run 'constructed' handler if there is a custom one */
1770 if (newly_constructed
&& CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1771 class->constructed (object
);
1773 /* set remaining properties */
1774 for (i
= 0; i
< n_params
; i
++)
1775 if (!(params
[i
].pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1777 consider_issuing_property_deprecation_warning (params
[i
].pspec
);
1778 object_set_property (object
, params
[i
].pspec
, params
[i
].value
, nqueue
);
1781 /* If nqueue is non-NULL then we are frozen. Thaw it. */
1783 g_object_notify_queue_thaw (object
, nqueue
);
1789 g_object_new_internal (GObjectClass
*class,
1790 GObjectConstructParam
*params
,
1793 GObjectNotifyQueue
*nqueue
= NULL
;
1796 if G_UNLIKELY (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1797 return g_object_new_with_custom_constructor (class, params
, n_params
);
1799 object
= (GObject
*) g_type_create_instance (class->g_type_class
.g_type
);
1801 if (CLASS_HAS_PROPS (class))
1805 /* This will have been setup in g_object_init() */
1806 nqueue
= g_datalist_id_get_data (&object
->qdata
, quark_notify_queue
);
1807 g_assert (nqueue
!= NULL
);
1809 /* We will set exactly n_construct_properties construct
1810 * properties, but they may come from either the class default
1811 * values or the passed-in parameter list.
1813 for (node
= class->construct_properties
; node
; node
= node
->next
)
1815 const GValue
*value
;
1820 value
= NULL
; /* to silence gcc... */
1822 for (j
= 0; j
< n_params
; j
++)
1823 if (params
[j
].pspec
== pspec
)
1825 consider_issuing_property_deprecation_warning (pspec
);
1826 value
= params
[j
].value
;
1831 value
= g_param_spec_get_default_value (pspec
);
1833 object_set_property (object
, pspec
, value
, nqueue
);
1837 /* run 'constructed' handler if there is a custom one */
1838 if (CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1839 class->constructed (object
);
1845 /* Set remaining properties. The construct properties will
1846 * already have been taken, so set only the non-construct
1849 for (i
= 0; i
< n_params
; i
++)
1850 if (!(params
[i
].pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1852 consider_issuing_property_deprecation_warning (params
[i
].pspec
);
1853 object_set_property (object
, params
[i
].pspec
, params
[i
].value
, nqueue
);
1856 g_object_notify_queue_thaw (object
, nqueue
);
1863 static inline gboolean
1864 g_object_new_is_valid_property (GType object_type
,
1867 GObjectConstructParam
*params
,
1871 if (G_UNLIKELY (pspec
== NULL
))
1873 g_critical ("%s: object class '%s' has no property named '%s'",
1874 G_STRFUNC
, g_type_name (object_type
), name
);
1878 if (G_UNLIKELY (~pspec
->flags
& G_PARAM_WRITABLE
))
1880 g_critical ("%s: property '%s' of object class '%s' is not writable",
1881 G_STRFUNC
, pspec
->name
, g_type_name (object_type
));
1885 if (G_UNLIKELY (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1887 for (i
= 0; i
< n_params
; i
++)
1888 if (params
[i
].pspec
== pspec
)
1890 if (G_UNLIKELY (i
!= n_params
))
1892 g_critical ("%s: property '%s' for type '%s' cannot be set twice",
1893 G_STRFUNC
, name
, g_type_name (object_type
));
1902 * g_object_new_with_properties: (rename-to g_object_new)
1903 * @object_type: the object type to instantiate
1904 * @n_properties: the number of properties
1905 * @names: (array length=n_properties): the names of each property to be set
1906 * @values: (array length=n_properties): the values of each property to be set
1908 * Creates a new instance of a #GObject subtype and sets its properties using
1909 * the provided arrays. Both arrays must have exactly @n_properties elements,
1910 * and the names and values correspond by index.
1912 * Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY)
1913 * which are not explicitly specified are set to their default values.
1915 * Returns: (type GObject.Object) (transfer full): a new instance of
1921 g_object_new_with_properties (GType object_type
,
1923 const char *names
[],
1924 const GValue values
[])
1926 GObjectClass
*class, *unref_class
= NULL
;
1929 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
1931 /* Try to avoid thrashing the ref_count if we don't need to (since
1932 * it's a locked operation).
1934 class = g_type_class_peek_static (object_type
);
1937 class = unref_class
= g_type_class_ref (object_type
);
1939 if (n_properties
> 0)
1942 GObjectConstructParam
*params
;
1944 params
= g_newa (GObjectConstructParam
, n_properties
);
1945 for (i
= 0; i
< n_properties
; i
++)
1948 pspec
= g_param_spec_pool_lookup (pspec_pool
, names
[i
], object_type
, TRUE
);
1949 if (!g_object_new_is_valid_property (object_type
, pspec
, names
[i
], params
, count
))
1951 params
[count
].pspec
= pspec
;
1954 params
[count
].value
= g_newa (GValue
, 1);
1955 memset (params
[count
].value
, 0, sizeof (GValue
));
1956 g_value_init (params
[count
].value
, G_VALUE_TYPE (&values
[i
]));
1958 g_value_copy (&values
[i
], params
[count
].value
);
1961 object
= g_object_new_internal (class, params
, count
);
1964 g_value_unset (params
[count
].value
);
1967 object
= g_object_new_internal (class, NULL
, 0);
1969 if (unref_class
!= NULL
)
1970 g_type_class_unref (unref_class
);
1977 * @object_type: the type id of the #GObject subtype to instantiate
1978 * @n_parameters: the length of the @parameters array
1979 * @parameters: (array length=n_parameters): an array of #GParameter
1981 * Creates a new instance of a #GObject subtype and sets its properties.
1983 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1984 * which are not explicitly specified are set to their default values.
1986 * Returns: (type GObject.Object) (transfer full): a new instance of
1989 * Deprecated: 2.54: Use g_object_new_with_properties() instead.
1990 * deprecated. See #GParameter for more information.
1993 g_object_newv (GType object_type
,
1995 GParameter
*parameters
)
1997 GObjectClass
*class, *unref_class
= NULL
;
2000 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
2001 g_return_val_if_fail (n_parameters
== 0 || parameters
!= NULL
, NULL
);
2003 /* Try to avoid thrashing the ref_count if we don't need to (since
2004 * it's a locked operation).
2006 class = g_type_class_peek_static (object_type
);
2009 class = unref_class
= g_type_class_ref (object_type
);
2013 GObjectConstructParam
*cparams
;
2016 cparams
= g_newa (GObjectConstructParam
, n_parameters
);
2019 for (i
= 0; i
< n_parameters
; i
++)
2023 pspec
= g_param_spec_pool_lookup (pspec_pool
, parameters
[i
].name
, object_type
, TRUE
);
2024 if (!g_object_new_is_valid_property (object_type
, pspec
, parameters
[i
].name
, cparams
, j
))
2027 cparams
[j
].pspec
= pspec
;
2028 cparams
[j
].value
= ¶meters
[i
].value
;
2032 object
= g_object_new_internal (class, cparams
, j
);
2035 /* Fast case: no properties passed in. */
2036 object
= g_object_new_internal (class, NULL
, 0);
2039 g_type_class_unref (unref_class
);
2045 * g_object_new_valist: (skip)
2046 * @object_type: the type id of the #GObject subtype to instantiate
2047 * @first_property_name: the name of the first property
2048 * @var_args: the value of the first property, followed optionally by more
2049 * name/value pairs, followed by %NULL
2051 * Creates a new instance of a #GObject subtype and sets its properties.
2053 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
2054 * which are not explicitly specified are set to their default values.
2056 * Returns: a new instance of @object_type
2059 g_object_new_valist (GType object_type
,
2060 const gchar
*first_property_name
,
2063 GObjectClass
*class, *unref_class
= NULL
;
2066 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
2068 /* Try to avoid thrashing the ref_count if we don't need to (since
2069 * it's a locked operation).
2071 class = g_type_class_peek_static (object_type
);
2074 class = unref_class
= g_type_class_ref (object_type
);
2076 if (first_property_name
)
2078 GObjectConstructParam stack_params
[16];
2079 GObjectConstructParam
*params
;
2083 name
= first_property_name
;
2084 params
= stack_params
;
2088 gchar
*error
= NULL
;
2091 pspec
= g_param_spec_pool_lookup (pspec_pool
, name
, object_type
, TRUE
);
2093 if (!g_object_new_is_valid_property (object_type
, pspec
, name
, params
, n_params
))
2098 params
= g_new (GObjectConstructParam
, n_params
+ 1);
2099 memcpy (params
, stack_params
, sizeof stack_params
);
2101 else if (n_params
> 16)
2102 params
= g_renew (GObjectConstructParam
, params
, n_params
+ 1);
2104 params
[n_params
].pspec
= pspec
;
2105 params
[n_params
].value
= g_newa (GValue
, 1);
2106 memset (params
[n_params
].value
, 0, sizeof (GValue
));
2108 G_VALUE_COLLECT_INIT (params
[n_params
].value
, pspec
->value_type
, var_args
, 0, &error
);
2112 g_critical ("%s: %s", G_STRFUNC
, error
);
2113 g_value_unset (params
[n_params
].value
);
2120 while ((name
= va_arg (var_args
, const gchar
*)));
2122 object
= g_object_new_internal (class, params
, n_params
);
2125 g_value_unset (params
[n_params
].value
);
2127 if (params
!= stack_params
)
2131 /* Fast case: no properties passed in. */
2132 object
= g_object_new_internal (class, NULL
, 0);
2135 g_type_class_unref (unref_class
);
2141 g_object_constructor (GType type
,
2142 guint n_construct_properties
,
2143 GObjectConstructParam
*construct_params
)
2148 object
= (GObject
*) g_type_create_instance (type
);
2150 /* set construction parameters */
2151 if (n_construct_properties
)
2153 GObjectNotifyQueue
*nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2155 /* set construct properties */
2156 while (n_construct_properties
--)
2158 GValue
*value
= construct_params
->value
;
2159 GParamSpec
*pspec
= construct_params
->pspec
;
2162 object_set_property (object
, pspec
, value
, nqueue
);
2164 g_object_notify_queue_thaw (object
, nqueue
);
2165 /* the notification queue is still frozen from g_object_init(), so
2166 * we don't need to handle it here, g_object_newv() takes
2175 g_object_constructed (GObject
*object
)
2177 /* empty default impl to allow unconditional upchaining */
2180 static inline gboolean
2181 g_object_set_is_valid_property (GObject
*object
,
2183 const char *property_name
)
2185 if (G_UNLIKELY (pspec
== NULL
))
2187 g_warning ("%s: object class '%s' has no property named '%s'",
2188 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), property_name
);
2191 if (G_UNLIKELY (!(pspec
->flags
& G_PARAM_WRITABLE
)))
2193 g_warning ("%s: property '%s' of object class '%s' is not writable",
2194 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2197 if (G_UNLIKELY (((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) && !object_in_construction (object
))))
2199 g_warning ("%s: construct property \"%s\" for object '%s' can't be set after construction",
2200 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2207 * g_object_setv: (skip)
2208 * @object: a #GObject
2209 * @n_properties: the number of properties
2210 * @names: (array length=n_properties): the names of each property to be set
2211 * @values: (array length=n_properties): the values of each property to be set
2213 * Sets @n_properties properties for an @object.
2214 * Properties to be set will be taken from @values. All properties must be
2215 * valid. Warnings will be emitted and undefined behaviour may result if invalid
2216 * properties are passed in.
2221 g_object_setv (GObject
*object
,
2223 const gchar
*names
[],
2224 const GValue values
[])
2227 GObjectNotifyQueue
*nqueue
;
2231 g_return_if_fail (G_IS_OBJECT (object
));
2233 if (n_properties
== 0)
2236 g_object_ref (object
);
2237 obj_type
= G_OBJECT_TYPE (object
);
2238 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2239 for (i
= 0; i
< n_properties
; i
++)
2241 pspec
= g_param_spec_pool_lookup (pspec_pool
, names
[i
], obj_type
, TRUE
);
2243 if (!g_object_set_is_valid_property (object
, pspec
, names
[i
]))
2246 consider_issuing_property_deprecation_warning (pspec
);
2247 object_set_property (object
, pspec
, &values
[i
], nqueue
);
2250 g_object_notify_queue_thaw (object
, nqueue
);
2251 g_object_unref (object
);
2255 * g_object_set_valist: (skip)
2256 * @object: a #GObject
2257 * @first_property_name: name of the first property to set
2258 * @var_args: value for the first property, followed optionally by more
2259 * name/value pairs, followed by %NULL
2261 * Sets properties on an object.
2264 g_object_set_valist (GObject
*object
,
2265 const gchar
*first_property_name
,
2268 GObjectNotifyQueue
*nqueue
;
2271 g_return_if_fail (G_IS_OBJECT (object
));
2273 g_object_ref (object
);
2274 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2276 name
= first_property_name
;
2279 GValue value
= G_VALUE_INIT
;
2281 gchar
*error
= NULL
;
2283 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2285 G_OBJECT_TYPE (object
),
2288 if (!g_object_set_is_valid_property (object
, pspec
, name
))
2291 G_VALUE_COLLECT_INIT (&value
, pspec
->value_type
, var_args
,
2295 g_warning ("%s: %s", G_STRFUNC
, error
);
2297 g_value_unset (&value
);
2301 consider_issuing_property_deprecation_warning (pspec
);
2302 object_set_property (object
, pspec
, &value
, nqueue
);
2303 g_value_unset (&value
);
2305 name
= va_arg (var_args
, gchar
*);
2308 g_object_notify_queue_thaw (object
, nqueue
);
2309 g_object_unref (object
);
2312 static inline gboolean
2313 g_object_get_is_valid_property (GObject
*object
,
2315 const char *property_name
)
2317 if (G_UNLIKELY (pspec
== NULL
))
2319 g_warning ("%s: object class '%s' has no property named '%s'",
2320 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), property_name
);
2323 if (G_UNLIKELY (!(pspec
->flags
& G_PARAM_READABLE
)))
2325 g_warning ("%s: property '%s' of object class '%s' is not readable",
2326 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2334 * @object: a #GObject
2335 * @n_properties: the number of properties
2336 * @names: (array length=n_properties): the names of each property to get
2337 * @values: (array length=n_properties): the values of each property to get
2339 * Gets @n_properties properties for an @object.
2340 * Obtained properties will be set to @values. All properties must be valid.
2341 * Warnings will be emitted and undefined behaviour may result if invalid
2342 * properties are passed in.
2347 g_object_getv (GObject
*object
,
2349 const gchar
*names
[],
2356 g_return_if_fail (G_IS_OBJECT (object
));
2358 if (n_properties
== 0)
2361 g_object_ref (object
);
2363 obj_type
= G_OBJECT_TYPE (object
);
2364 for (i
= 0; i
< n_properties
; i
++)
2366 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2370 if (!g_object_get_is_valid_property (object
, pspec
, names
[i
]))
2373 memset (&values
[i
], 0, sizeof (GValue
));
2374 g_value_init (&values
[i
], pspec
->value_type
);
2375 object_get_property (object
, pspec
, &values
[i
]);
2377 g_object_unref (object
);
2381 * g_object_get_valist: (skip)
2382 * @object: a #GObject
2383 * @first_property_name: name of the first property to get
2384 * @var_args: return location for the first property, followed optionally by more
2385 * name/return location pairs, followed by %NULL
2387 * Gets properties of an object.
2389 * In general, a copy is made of the property contents and the caller
2390 * is responsible for freeing the memory in the appropriate manner for
2391 * the type, for instance by calling g_free() or g_object_unref().
2393 * See g_object_get().
2396 g_object_get_valist (GObject
*object
,
2397 const gchar
*first_property_name
,
2402 g_return_if_fail (G_IS_OBJECT (object
));
2404 g_object_ref (object
);
2406 name
= first_property_name
;
2410 GValue value
= G_VALUE_INIT
;
2414 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2416 G_OBJECT_TYPE (object
),
2419 if (!g_object_get_is_valid_property (object
, pspec
, name
))
2422 g_value_init (&value
, pspec
->value_type
);
2424 object_get_property (object
, pspec
, &value
);
2426 G_VALUE_LCOPY (&value
, var_args
, 0, &error
);
2429 g_warning ("%s: %s", G_STRFUNC
, error
);
2431 g_value_unset (&value
);
2435 g_value_unset (&value
);
2437 name
= va_arg (var_args
, gchar
*);
2440 g_object_unref (object
);
2444 * g_object_set: (skip)
2445 * @object: (type GObject.Object): a #GObject
2446 * @first_property_name: name of the first property to set
2447 * @...: value for the first property, followed optionally by more
2448 * name/value pairs, followed by %NULL
2450 * Sets properties on an object.
2452 * Note that the "notify" signals are queued and only emitted (in
2453 * reverse order) after all properties have been set. See
2454 * g_object_freeze_notify().
2457 g_object_set (gpointer _object
,
2458 const gchar
*first_property_name
,
2461 GObject
*object
= _object
;
2464 g_return_if_fail (G_IS_OBJECT (object
));
2466 va_start (var_args
, first_property_name
);
2467 g_object_set_valist (object
, first_property_name
, var_args
);
2472 * g_object_get: (skip)
2473 * @object: (type GObject.Object): a #GObject
2474 * @first_property_name: name of the first property to get
2475 * @...: return location for the first property, followed optionally by more
2476 * name/return location pairs, followed by %NULL
2478 * Gets properties of an object.
2480 * In general, a copy is made of the property contents and the caller
2481 * is responsible for freeing the memory in the appropriate manner for
2482 * the type, for instance by calling g_free() or g_object_unref().
2484 * Here is an example of using g_object_get() to get the contents
2485 * of three properties: an integer, a string and an object:
2486 * |[<!-- language="C" -->
2491 * g_object_get (my_object,
2492 * "int-property", &intval,
2493 * "str-property", &strval,
2494 * "obj-property", &objval,
2497 * // Do something with intval, strval, objval
2500 * g_object_unref (objval);
2504 g_object_get (gpointer _object
,
2505 const gchar
*first_property_name
,
2508 GObject
*object
= _object
;
2511 g_return_if_fail (G_IS_OBJECT (object
));
2513 va_start (var_args
, first_property_name
);
2514 g_object_get_valist (object
, first_property_name
, var_args
);
2519 * g_object_set_property:
2520 * @object: a #GObject
2521 * @property_name: the name of the property to set
2524 * Sets a property on an object.
2527 g_object_set_property (GObject
*object
,
2528 const gchar
*property_name
,
2529 const GValue
*value
)
2531 g_object_setv (object
, 1, &property_name
, value
);
2535 * g_object_get_property:
2536 * @object: a #GObject
2537 * @property_name: the name of the property to get
2538 * @value: return location for the property value
2540 * Gets a property of an object. @value must have been initialized to the
2541 * expected type of the property (or a type to which the expected type can be
2542 * transformed) using g_value_init().
2544 * In general, a copy is made of the property contents and the caller is
2545 * responsible for freeing the memory by calling g_value_unset().
2547 * Note that g_object_get_property() is really intended for language
2548 * bindings, g_object_get() is much more convenient for C programming.
2551 g_object_get_property (GObject
*object
,
2552 const gchar
*property_name
,
2557 g_return_if_fail (G_IS_OBJECT (object
));
2558 g_return_if_fail (property_name
!= NULL
);
2559 g_return_if_fail (G_IS_VALUE (value
));
2561 g_object_ref (object
);
2563 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2565 G_OBJECT_TYPE (object
),
2568 if (g_object_get_is_valid_property (object
, pspec
, property_name
))
2570 GValue
*prop_value
, tmp_value
= G_VALUE_INIT
;
2572 /* auto-conversion of the callers value type
2574 if (G_VALUE_TYPE (value
) == pspec
->value_type
)
2576 g_value_reset (value
);
2579 else if (!g_value_type_transformable (pspec
->value_type
, G_VALUE_TYPE (value
)))
2581 g_warning ("%s: can't retrieve property '%s' of type '%s' as value of type '%s'",
2582 G_STRFUNC
, pspec
->name
,
2583 g_type_name (pspec
->value_type
),
2584 G_VALUE_TYPE_NAME (value
));
2585 g_object_unref (object
);
2590 g_value_init (&tmp_value
, pspec
->value_type
);
2591 prop_value
= &tmp_value
;
2593 object_get_property (object
, pspec
, prop_value
);
2594 if (prop_value
!= value
)
2596 g_value_transform (prop_value
, value
);
2597 g_value_unset (&tmp_value
);
2601 g_object_unref (object
);
2605 * g_object_connect: (skip)
2606 * @object: (type GObject.Object): a #GObject
2607 * @signal_spec: the spec for the first signal
2608 * @...: #GCallback for the first signal, followed by data for the
2609 * first signal, followed optionally by more signal
2610 * spec/callback/data triples, followed by %NULL
2612 * A convenience function to connect multiple signals at once.
2614 * The signal specs expected by this function have the form
2615 * "modifier::signal_name", where modifier can be one of the following:
2616 * * - signal: equivalent to g_signal_connect_data (..., NULL, 0)
2617 * - object-signal, object_signal: equivalent to g_signal_connect_object (..., 0)
2618 * - swapped-signal, swapped_signal: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED)
2619 * - swapped_object_signal, swapped-object-signal: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED)
2620 * - signal_after, signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_AFTER)
2621 * - object_signal_after, object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_AFTER)
2622 * - swapped_signal_after, swapped-signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2623 * - swapped_object_signal_after, swapped-object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2625 * |[<!-- language="C" -->
2626 * menu->toplevel = g_object_connect (g_object_new (GTK_TYPE_WINDOW,
2627 * "type", GTK_WINDOW_POPUP,
2630 * "signal::event", gtk_menu_window_event, menu,
2631 * "signal::size_request", gtk_menu_window_size_request, menu,
2632 * "signal::destroy", gtk_widget_destroyed, &menu->toplevel,
2636 * Returns: (transfer none) (type GObject.Object): @object
2639 g_object_connect (gpointer _object
,
2640 const gchar
*signal_spec
,
2643 GObject
*object
= _object
;
2646 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
2647 g_return_val_if_fail (object
->ref_count
> 0, object
);
2649 va_start (var_args
, signal_spec
);
2652 GCallback callback
= va_arg (var_args
, GCallback
);
2653 gpointer data
= va_arg (var_args
, gpointer
);
2655 if (strncmp (signal_spec
, "signal::", 8) == 0)
2656 g_signal_connect_data (object
, signal_spec
+ 8,
2657 callback
, data
, NULL
,
2659 else if (strncmp (signal_spec
, "object_signal::", 15) == 0 ||
2660 strncmp (signal_spec
, "object-signal::", 15) == 0)
2661 g_signal_connect_object (object
, signal_spec
+ 15,
2664 else if (strncmp (signal_spec
, "swapped_signal::", 16) == 0 ||
2665 strncmp (signal_spec
, "swapped-signal::", 16) == 0)
2666 g_signal_connect_data (object
, signal_spec
+ 16,
2667 callback
, data
, NULL
,
2669 else if (strncmp (signal_spec
, "swapped_object_signal::", 23) == 0 ||
2670 strncmp (signal_spec
, "swapped-object-signal::", 23) == 0)
2671 g_signal_connect_object (object
, signal_spec
+ 23,
2674 else if (strncmp (signal_spec
, "signal_after::", 14) == 0 ||
2675 strncmp (signal_spec
, "signal-after::", 14) == 0)
2676 g_signal_connect_data (object
, signal_spec
+ 14,
2677 callback
, data
, NULL
,
2679 else if (strncmp (signal_spec
, "object_signal_after::", 21) == 0 ||
2680 strncmp (signal_spec
, "object-signal-after::", 21) == 0)
2681 g_signal_connect_object (object
, signal_spec
+ 21,
2684 else if (strncmp (signal_spec
, "swapped_signal_after::", 22) == 0 ||
2685 strncmp (signal_spec
, "swapped-signal-after::", 22) == 0)
2686 g_signal_connect_data (object
, signal_spec
+ 22,
2687 callback
, data
, NULL
,
2688 G_CONNECT_SWAPPED
| G_CONNECT_AFTER
);
2689 else if (strncmp (signal_spec
, "swapped_object_signal_after::", 29) == 0 ||
2690 strncmp (signal_spec
, "swapped-object-signal-after::", 29) == 0)
2691 g_signal_connect_object (object
, signal_spec
+ 29,
2693 G_CONNECT_SWAPPED
| G_CONNECT_AFTER
);
2696 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC
, signal_spec
);
2699 signal_spec
= va_arg (var_args
, gchar
*);
2707 * g_object_disconnect: (skip)
2708 * @object: (type GObject.Object): a #GObject
2709 * @signal_spec: the spec for the first signal
2710 * @...: #GCallback for the first signal, followed by data for the first signal,
2711 * followed optionally by more signal spec/callback/data triples,
2714 * A convenience function to disconnect multiple signals at once.
2716 * The signal specs expected by this function have the form
2717 * "any_signal", which means to disconnect any signal with matching
2718 * callback and data, or "any_signal::signal_name", which only
2719 * disconnects the signal named "signal_name".
2722 g_object_disconnect (gpointer _object
,
2723 const gchar
*signal_spec
,
2726 GObject
*object
= _object
;
2729 g_return_if_fail (G_IS_OBJECT (object
));
2730 g_return_if_fail (object
->ref_count
> 0);
2732 va_start (var_args
, signal_spec
);
2735 GCallback callback
= va_arg (var_args
, GCallback
);
2736 gpointer data
= va_arg (var_args
, gpointer
);
2737 guint sid
= 0, detail
= 0, mask
= 0;
2739 if (strncmp (signal_spec
, "any_signal::", 12) == 0 ||
2740 strncmp (signal_spec
, "any-signal::", 12) == 0)
2743 mask
= G_SIGNAL_MATCH_ID
| G_SIGNAL_MATCH_FUNC
| G_SIGNAL_MATCH_DATA
;
2745 else if (strcmp (signal_spec
, "any_signal") == 0 ||
2746 strcmp (signal_spec
, "any-signal") == 0)
2749 mask
= G_SIGNAL_MATCH_FUNC
| G_SIGNAL_MATCH_DATA
;
2753 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC
, signal_spec
);
2757 if ((mask
& G_SIGNAL_MATCH_ID
) &&
2758 !g_signal_parse_name (signal_spec
, G_OBJECT_TYPE (object
), &sid
, &detail
, FALSE
))
2759 g_warning ("%s: invalid signal name \"%s\"", G_STRFUNC
, signal_spec
);
2760 else if (!g_signal_handlers_disconnect_matched (object
, mask
| (detail
? G_SIGNAL_MATCH_DETAIL
: 0),
2762 NULL
, (gpointer
)callback
, data
))
2763 g_warning ("%s: signal handler %p(%p) is not connected", G_STRFUNC
, callback
, data
);
2764 signal_spec
= va_arg (var_args
, gchar
*);
2775 } weak_refs
[1]; /* flexible array */
2779 weak_refs_notify (gpointer data
)
2781 WeakRefStack
*wstack
= data
;
2784 for (i
= 0; i
< wstack
->n_weak_refs
; i
++)
2785 wstack
->weak_refs
[i
].notify (wstack
->weak_refs
[i
].data
, wstack
->object
);
2790 * g_object_weak_ref: (skip)
2791 * @object: #GObject to reference weakly
2792 * @notify: callback to invoke before the object is freed
2793 * @data: extra data to pass to notify
2795 * Adds a weak reference callback to an object. Weak references are
2796 * used for notification when an object is finalized. They are called
2797 * "weak references" because they allow you to safely hold a pointer
2798 * to an object without calling g_object_ref() (g_object_ref() adds a
2799 * strong reference, that is, forces the object to stay alive).
2801 * Note that the weak references created by this method are not
2802 * thread-safe: they cannot safely be used in one thread if the
2803 * object's last g_object_unref() might happen in another thread.
2804 * Use #GWeakRef if thread-safety is required.
2807 g_object_weak_ref (GObject
*object
,
2811 WeakRefStack
*wstack
;
2814 g_return_if_fail (G_IS_OBJECT (object
));
2815 g_return_if_fail (notify
!= NULL
);
2816 g_return_if_fail (object
->ref_count
>= 1);
2818 G_LOCK (weak_refs_mutex
);
2819 wstack
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_weak_refs
);
2822 i
= wstack
->n_weak_refs
++;
2823 wstack
= g_realloc (wstack
, sizeof (*wstack
) + sizeof (wstack
->weak_refs
[0]) * i
);
2827 wstack
= g_renew (WeakRefStack
, NULL
, 1);
2828 wstack
->object
= object
;
2829 wstack
->n_weak_refs
= 1;
2832 wstack
->weak_refs
[i
].notify
= notify
;
2833 wstack
->weak_refs
[i
].data
= data
;
2834 g_datalist_id_set_data_full (&object
->qdata
, quark_weak_refs
, wstack
, weak_refs_notify
);
2835 G_UNLOCK (weak_refs_mutex
);
2839 * g_object_weak_unref: (skip)
2840 * @object: #GObject to remove a weak reference from
2841 * @notify: callback to search for
2842 * @data: data to search for
2844 * Removes a weak reference callback to an object.
2847 g_object_weak_unref (GObject
*object
,
2851 WeakRefStack
*wstack
;
2852 gboolean found_one
= FALSE
;
2854 g_return_if_fail (G_IS_OBJECT (object
));
2855 g_return_if_fail (notify
!= NULL
);
2857 G_LOCK (weak_refs_mutex
);
2858 wstack
= g_datalist_id_get_data (&object
->qdata
, quark_weak_refs
);
2863 for (i
= 0; i
< wstack
->n_weak_refs
; i
++)
2864 if (wstack
->weak_refs
[i
].notify
== notify
&&
2865 wstack
->weak_refs
[i
].data
== data
)
2868 wstack
->n_weak_refs
-= 1;
2869 if (i
!= wstack
->n_weak_refs
)
2870 wstack
->weak_refs
[i
] = wstack
->weak_refs
[wstack
->n_weak_refs
];
2875 G_UNLOCK (weak_refs_mutex
);
2877 g_warning ("%s: couldn't find weak ref %p(%p)", G_STRFUNC
, notify
, data
);
2881 * g_object_add_weak_pointer: (skip)
2882 * @object: The object that should be weak referenced.
2883 * @weak_pointer_location: (inout) (not optional): The memory address
2886 * Adds a weak reference from weak_pointer to @object to indicate that
2887 * the pointer located at @weak_pointer_location is only valid during
2888 * the lifetime of @object. When the @object is finalized,
2889 * @weak_pointer will be set to %NULL.
2891 * Note that as with g_object_weak_ref(), the weak references created by
2892 * this method are not thread-safe: they cannot safely be used in one
2893 * thread if the object's last g_object_unref() might happen in another
2894 * thread. Use #GWeakRef if thread-safety is required.
2897 g_object_add_weak_pointer (GObject
*object
,
2898 gpointer
*weak_pointer_location
)
2900 g_return_if_fail (G_IS_OBJECT (object
));
2901 g_return_if_fail (weak_pointer_location
!= NULL
);
2903 g_object_weak_ref (object
,
2904 (GWeakNotify
) g_nullify_pointer
,
2905 weak_pointer_location
);
2909 * g_object_remove_weak_pointer: (skip)
2910 * @object: The object that is weak referenced.
2911 * @weak_pointer_location: (inout) (not optional): The memory address
2914 * Removes a weak reference from @object that was previously added
2915 * using g_object_add_weak_pointer(). The @weak_pointer_location has
2916 * to match the one used with g_object_add_weak_pointer().
2919 g_object_remove_weak_pointer (GObject
*object
,
2920 gpointer
*weak_pointer_location
)
2922 g_return_if_fail (G_IS_OBJECT (object
));
2923 g_return_if_fail (weak_pointer_location
!= NULL
);
2925 g_object_weak_unref (object
,
2926 (GWeakNotify
) g_nullify_pointer
,
2927 weak_pointer_location
);
2931 object_floating_flag_handler (GObject
*object
,
2937 case +1: /* force floating if possible */
2939 oldvalue
= g_atomic_pointer_get (&object
->qdata
);
2940 while (!g_atomic_pointer_compare_and_exchange ((void**) &object
->qdata
, oldvalue
,
2941 (gpointer
) ((gsize
) oldvalue
| OBJECT_FLOATING_FLAG
)));
2942 return (gsize
) oldvalue
& OBJECT_FLOATING_FLAG
;
2943 case -1: /* sink if possible */
2945 oldvalue
= g_atomic_pointer_get (&object
->qdata
);
2946 while (!g_atomic_pointer_compare_and_exchange ((void**) &object
->qdata
, oldvalue
,
2947 (gpointer
) ((gsize
) oldvalue
& ~(gsize
) OBJECT_FLOATING_FLAG
)));
2948 return (gsize
) oldvalue
& OBJECT_FLOATING_FLAG
;
2949 default: /* check floating */
2950 return 0 != ((gsize
) g_atomic_pointer_get (&object
->qdata
) & OBJECT_FLOATING_FLAG
);
2955 * g_object_is_floating:
2956 * @object: (type GObject.Object): a #GObject
2958 * Checks whether @object has a [floating][floating-ref] reference.
2962 * Returns: %TRUE if @object has a floating reference
2965 g_object_is_floating (gpointer _object
)
2967 GObject
*object
= _object
;
2968 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
2969 return floating_flag_handler (object
, 0);
2973 * g_object_ref_sink:
2974 * @object: (type GObject.Object): a #GObject
2976 * Increase the reference count of @object, and possibly remove the
2977 * [floating][floating-ref] reference, if @object has a floating reference.
2979 * In other words, if the object is floating, then this call "assumes
2980 * ownership" of the floating reference, converting it to a normal
2981 * reference by clearing the floating flag while leaving the reference
2982 * count unchanged. If the object is not floating, then this call
2983 * adds a new normal reference increasing the reference count by one.
2985 * Since GLib 2.56, the type of @object will be propagated to the return type
2986 * under the same conditions as for g_object_ref().
2990 * Returns: (type GObject.Object) (transfer none): @object
2993 (g_object_ref_sink
) (gpointer _object
)
2995 GObject
*object
= _object
;
2996 gboolean was_floating
;
2997 g_return_val_if_fail (G_IS_OBJECT (object
), object
);
2998 g_return_val_if_fail (object
->ref_count
>= 1, object
);
2999 g_object_ref (object
);
3000 was_floating
= floating_flag_handler (object
, -1);
3002 g_object_unref (object
);
3007 * g_object_force_floating:
3008 * @object: a #GObject
3010 * This function is intended for #GObject implementations to re-enforce
3011 * a [floating][floating-ref] object reference. Doing this is seldom
3012 * required: all #GInitiallyUnowneds are created with a floating reference
3013 * which usually just needs to be sunken by calling g_object_ref_sink().
3018 g_object_force_floating (GObject
*object
)
3020 g_return_if_fail (G_IS_OBJECT (object
));
3021 g_return_if_fail (object
->ref_count
>= 1);
3023 floating_flag_handler (object
, +1);
3028 guint n_toggle_refs
;
3030 GToggleNotify notify
;
3032 } toggle_refs
[1]; /* flexible array */
3036 toggle_refs_notify (GObject
*object
,
3037 gboolean is_last_ref
)
3039 ToggleRefStack tstack
, *tstackptr
;
3041 G_LOCK (toggle_refs_mutex
);
3042 tstackptr
= g_datalist_id_get_data (&object
->qdata
, quark_toggle_refs
);
3043 tstack
= *tstackptr
;
3044 G_UNLOCK (toggle_refs_mutex
);
3046 /* Reentrancy here is not as tricky as it seems, because a toggle reference
3047 * will only be notified when there is exactly one of them.
3049 g_assert (tstack
.n_toggle_refs
== 1);
3050 tstack
.toggle_refs
[0].notify (tstack
.toggle_refs
[0].data
, tstack
.object
, is_last_ref
);
3054 * g_object_add_toggle_ref: (skip)
3055 * @object: a #GObject
3056 * @notify: a function to call when this reference is the
3057 * last reference to the object, or is no longer
3058 * the last reference.
3059 * @data: data to pass to @notify
3061 * Increases the reference count of the object by one and sets a
3062 * callback to be called when all other references to the object are
3063 * dropped, or when this is already the last reference to the object
3064 * and another reference is established.
3066 * This functionality is intended for binding @object to a proxy
3067 * object managed by another memory manager. This is done with two
3068 * paired references: the strong reference added by
3069 * g_object_add_toggle_ref() and a reverse reference to the proxy
3070 * object which is either a strong reference or weak reference.
3072 * The setup is that when there are no other references to @object,
3073 * only a weak reference is held in the reverse direction from @object
3074 * to the proxy object, but when there are other references held to
3075 * @object, a strong reference is held. The @notify callback is called
3076 * when the reference from @object to the proxy object should be
3077 * "toggled" from strong to weak (@is_last_ref true) or weak to strong
3078 * (@is_last_ref false).
3080 * Since a (normal) reference must be held to the object before
3081 * calling g_object_add_toggle_ref(), the initial state of the reverse
3082 * link is always strong.
3084 * Multiple toggle references may be added to the same gobject,
3085 * however if there are multiple toggle references to an object, none
3086 * of them will ever be notified until all but one are removed. For
3087 * this reason, you should only ever use a toggle reference if there
3088 * is important state in the proxy object.
3093 g_object_add_toggle_ref (GObject
*object
,
3094 GToggleNotify notify
,
3097 ToggleRefStack
*tstack
;
3100 g_return_if_fail (G_IS_OBJECT (object
));
3101 g_return_if_fail (notify
!= NULL
);
3102 g_return_if_fail (object
->ref_count
>= 1);
3104 g_object_ref (object
);
3106 G_LOCK (toggle_refs_mutex
);
3107 tstack
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_toggle_refs
);
3110 i
= tstack
->n_toggle_refs
++;
3111 /* allocate i = tstate->n_toggle_refs - 1 positions beyond the 1 declared
3112 * in tstate->toggle_refs */
3113 tstack
= g_realloc (tstack
, sizeof (*tstack
) + sizeof (tstack
->toggle_refs
[0]) * i
);
3117 tstack
= g_renew (ToggleRefStack
, NULL
, 1);
3118 tstack
->object
= object
;
3119 tstack
->n_toggle_refs
= 1;
3123 /* Set a flag for fast lookup after adding the first toggle reference */
3124 if (tstack
->n_toggle_refs
== 1)
3125 g_datalist_set_flags (&object
->qdata
, OBJECT_HAS_TOGGLE_REF_FLAG
);
3127 tstack
->toggle_refs
[i
].notify
= notify
;
3128 tstack
->toggle_refs
[i
].data
= data
;
3129 g_datalist_id_set_data_full (&object
->qdata
, quark_toggle_refs
, tstack
,
3130 (GDestroyNotify
)g_free
);
3131 G_UNLOCK (toggle_refs_mutex
);
3135 * g_object_remove_toggle_ref: (skip)
3136 * @object: a #GObject
3137 * @notify: a function to call when this reference is the
3138 * last reference to the object, or is no longer
3139 * the last reference.
3140 * @data: data to pass to @notify
3142 * Removes a reference added with g_object_add_toggle_ref(). The
3143 * reference count of the object is decreased by one.
3148 g_object_remove_toggle_ref (GObject
*object
,
3149 GToggleNotify notify
,
3152 ToggleRefStack
*tstack
;
3153 gboolean found_one
= FALSE
;
3155 g_return_if_fail (G_IS_OBJECT (object
));
3156 g_return_if_fail (notify
!= NULL
);
3158 G_LOCK (toggle_refs_mutex
);
3159 tstack
= g_datalist_id_get_data (&object
->qdata
, quark_toggle_refs
);
3164 for (i
= 0; i
< tstack
->n_toggle_refs
; i
++)
3165 if (tstack
->toggle_refs
[i
].notify
== notify
&&
3166 tstack
->toggle_refs
[i
].data
== data
)
3169 tstack
->n_toggle_refs
-= 1;
3170 if (i
!= tstack
->n_toggle_refs
)
3171 tstack
->toggle_refs
[i
] = tstack
->toggle_refs
[tstack
->n_toggle_refs
];
3173 if (tstack
->n_toggle_refs
== 0)
3174 g_datalist_unset_flags (&object
->qdata
, OBJECT_HAS_TOGGLE_REF_FLAG
);
3179 G_UNLOCK (toggle_refs_mutex
);
3182 g_object_unref (object
);
3184 g_warning ("%s: couldn't find toggle ref %p(%p)", G_STRFUNC
, notify
, data
);
3189 * @object: (type GObject.Object): a #GObject
3191 * Increases the reference count of @object.
3193 * Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
3194 * of @object will be propagated to the return type (using the GCC typeof()
3195 * extension), so any casting the caller needs to do on the return type must be
3198 * Returns: (type GObject.Object) (transfer none): the same @object
3201 (g_object_ref
) (gpointer _object
)
3203 GObject
*object
= _object
;
3206 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3207 g_return_val_if_fail (object
->ref_count
> 0, NULL
);
3209 old_val
= g_atomic_int_add (&object
->ref_count
, 1);
3211 if (old_val
== 1 && OBJECT_HAS_TOGGLE_REF (object
))
3212 toggle_refs_notify (object
, FALSE
);
3214 TRACE (GOBJECT_OBJECT_REF(object
,G_TYPE_FROM_INSTANCE(object
),old_val
));
3221 * @object: (type GObject.Object): a #GObject
3223 * Decreases the reference count of @object. When its reference count
3224 * drops to 0, the object is finalized (i.e. its memory is freed).
3226 * If the pointer to the #GObject may be reused in future (for example, if it is
3227 * an instance variable of another object), it is recommended to clear the
3228 * pointer to %NULL rather than retain a dangling pointer to a potentially
3229 * invalid #GObject instance. Use g_clear_object() for this.
3232 g_object_unref (gpointer _object
)
3234 GObject
*object
= _object
;
3237 g_return_if_fail (G_IS_OBJECT (object
));
3238 g_return_if_fail (object
->ref_count
> 0);
3240 /* here we want to atomically do: if (ref_count>1) { ref_count--; return; } */
3241 retry_atomic_decrement1
:
3242 old_ref
= g_atomic_int_get (&object
->ref_count
);
3245 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3246 gboolean has_toggle_ref
= OBJECT_HAS_TOGGLE_REF (object
);
3248 if (!g_atomic_int_compare_and_exchange ((int *)&object
->ref_count
, old_ref
, old_ref
- 1))
3249 goto retry_atomic_decrement1
;
3251 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3253 /* if we went from 2->1 we need to notify toggle refs if any */
3254 if (old_ref
== 2 && has_toggle_ref
) /* The last ref being held in this case is owned by the toggle_ref */
3255 toggle_refs_notify (object
, TRUE
);
3259 GSList
**weak_locations
;
3261 /* The only way that this object can live at this point is if
3262 * there are outstanding weak references already established
3263 * before we got here.
3265 * If there were not already weak references then no more can be
3266 * established at this time, because the other thread would have
3267 * to hold a strong ref in order to call
3268 * g_object_add_weak_pointer() and then we wouldn't be here.
3270 weak_locations
= g_datalist_id_get_data (&object
->qdata
, quark_weak_locations
);
3272 if (weak_locations
!= NULL
)
3274 g_rw_lock_writer_lock (&weak_locations_lock
);
3276 /* It is possible that one of the weak references beat us to
3277 * the lock. Make sure the refcount is still what we expected
3280 old_ref
= g_atomic_int_get (&object
->ref_count
);
3283 g_rw_lock_writer_unlock (&weak_locations_lock
);
3284 goto retry_atomic_decrement1
;
3287 /* We got the lock first, so the object will definitely die
3288 * now. Clear out all the weak references.
3290 while (*weak_locations
)
3292 GWeakRef
*weak_ref_location
= (*weak_locations
)->data
;
3294 weak_ref_location
->priv
.p
= NULL
;
3295 *weak_locations
= g_slist_delete_link (*weak_locations
, *weak_locations
);
3298 g_rw_lock_writer_unlock (&weak_locations_lock
);
3301 /* we are about to remove the last reference */
3302 TRACE (GOBJECT_OBJECT_DISPOSE(object
,G_TYPE_FROM_INSTANCE(object
), 1));
3303 G_OBJECT_GET_CLASS (object
)->dispose (object
);
3304 TRACE (GOBJECT_OBJECT_DISPOSE_END(object
,G_TYPE_FROM_INSTANCE(object
), 1));
3306 /* may have been re-referenced meanwhile */
3307 retry_atomic_decrement2
:
3308 old_ref
= g_atomic_int_get ((int *)&object
->ref_count
);
3311 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3312 gboolean has_toggle_ref
= OBJECT_HAS_TOGGLE_REF (object
);
3314 if (!g_atomic_int_compare_and_exchange ((int *)&object
->ref_count
, old_ref
, old_ref
- 1))
3315 goto retry_atomic_decrement2
;
3317 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3319 /* if we went from 2->1 we need to notify toggle refs if any */
3320 if (old_ref
== 2 && has_toggle_ref
) /* The last ref being held in this case is owned by the toggle_ref */
3321 toggle_refs_notify (object
, TRUE
);
3326 /* we are still in the process of taking away the last ref */
3327 g_datalist_id_set_data (&object
->qdata
, quark_closure_array
, NULL
);
3328 g_signal_handlers_destroy (object
);
3329 g_datalist_id_set_data (&object
->qdata
, quark_weak_refs
, NULL
);
3331 /* decrement the last reference */
3332 old_ref
= g_atomic_int_add (&object
->ref_count
, -1);
3334 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3336 /* may have been re-referenced meanwhile */
3337 if (G_LIKELY (old_ref
== 1))
3339 TRACE (GOBJECT_OBJECT_FINALIZE(object
,G_TYPE_FROM_INSTANCE(object
)));
3340 G_OBJECT_GET_CLASS (object
)->finalize (object
);
3342 TRACE (GOBJECT_OBJECT_FINALIZE_END(object
,G_TYPE_FROM_INSTANCE(object
)));
3344 GOBJECT_IF_DEBUG (OBJECTS
,
3346 /* catch objects not chaining finalize handlers */
3347 G_LOCK (debug_objects
);
3348 g_assert (!g_hash_table_contains (debug_objects_ht
, object
));
3349 G_UNLOCK (debug_objects
);
3351 g_type_free_instance ((GTypeInstance
*) object
);
3357 * g_clear_object: (skip)
3358 * @object_ptr: a pointer to a #GObject reference
3360 * Clears a reference to a #GObject.
3362 * @object_ptr must not be %NULL.
3364 * If the reference is %NULL then this function does nothing.
3365 * Otherwise, the reference count of the object is decreased and the
3366 * pointer is set to %NULL.
3368 * A macro is also included that allows this function to be used without
3373 #undef g_clear_object
3375 g_clear_object (volatile GObject
**object_ptr
)
3377 g_clear_pointer (object_ptr
, g_object_unref
);
3381 * g_object_get_qdata:
3382 * @object: The GObject to get a stored user data pointer from
3383 * @quark: A #GQuark, naming the user data pointer
3385 * This function gets back user data pointers stored via
3386 * g_object_set_qdata().
3388 * Returns: (transfer none) (nullable): The user data pointer set, or %NULL
3391 g_object_get_qdata (GObject
*object
,
3394 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3396 return quark
? g_datalist_id_get_data (&object
->qdata
, quark
) : NULL
;
3400 * g_object_set_qdata: (skip)
3401 * @object: The GObject to set store a user data pointer
3402 * @quark: A #GQuark, naming the user data pointer
3403 * @data: (nullable): An opaque user data pointer
3405 * This sets an opaque, named pointer on an object.
3406 * The name is specified through a #GQuark (retrived e.g. via
3407 * g_quark_from_static_string()), and the pointer
3408 * can be gotten back from the @object with g_object_get_qdata()
3409 * until the @object is finalized.
3410 * Setting a previously set user data pointer, overrides (frees)
3411 * the old pointer set, using #NULL as pointer essentially
3412 * removes the data stored.
3415 g_object_set_qdata (GObject
*object
,
3419 g_return_if_fail (G_IS_OBJECT (object
));
3420 g_return_if_fail (quark
> 0);
3422 g_datalist_id_set_data (&object
->qdata
, quark
, data
);
3426 * g_object_dup_qdata: (skip)
3427 * @object: the #GObject to store user data on
3428 * @quark: a #GQuark, naming the user data pointer
3429 * @dup_func: (nullable): function to dup the value
3430 * @user_data: (nullable): passed as user_data to @dup_func
3432 * This is a variant of g_object_get_qdata() which returns
3433 * a 'duplicate' of the value. @dup_func defines the
3434 * meaning of 'duplicate' in this context, it could e.g.
3435 * take a reference on a ref-counted object.
3437 * If the @quark is not set on the object then @dup_func
3438 * will be called with a %NULL argument.
3440 * Note that @dup_func is called while user data of @object
3443 * This function can be useful to avoid races when multiple
3444 * threads are using object data on the same key on the same
3447 * Returns: the result of calling @dup_func on the value
3448 * associated with @quark on @object, or %NULL if not set.
3449 * If @dup_func is %NULL, the value is returned
3455 g_object_dup_qdata (GObject
*object
,
3457 GDuplicateFunc dup_func
,
3460 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3461 g_return_val_if_fail (quark
> 0, NULL
);
3463 return g_datalist_id_dup_data (&object
->qdata
, quark
, dup_func
, user_data
);
3467 * g_object_replace_qdata: (skip)
3468 * @object: the #GObject to store user data on
3469 * @quark: a #GQuark, naming the user data pointer
3470 * @oldval: (nullable): the old value to compare against
3471 * @newval: (nullable): the new value
3472 * @destroy: (nullable): a destroy notify for the new value
3473 * @old_destroy: (out) (optional): destroy notify for the existing value
3475 * Compares the user data for the key @quark on @object with
3476 * @oldval, and if they are the same, replaces @oldval with
3479 * This is like a typical atomic compare-and-exchange
3480 * operation, for user data on an object.
3482 * If the previous value was replaced then ownership of the
3483 * old value (@oldval) is passed to the caller, including
3484 * the registered destroy notify for it (passed out in @old_destroy).
3485 * It’s up to the caller to free this as needed, which may
3486 * or may not include using @old_destroy as sometimes replacement
3487 * should not destroy the object in the normal way.
3489 * Returns: %TRUE if the existing value for @quark was replaced
3490 * by @newval, %FALSE otherwise.
3495 g_object_replace_qdata (GObject
*object
,
3499 GDestroyNotify destroy
,
3500 GDestroyNotify
*old_destroy
)
3502 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
3503 g_return_val_if_fail (quark
> 0, FALSE
);
3505 return g_datalist_id_replace_data (&object
->qdata
, quark
,
3506 oldval
, newval
, destroy
,
3511 * g_object_set_qdata_full: (skip)
3512 * @object: The GObject to set store a user data pointer
3513 * @quark: A #GQuark, naming the user data pointer
3514 * @data: (nullable): An opaque user data pointer
3515 * @destroy: (nullable): Function to invoke with @data as argument, when @data
3518 * This function works like g_object_set_qdata(), but in addition,
3519 * a void (*destroy) (gpointer) function may be specified which is
3520 * called with @data as argument when the @object is finalized, or
3521 * the data is being overwritten by a call to g_object_set_qdata()
3522 * with the same @quark.
3525 g_object_set_qdata_full (GObject
*object
,
3528 GDestroyNotify destroy
)
3530 g_return_if_fail (G_IS_OBJECT (object
));
3531 g_return_if_fail (quark
> 0);
3533 g_datalist_id_set_data_full (&object
->qdata
, quark
, data
,
3534 data
? destroy
: (GDestroyNotify
) NULL
);
3538 * g_object_steal_qdata:
3539 * @object: The GObject to get a stored user data pointer from
3540 * @quark: A #GQuark, naming the user data pointer
3542 * This function gets back user data pointers stored via
3543 * g_object_set_qdata() and removes the @data from object
3544 * without invoking its destroy() function (if any was
3546 * Usually, calling this function is only required to update
3547 * user data pointers with a destroy notifier, for example:
3548 * |[<!-- language="C" -->
3550 * object_add_to_user_list (GObject *object,
3551 * const gchar *new_string)
3553 * // the quark, naming the object data
3554 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
3555 * // retrive the old string list
3556 * GList *list = g_object_steal_qdata (object, quark_string_list);
3558 * // prepend new string
3559 * list = g_list_prepend (list, g_strdup (new_string));
3560 * // this changed 'list', so we need to set it again
3561 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
3564 * free_string_list (gpointer data)
3566 * GList *node, *list = data;
3568 * for (node = list; node; node = node->next)
3569 * g_free (node->data);
3570 * g_list_free (list);
3573 * Using g_object_get_qdata() in the above example, instead of
3574 * g_object_steal_qdata() would have left the destroy function set,
3575 * and thus the partial string list would have been freed upon
3576 * g_object_set_qdata_full().
3578 * Returns: (transfer full) (nullable): The user data pointer set, or %NULL
3581 g_object_steal_qdata (GObject
*object
,
3584 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3585 g_return_val_if_fail (quark
> 0, NULL
);
3587 return g_datalist_id_remove_no_notify (&object
->qdata
, quark
);
3591 * g_object_get_data:
3592 * @object: #GObject containing the associations
3593 * @key: name of the key for that association
3595 * Gets a named field from the objects table of associations (see g_object_set_data()).
3597 * Returns: (transfer none) (nullable): the data if found,
3598 * or %NULL if no such data exists.
3601 g_object_get_data (GObject
*object
,
3604 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3605 g_return_val_if_fail (key
!= NULL
, NULL
);
3607 return g_datalist_get_data (&object
->qdata
, key
);
3611 * g_object_set_data:
3612 * @object: #GObject containing the associations.
3613 * @key: name of the key
3614 * @data: (nullable): data to associate with that key
3616 * Each object carries around a table of associations from
3617 * strings to pointers. This function lets you set an association.
3619 * If the object already had an association with that name,
3620 * the old association will be destroyed.
3623 g_object_set_data (GObject
*object
,
3627 g_return_if_fail (G_IS_OBJECT (object
));
3628 g_return_if_fail (key
!= NULL
);
3630 g_datalist_id_set_data (&object
->qdata
, g_quark_from_string (key
), data
);
3634 * g_object_dup_data: (skip)
3635 * @object: the #GObject to store user data on
3636 * @key: a string, naming the user data pointer
3637 * @dup_func: (nullable): function to dup the value
3638 * @user_data: (nullable): passed as user_data to @dup_func
3640 * This is a variant of g_object_get_data() which returns
3641 * a 'duplicate' of the value. @dup_func defines the
3642 * meaning of 'duplicate' in this context, it could e.g.
3643 * take a reference on a ref-counted object.
3645 * If the @key is not set on the object then @dup_func
3646 * will be called with a %NULL argument.
3648 * Note that @dup_func is called while user data of @object
3651 * This function can be useful to avoid races when multiple
3652 * threads are using object data on the same key on the same
3655 * Returns: the result of calling @dup_func on the value
3656 * associated with @key on @object, or %NULL if not set.
3657 * If @dup_func is %NULL, the value is returned
3663 g_object_dup_data (GObject
*object
,
3665 GDuplicateFunc dup_func
,
3668 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3669 g_return_val_if_fail (key
!= NULL
, NULL
);
3671 return g_datalist_id_dup_data (&object
->qdata
,
3672 g_quark_from_string (key
),
3673 dup_func
, user_data
);
3677 * g_object_replace_data: (skip)
3678 * @object: the #GObject to store user data on
3679 * @key: a string, naming the user data pointer
3680 * @oldval: (nullable): the old value to compare against
3681 * @newval: (nullable): the new value
3682 * @destroy: (nullable): a destroy notify for the new value
3683 * @old_destroy: (out) (optional): destroy notify for the existing value
3685 * Compares the user data for the key @key on @object with
3686 * @oldval, and if they are the same, replaces @oldval with
3689 * This is like a typical atomic compare-and-exchange
3690 * operation, for user data on an object.
3692 * If the previous value was replaced then ownership of the
3693 * old value (@oldval) is passed to the caller, including
3694 * the registered destroy notify for it (passed out in @old_destroy).
3695 * It’s up to the caller to free this as needed, which may
3696 * or may not include using @old_destroy as sometimes replacement
3697 * should not destroy the object in the normal way.
3699 * Returns: %TRUE if the existing value for @key was replaced
3700 * by @newval, %FALSE otherwise.
3705 g_object_replace_data (GObject
*object
,
3709 GDestroyNotify destroy
,
3710 GDestroyNotify
*old_destroy
)
3712 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
3713 g_return_val_if_fail (key
!= NULL
, FALSE
);
3715 return g_datalist_id_replace_data (&object
->qdata
,
3716 g_quark_from_string (key
),
3717 oldval
, newval
, destroy
,
3722 * g_object_set_data_full: (skip)
3723 * @object: #GObject containing the associations
3724 * @key: name of the key
3725 * @data: (nullable): data to associate with that key
3726 * @destroy: (nullable): function to call when the association is destroyed
3728 * Like g_object_set_data() except it adds notification
3729 * for when the association is destroyed, either by setting it
3730 * to a different value or when the object is destroyed.
3732 * Note that the @destroy callback is not called if @data is %NULL.
3735 g_object_set_data_full (GObject
*object
,
3738 GDestroyNotify destroy
)
3740 g_return_if_fail (G_IS_OBJECT (object
));
3741 g_return_if_fail (key
!= NULL
);
3743 g_datalist_id_set_data_full (&object
->qdata
, g_quark_from_string (key
), data
,
3744 data
? destroy
: (GDestroyNotify
) NULL
);
3748 * g_object_steal_data:
3749 * @object: #GObject containing the associations
3750 * @key: name of the key
3752 * Remove a specified datum from the object's data associations,
3753 * without invoking the association's destroy handler.
3755 * Returns: (transfer full) (nullable): the data if found, or %NULL
3756 * if no such data exists.
3759 g_object_steal_data (GObject
*object
,
3764 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3765 g_return_val_if_fail (key
!= NULL
, NULL
);
3767 quark
= g_quark_try_string (key
);
3769 return quark
? g_datalist_id_remove_no_notify (&object
->qdata
, quark
) : NULL
;
3773 g_value_object_init (GValue
*value
)
3775 value
->data
[0].v_pointer
= NULL
;
3779 g_value_object_free_value (GValue
*value
)
3781 if (value
->data
[0].v_pointer
)
3782 g_object_unref (value
->data
[0].v_pointer
);
3786 g_value_object_copy_value (const GValue
*src_value
,
3789 if (src_value
->data
[0].v_pointer
)
3790 dest_value
->data
[0].v_pointer
= g_object_ref (src_value
->data
[0].v_pointer
);
3792 dest_value
->data
[0].v_pointer
= NULL
;
3796 g_value_object_transform_value (const GValue
*src_value
,
3799 if (src_value
->data
[0].v_pointer
&& g_type_is_a (G_OBJECT_TYPE (src_value
->data
[0].v_pointer
), G_VALUE_TYPE (dest_value
)))
3800 dest_value
->data
[0].v_pointer
= g_object_ref (src_value
->data
[0].v_pointer
);
3802 dest_value
->data
[0].v_pointer
= NULL
;
3806 g_value_object_peek_pointer (const GValue
*value
)
3808 return value
->data
[0].v_pointer
;
3812 g_value_object_collect_value (GValue
*value
,
3813 guint n_collect_values
,
3814 GTypeCValue
*collect_values
,
3815 guint collect_flags
)
3817 if (collect_values
[0].v_pointer
)
3819 GObject
*object
= collect_values
[0].v_pointer
;
3821 if (object
->g_type_instance
.g_class
== NULL
)
3822 return g_strconcat ("invalid unclassed object pointer for value type '",
3823 G_VALUE_TYPE_NAME (value
),
3826 else if (!g_value_type_compatible (G_OBJECT_TYPE (object
), G_VALUE_TYPE (value
)))
3827 return g_strconcat ("invalid object type '",
3828 G_OBJECT_TYPE_NAME (object
),
3829 "' for value type '",
3830 G_VALUE_TYPE_NAME (value
),
3833 /* never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types */
3834 value
->data
[0].v_pointer
= g_object_ref (object
);
3837 value
->data
[0].v_pointer
= NULL
;
3843 g_value_object_lcopy_value (const GValue
*value
,
3844 guint n_collect_values
,
3845 GTypeCValue
*collect_values
,
3846 guint collect_flags
)
3848 GObject
**object_p
= collect_values
[0].v_pointer
;
3851 return g_strdup_printf ("value location for '%s' passed as NULL", G_VALUE_TYPE_NAME (value
));
3853 if (!value
->data
[0].v_pointer
)
3855 else if (collect_flags
& G_VALUE_NOCOPY_CONTENTS
)
3856 *object_p
= value
->data
[0].v_pointer
;
3858 *object_p
= g_object_ref (value
->data
[0].v_pointer
);
3864 * g_value_set_object:
3865 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3866 * @v_object: (type GObject.Object) (nullable): object value to be set
3868 * Set the contents of a %G_TYPE_OBJECT derived #GValue to @v_object.
3870 * g_value_set_object() increases the reference count of @v_object
3871 * (the #GValue holds a reference to @v_object). If you do not wish
3872 * to increase the reference count of the object (i.e. you wish to
3873 * pass your current reference to the #GValue because you no longer
3874 * need it), use g_value_take_object() instead.
3876 * It is important that your #GValue holds a reference to @v_object (either its
3877 * own, or one it has taken) to ensure that the object won't be destroyed while
3878 * the #GValue still exists).
3881 g_value_set_object (GValue
*value
,
3886 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value
));
3888 old
= value
->data
[0].v_pointer
;
3892 g_return_if_fail (G_IS_OBJECT (v_object
));
3893 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object
), G_VALUE_TYPE (value
)));
3895 value
->data
[0].v_pointer
= v_object
;
3896 g_object_ref (value
->data
[0].v_pointer
);
3899 value
->data
[0].v_pointer
= NULL
;
3902 g_object_unref (old
);
3906 * g_value_set_object_take_ownership: (skip)
3907 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3908 * @v_object: (nullable): object value to be set
3910 * This is an internal function introduced mainly for C marshallers.
3912 * Deprecated: 2.4: Use g_value_take_object() instead.
3915 g_value_set_object_take_ownership (GValue
*value
,
3918 g_value_take_object (value
, v_object
);
3922 * g_value_take_object: (skip)
3923 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3924 * @v_object: (nullable): object value to be set
3926 * Sets the contents of a %G_TYPE_OBJECT derived #GValue to @v_object
3927 * and takes over the ownership of the callers reference to @v_object;
3928 * the caller doesn't have to unref it any more (i.e. the reference
3929 * count of the object is not increased).
3931 * If you want the #GValue to hold its own reference to @v_object, use
3932 * g_value_set_object() instead.
3937 g_value_take_object (GValue
*value
,
3940 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value
));
3942 if (value
->data
[0].v_pointer
)
3944 g_object_unref (value
->data
[0].v_pointer
);
3945 value
->data
[0].v_pointer
= NULL
;
3950 g_return_if_fail (G_IS_OBJECT (v_object
));
3951 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object
), G_VALUE_TYPE (value
)));
3953 value
->data
[0].v_pointer
= v_object
; /* we take over the reference count */
3958 * g_value_get_object:
3959 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3961 * Get the contents of a %G_TYPE_OBJECT derived #GValue.
3963 * Returns: (type GObject.Object) (transfer none): object contents of @value
3966 g_value_get_object (const GValue
*value
)
3968 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value
), NULL
);
3970 return value
->data
[0].v_pointer
;
3974 * g_value_dup_object:
3975 * @value: a valid #GValue whose type is derived from %G_TYPE_OBJECT
3977 * Get the contents of a %G_TYPE_OBJECT derived #GValue, increasing
3978 * its reference count. If the contents of the #GValue are %NULL, then
3979 * %NULL will be returned.
3981 * Returns: (type GObject.Object) (transfer full): object content of @value,
3982 * should be unreferenced when no longer needed.
3985 g_value_dup_object (const GValue
*value
)
3987 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value
), NULL
);
3989 return value
->data
[0].v_pointer
? g_object_ref (value
->data
[0].v_pointer
) : NULL
;
3993 * g_signal_connect_object: (skip)
3994 * @instance: (type GObject.TypeInstance): the instance to connect to.
3995 * @detailed_signal: a string of the form "signal-name::detail".
3996 * @c_handler: the #GCallback to connect.
3997 * @gobject: (type GObject.Object) (nullable): the object to pass as data
3999 * @connect_flags: a combination of #GConnectFlags.
4001 * This is similar to g_signal_connect_data(), but uses a closure which
4002 * ensures that the @gobject stays alive during the call to @c_handler
4003 * by temporarily adding a reference count to @gobject.
4005 * When the @gobject is destroyed the signal handler will be automatically
4006 * disconnected. Note that this is not currently threadsafe (ie:
4007 * emitting a signal while @gobject is being destroyed in another thread
4010 * Returns: the handler id.
4013 g_signal_connect_object (gpointer instance
,
4014 const gchar
*detailed_signal
,
4015 GCallback c_handler
,
4017 GConnectFlags connect_flags
)
4019 g_return_val_if_fail (G_TYPE_CHECK_INSTANCE (instance
), 0);
4020 g_return_val_if_fail (detailed_signal
!= NULL
, 0);
4021 g_return_val_if_fail (c_handler
!= NULL
, 0);
4027 g_return_val_if_fail (G_IS_OBJECT (gobject
), 0);
4029 closure
= ((connect_flags
& G_CONNECT_SWAPPED
) ? g_cclosure_new_object_swap
: g_cclosure_new_object
) (c_handler
, gobject
);
4031 return g_signal_connect_closure (instance
, detailed_signal
, closure
, connect_flags
& G_CONNECT_AFTER
);
4034 return g_signal_connect_data (instance
, detailed_signal
, c_handler
, NULL
, NULL
, connect_flags
);
4040 GClosure
*closures
[1]; /* flexible array */
4042 /* don't change this structure without supplying an accessor for
4043 * watched closures, e.g.:
4044 * GSList* g_object_list_watched_closures (GObject *object)
4047 * g_return_val_if_fail (G_IS_OBJECT (object), NULL);
4048 * carray = g_object_get_data (object, "GObject-closure-array");
4051 * GSList *slist = NULL;
4053 * for (i = 0; i < carray->n_closures; i++)
4054 * slist = g_slist_prepend (slist, carray->closures[i]);
4062 object_remove_closure (gpointer data
,
4065 GObject
*object
= data
;
4069 G_LOCK (closure_array_mutex
);
4070 carray
= g_object_get_qdata (object
, quark_closure_array
);
4071 for (i
= 0; i
< carray
->n_closures
; i
++)
4072 if (carray
->closures
[i
] == closure
)
4074 carray
->n_closures
--;
4075 if (i
< carray
->n_closures
)
4076 carray
->closures
[i
] = carray
->closures
[carray
->n_closures
];
4077 G_UNLOCK (closure_array_mutex
);
4080 G_UNLOCK (closure_array_mutex
);
4081 g_assert_not_reached ();
4085 destroy_closure_array (gpointer data
)
4087 CArray
*carray
= data
;
4088 GObject
*object
= carray
->object
;
4089 guint i
, n
= carray
->n_closures
;
4091 for (i
= 0; i
< n
; i
++)
4093 GClosure
*closure
= carray
->closures
[i
];
4095 /* removing object_remove_closure() upfront is probably faster than
4096 * letting it fiddle with quark_closure_array which is empty anyways
4098 g_closure_remove_invalidate_notifier (closure
, object
, object_remove_closure
);
4099 g_closure_invalidate (closure
);
4105 * g_object_watch_closure:
4106 * @object: GObject restricting lifetime of @closure
4107 * @closure: GClosure to watch
4109 * This function essentially limits the life time of the @closure to
4110 * the life time of the object. That is, when the object is finalized,
4111 * the @closure is invalidated by calling g_closure_invalidate() on
4112 * it, in order to prevent invocations of the closure with a finalized
4113 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
4114 * added as marshal guards to the @closure, to ensure that an extra
4115 * reference count is held on @object during invocation of the
4116 * @closure. Usually, this function will be called on closures that
4117 * use this @object as closure data.
4120 g_object_watch_closure (GObject
*object
,
4126 g_return_if_fail (G_IS_OBJECT (object
));
4127 g_return_if_fail (closure
!= NULL
);
4128 g_return_if_fail (closure
->is_invalid
== FALSE
);
4129 g_return_if_fail (closure
->in_marshal
== FALSE
);
4130 g_return_if_fail (object
->ref_count
> 0); /* this doesn't work on finalizing objects */
4132 g_closure_add_invalidate_notifier (closure
, object
, object_remove_closure
);
4133 g_closure_add_marshal_guards (closure
,
4134 object
, (GClosureNotify
) g_object_ref
,
4135 object
, (GClosureNotify
) g_object_unref
);
4136 G_LOCK (closure_array_mutex
);
4137 carray
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_closure_array
);
4140 carray
= g_renew (CArray
, NULL
, 1);
4141 carray
->object
= object
;
4142 carray
->n_closures
= 1;
4147 i
= carray
->n_closures
++;
4148 carray
= g_realloc (carray
, sizeof (*carray
) + sizeof (carray
->closures
[0]) * i
);
4150 carray
->closures
[i
] = closure
;
4151 g_datalist_id_set_data_full (&object
->qdata
, quark_closure_array
, carray
, destroy_closure_array
);
4152 G_UNLOCK (closure_array_mutex
);
4156 * g_closure_new_object:
4157 * @sizeof_closure: the size of the structure to allocate, must be at least
4158 * `sizeof (GClosure)`
4159 * @object: a #GObject pointer to store in the @data field of the newly
4160 * allocated #GClosure
4162 * A variant of g_closure_new_simple() which stores @object in the
4163 * @data field of the closure and calls g_object_watch_closure() on
4164 * @object and the created closure. This function is mainly useful
4165 * when implementing new types of closures.
4167 * Returns: (transfer full): a newly allocated #GClosure
4170 g_closure_new_object (guint sizeof_closure
,
4175 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4176 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4178 closure
= g_closure_new_simple (sizeof_closure
, object
);
4179 g_object_watch_closure (object
, closure
);
4185 * g_cclosure_new_object: (skip)
4186 * @callback_func: the function to invoke
4187 * @object: a #GObject pointer to pass to @callback_func
4189 * A variant of g_cclosure_new() which uses @object as @user_data and
4190 * calls g_object_watch_closure() on @object and the created
4191 * closure. This function is useful when you have a callback closely
4192 * associated with a #GObject, and want the callback to no longer run
4193 * after the object is is freed.
4195 * Returns: a new #GCClosure
4198 g_cclosure_new_object (GCallback callback_func
,
4203 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4204 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4205 g_return_val_if_fail (callback_func
!= NULL
, NULL
);
4207 closure
= g_cclosure_new (callback_func
, object
, NULL
);
4208 g_object_watch_closure (object
, closure
);
4214 * g_cclosure_new_object_swap: (skip)
4215 * @callback_func: the function to invoke
4216 * @object: a #GObject pointer to pass to @callback_func
4218 * A variant of g_cclosure_new_swap() which uses @object as @user_data
4219 * and calls g_object_watch_closure() on @object and the created
4220 * closure. This function is useful when you have a callback closely
4221 * associated with a #GObject, and want the callback to no longer run
4222 * after the object is is freed.
4224 * Returns: a new #GCClosure
4227 g_cclosure_new_object_swap (GCallback callback_func
,
4232 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4233 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4234 g_return_val_if_fail (callback_func
!= NULL
, NULL
);
4236 closure
= g_cclosure_new_swap (callback_func
, object
, NULL
);
4237 g_object_watch_closure (object
, closure
);
4243 g_object_compat_control (gsize what
,
4249 case 1: /* floating base type */
4250 return G_TYPE_INITIALLY_UNOWNED
;
4251 case 2: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4252 floating_flag_handler
= (guint(*)(GObject
*,gint
)) data
;
4254 case 3: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4256 *pp
= floating_flag_handler
;
4263 G_DEFINE_TYPE (GInitiallyUnowned
, g_initially_unowned
, G_TYPE_OBJECT
)
4266 g_initially_unowned_init (GInitiallyUnowned
*object
)
4268 g_object_force_floating (object
);
4272 g_initially_unowned_class_init (GInitiallyUnownedClass
*klass
)
4279 * A structure containing a weak reference to a #GObject. It can either
4280 * be empty (i.e. point to %NULL), or point to an object for as long as
4281 * at least one "strong" reference to that object exists. Before the
4282 * object's #GObjectClass.dispose method is called, every #GWeakRef
4283 * associated with becomes empty (i.e. points to %NULL).
4285 * Like #GValue, #GWeakRef can be statically allocated, stack- or
4286 * heap-allocated, or embedded in larger structures.
4288 * Unlike g_object_weak_ref() and g_object_add_weak_pointer(), this weak
4289 * reference is thread-safe: converting a weak pointer to a reference is
4290 * atomic with respect to invalidation of weak pointers to destroyed
4293 * If the object's #GObjectClass.dispose method results in additional
4294 * references to the object being held, any #GWeakRefs taken
4295 * before it was disposed will continue to point to %NULL. If
4296 * #GWeakRefs are taken after the object is disposed and
4297 * re-referenced, they will continue to point to it until its refcount
4298 * goes back to zero, at which point they too will be invalidated.
4302 * g_weak_ref_init: (skip)
4303 * @weak_ref: (inout): uninitialized or empty location for a weak
4305 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4307 * Initialise a non-statically-allocated #GWeakRef.
4309 * This function also calls g_weak_ref_set() with @object on the
4310 * freshly-initialised weak reference.
4312 * This function should always be matched with a call to
4313 * g_weak_ref_clear(). It is not necessary to use this function for a
4314 * #GWeakRef in static storage because it will already be
4315 * properly initialised. Just use g_weak_ref_set() directly.
4320 g_weak_ref_init (GWeakRef
*weak_ref
,
4323 weak_ref
->priv
.p
= NULL
;
4325 g_weak_ref_set (weak_ref
, object
);
4329 * g_weak_ref_clear: (skip)
4330 * @weak_ref: (inout): location of a weak reference, which
4333 * Frees resources associated with a non-statically-allocated #GWeakRef.
4334 * After this call, the #GWeakRef is left in an undefined state.
4336 * You should only call this on a #GWeakRef that previously had
4337 * g_weak_ref_init() called on it.
4342 g_weak_ref_clear (GWeakRef
*weak_ref
)
4344 g_weak_ref_set (weak_ref
, NULL
);
4347 weak_ref
->priv
.p
= (void *) 0xccccccccu
;
4351 * g_weak_ref_get: (skip)
4352 * @weak_ref: (inout): location of a weak reference to a #GObject
4354 * If @weak_ref is not empty, atomically acquire a strong
4355 * reference to the object it points to, and return that reference.
4357 * This function is needed because of the potential race between taking
4358 * the pointer value and g_object_ref() on it, if the object was losing
4359 * its last reference at the same time in a different thread.
4361 * The caller should release the resulting reference in the usual way,
4362 * by using g_object_unref().
4364 * Returns: (transfer full) (type GObject.Object): the object pointed to
4365 * by @weak_ref, or %NULL if it was empty
4370 g_weak_ref_get (GWeakRef
*weak_ref
)
4372 gpointer object_or_null
;
4374 g_return_val_if_fail (weak_ref
!= NULL
, NULL
);
4376 g_rw_lock_reader_lock (&weak_locations_lock
);
4378 object_or_null
= weak_ref
->priv
.p
;
4380 if (object_or_null
!= NULL
)
4381 g_object_ref (object_or_null
);
4383 g_rw_lock_reader_unlock (&weak_locations_lock
);
4385 return object_or_null
;
4389 * g_weak_ref_set: (skip)
4390 * @weak_ref: location for a weak reference
4391 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4393 * Change the object to which @weak_ref points, or set it to
4396 * You must own a strong reference on @object while calling this
4402 g_weak_ref_set (GWeakRef
*weak_ref
,
4405 GSList
**weak_locations
;
4406 GObject
*new_object
;
4407 GObject
*old_object
;
4409 g_return_if_fail (weak_ref
!= NULL
);
4410 g_return_if_fail (object
== NULL
|| G_IS_OBJECT (object
));
4412 new_object
= object
;
4414 g_rw_lock_writer_lock (&weak_locations_lock
);
4416 /* We use the extra level of indirection here so that if we have ever
4417 * had a weak pointer installed at any point in time on this object,
4418 * we can see that there is a non-NULL value associated with the
4419 * weak-pointer quark and know that this value will not change at any
4420 * point in the object's lifetime.
4422 * Both properties are important for reducing the amount of times we
4423 * need to acquire locks and for decreasing the duration of time the
4424 * lock is held while avoiding some rather tricky races.
4426 * Specifically: we can avoid having to do an extra unconditional lock
4427 * in g_object_unref() without worrying about some extremely tricky
4431 old_object
= weak_ref
->priv
.p
;
4432 if (new_object
!= old_object
)
4434 weak_ref
->priv
.p
= new_object
;
4436 /* Remove the weak ref from the old object */
4437 if (old_object
!= NULL
)
4439 weak_locations
= g_datalist_id_get_data (&old_object
->qdata
, quark_weak_locations
);
4440 /* for it to point to an object, the object must have had it added once */
4441 g_assert (weak_locations
!= NULL
);
4443 *weak_locations
= g_slist_remove (*weak_locations
, weak_ref
);
4446 /* Add the weak ref to the new object */
4447 if (new_object
!= NULL
)
4449 weak_locations
= g_datalist_id_get_data (&new_object
->qdata
, quark_weak_locations
);
4451 if (weak_locations
== NULL
)
4453 weak_locations
= g_new0 (GSList
*, 1);
4454 g_datalist_id_set_data_full (&new_object
->qdata
, quark_weak_locations
, weak_locations
, g_free
);
4457 *weak_locations
= g_slist_prepend (*weak_locations
, weak_ref
);
4461 g_rw_lock_writer_unlock (&weak_locations_lock
);