Add GTestDBus object
[glib.git] / glib / grand.c
blob0405628697ef58ac9a1549750b793e6e093839a5
1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 /* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi.
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/.
36 * MT safe
39 #include "config.h"
41 #include <math.h>
42 #include <errno.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <sys/types.h>
46 #ifdef HAVE_UNISTD_H
47 #include <unistd.h>
48 #endif
50 #include "grand.h"
52 #include "genviron.h"
53 #include "gmain.h"
54 #include "gmem.h"
55 #include "gtestutils.h"
56 #include "gthread.h"
58 #ifdef G_OS_WIN32
59 #include <process.h> /* For getpid() */
60 #endif
62 /**
63 * SECTION:random_numbers
64 * @title: Random Numbers
65 * @short_description: pseudo-random number generator
67 * The following functions allow you to use a portable, fast and good
68 * pseudo-random number generator (PRNG). It uses the Mersenne Twister
69 * PRNG, which was originally developed by Makoto Matsumoto and Takuji
70 * Nishimura. Further information can be found at
71 * <ulink url="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">
72 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html</ulink>.
74 * If you just need a random number, you simply call the
75 * <function>g_random_*</function> functions, which will create a
76 * globally used #GRand and use the according
77 * <function>g_rand_*</function> functions internally. Whenever you
78 * need a stream of reproducible random numbers, you better create a
79 * #GRand yourself and use the <function>g_rand_*</function> functions
80 * directly, which will also be slightly faster. Initializing a #GRand
81 * with a certain seed will produce exactly the same series of random
82 * numbers on all platforms. This can thus be used as a seed for e.g.
83 * games.
85 * The <function>g_rand*_range</function> functions will return high
86 * quality equally distributed random numbers, whereas for example the
87 * <literal>(g_random_int()&percnt;max)</literal> approach often
88 * doesn't yield equally distributed numbers.
90 * GLib changed the seeding algorithm for the pseudo-random number
91 * generator Mersenne Twister, as used by
92 * <structname>GRand</structname> and <structname>GRandom</structname>.
93 * This was necessary, because some seeds would yield very bad
94 * pseudo-random streams. Also the pseudo-random integers generated by
95 * <function>g_rand*_int_range()</function> will have a slightly better
96 * equal distribution with the new version of GLib.
98 * The original seeding and generation algorithms, as found in GLib
99 * 2.0.x, can be used instead of the new ones by setting the
100 * environment variable <envar>G_RANDOM_VERSION</envar> to the value of
101 * '2.0'. Use the GLib-2.0 algorithms only if you have sequences of
102 * numbers generated with Glib-2.0 that you need to reproduce exactly.
106 * GRand:
108 * The #GRand struct is an opaque data structure. It should only be
109 * accessed through the <function>g_rand_*</function> functions.
112 G_LOCK_DEFINE_STATIC (global_random);
113 static GRand* global_random = NULL;
115 /* Period parameters */
116 #define N 624
117 #define M 397
118 #define MATRIX_A 0x9908b0df /* constant vector a */
119 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
120 #define LOWER_MASK 0x7fffffff /* least significant r bits */
122 /* Tempering parameters */
123 #define TEMPERING_MASK_B 0x9d2c5680
124 #define TEMPERING_MASK_C 0xefc60000
125 #define TEMPERING_SHIFT_U(y) (y >> 11)
126 #define TEMPERING_SHIFT_S(y) (y << 7)
127 #define TEMPERING_SHIFT_T(y) (y << 15)
128 #define TEMPERING_SHIFT_L(y) (y >> 18)
130 static guint
131 get_random_version (void)
133 static gsize initialized = FALSE;
134 static guint random_version;
136 if (g_once_init_enter (&initialized))
138 const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
139 if (!version_string || version_string[0] == '\000' ||
140 strcmp (version_string, "2.2") == 0)
141 random_version = 22;
142 else if (strcmp (version_string, "2.0") == 0)
143 random_version = 20;
144 else
146 g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
147 version_string);
148 random_version = 22;
150 g_once_init_leave (&initialized, TRUE);
153 return random_version;
156 struct _GRand
158 guint32 mt[N]; /* the array for the state vector */
159 guint mti;
163 * g_rand_new_with_seed:
164 * @seed: a value to initialize the random number generator.
166 * Creates a new random number generator initialized with @seed.
168 * Return value: the new #GRand.
170 GRand*
171 g_rand_new_with_seed (guint32 seed)
173 GRand *rand = g_new0 (GRand, 1);
174 g_rand_set_seed (rand, seed);
175 return rand;
179 * g_rand_new_with_seed_array:
180 * @seed: an array of seeds to initialize the random number generator.
181 * @seed_length: an array of seeds to initialize the random number generator.
183 * Creates a new random number generator initialized with @seed.
185 * Return value: the new #GRand.
187 * Since: 2.4
189 GRand*
190 g_rand_new_with_seed_array (const guint32 *seed, guint seed_length)
192 GRand *rand = g_new0 (GRand, 1);
193 g_rand_set_seed_array (rand, seed, seed_length);
194 return rand;
198 * g_rand_new:
200 * Creates a new random number generator initialized with a seed taken
201 * either from <filename>/dev/urandom</filename> (if existing) or from
202 * the current time (as a fallback).
204 * Return value: the new #GRand.
206 GRand*
207 g_rand_new (void)
209 guint32 seed[4];
210 GTimeVal now;
211 #ifdef G_OS_UNIX
212 static gboolean dev_urandom_exists = TRUE;
214 if (dev_urandom_exists)
216 FILE* dev_urandom;
220 errno = 0;
221 dev_urandom = fopen("/dev/urandom", "rb");
223 while G_UNLIKELY (errno == EINTR);
225 if (dev_urandom)
227 int r;
229 setvbuf (dev_urandom, NULL, _IONBF, 0);
232 errno = 0;
233 r = fread (seed, sizeof (seed), 1, dev_urandom);
235 while G_UNLIKELY (errno == EINTR);
237 if (r != 1)
238 dev_urandom_exists = FALSE;
240 fclose (dev_urandom);
242 else
243 dev_urandom_exists = FALSE;
245 #else
246 static gboolean dev_urandom_exists = FALSE;
247 #endif
249 if (!dev_urandom_exists)
251 g_get_current_time (&now);
252 seed[0] = now.tv_sec;
253 seed[1] = now.tv_usec;
254 seed[2] = getpid ();
255 #ifdef G_OS_UNIX
256 seed[3] = getppid ();
257 #else
258 seed[3] = 0;
259 #endif
262 return g_rand_new_with_seed_array (seed, 4);
266 * g_rand_free:
267 * @rand_: a #GRand.
269 * Frees the memory allocated for the #GRand.
271 void
272 g_rand_free (GRand* rand)
274 g_return_if_fail (rand != NULL);
276 g_free (rand);
280 * g_rand_copy:
281 * @rand_: a #GRand.
283 * Copies a #GRand into a new one with the same exact state as before.
284 * This way you can take a snapshot of the random number generator for
285 * replaying later.
287 * Return value: the new #GRand.
289 * Since: 2.4
291 GRand *
292 g_rand_copy (GRand* rand)
294 GRand* new_rand;
296 g_return_val_if_fail (rand != NULL, NULL);
298 new_rand = g_new0 (GRand, 1);
299 memcpy (new_rand, rand, sizeof (GRand));
301 return new_rand;
305 * g_rand_set_seed:
306 * @rand_: a #GRand.
307 * @seed: a value to reinitialize the random number generator.
309 * Sets the seed for the random number generator #GRand to @seed.
311 void
312 g_rand_set_seed (GRand* rand, guint32 seed)
314 g_return_if_fail (rand != NULL);
316 switch (get_random_version ())
318 case 20:
319 /* setting initial seeds to mt[N] using */
320 /* the generator Line 25 of Table 1 in */
321 /* [KNUTH 1981, The Art of Computer Programming */
322 /* Vol. 2 (2nd Ed.), pp102] */
324 if (seed == 0) /* This would make the PRNG produce only zeros */
325 seed = 0x6b842128; /* Just set it to another number */
327 rand->mt[0]= seed;
328 for (rand->mti=1; rand->mti<N; rand->mti++)
329 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
331 break;
332 case 22:
333 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
334 /* In the previous version (see above), MSBs of the */
335 /* seed affect only MSBs of the array mt[]. */
337 rand->mt[0]= seed;
338 for (rand->mti=1; rand->mti<N; rand->mti++)
339 rand->mt[rand->mti] = 1812433253UL *
340 (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
341 break;
342 default:
343 g_assert_not_reached ();
348 * g_rand_set_seed_array:
349 * @rand_: a #GRand.
350 * @seed: array to initialize with
351 * @seed_length: length of array
353 * Initializes the random number generator by an array of
354 * longs. Array can be of arbitrary size, though only the
355 * first 624 values are taken. This function is useful
356 * if you have many low entropy seeds, or if you require more then
357 * 32bits of actual entropy for your application.
359 * Since: 2.4
361 void
362 g_rand_set_seed_array (GRand* rand, const guint32 *seed, guint seed_length)
364 int i, j, k;
366 g_return_if_fail (rand != NULL);
367 g_return_if_fail (seed_length >= 1);
369 g_rand_set_seed (rand, 19650218UL);
371 i=1; j=0;
372 k = (N>seed_length ? N : seed_length);
373 for (; k; k--)
375 rand->mt[i] = (rand->mt[i] ^
376 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
377 + seed[j] + j; /* non linear */
378 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
379 i++; j++;
380 if (i>=N)
382 rand->mt[0] = rand->mt[N-1];
383 i=1;
385 if (j>=seed_length)
386 j=0;
388 for (k=N-1; k; k--)
390 rand->mt[i] = (rand->mt[i] ^
391 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
392 - i; /* non linear */
393 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
394 i++;
395 if (i>=N)
397 rand->mt[0] = rand->mt[N-1];
398 i=1;
402 rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
406 * g_rand_boolean:
407 * @rand_: a #GRand.
408 * @Returns: a random #gboolean.
410 * Returns a random #gboolean from @rand_. This corresponds to a
411 * unbiased coin toss.
414 * g_rand_int:
415 * @rand_: a #GRand.
417 * Returns the next random #guint32 from @rand_ equally distributed over
418 * the range [0..2^32-1].
420 * Return value: A random number.
422 guint32
423 g_rand_int (GRand* rand)
425 guint32 y;
426 static const guint32 mag01[2]={0x0, MATRIX_A};
427 /* mag01[x] = x * MATRIX_A for x=0,1 */
429 g_return_val_if_fail (rand != NULL, 0);
431 if (rand->mti >= N) { /* generate N words at one time */
432 int kk;
434 for (kk=0;kk<N-M;kk++) {
435 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
436 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
438 for (;kk<N-1;kk++) {
439 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
440 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
442 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
443 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
445 rand->mti = 0;
448 y = rand->mt[rand->mti++];
449 y ^= TEMPERING_SHIFT_U(y);
450 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
451 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
452 y ^= TEMPERING_SHIFT_L(y);
454 return y;
457 /* transform [0..2^32] -> [0..1] */
458 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
461 * g_rand_int_range:
462 * @rand_: a #GRand.
463 * @begin: lower closed bound of the interval.
464 * @end: upper open bound of the interval.
466 * Returns the next random #gint32 from @rand_ equally distributed over
467 * the range [@begin..@end-1].
469 * Return value: A random number.
471 gint32
472 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
474 guint32 dist = end - begin;
475 guint32 random;
477 g_return_val_if_fail (rand != NULL, begin);
478 g_return_val_if_fail (end > begin, begin);
480 switch (get_random_version ())
482 case 20:
483 if (dist <= 0x10000L) /* 2^16 */
485 /* This method, which only calls g_rand_int once is only good
486 * for (end - begin) <= 2^16, because we only have 32 bits set
487 * from the one call to g_rand_int (). */
489 /* we are using (trans + trans * trans), because g_rand_int only
490 * covers [0..2^32-1] and thus g_rand_int * trans only covers
491 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
494 gdouble double_rand = g_rand_int (rand) *
495 (G_RAND_DOUBLE_TRANSFORM +
496 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
498 random = (gint32) (double_rand * dist);
500 else
502 /* Now we use g_rand_double_range (), which will set 52 bits for
503 us, so that it is safe to round and still get a decent
504 distribution */
505 random = (gint32) g_rand_double_range (rand, 0, dist);
507 break;
508 case 22:
509 if (dist == 0)
510 random = 0;
511 else
513 /* maxvalue is set to the predecessor of the greatest
514 * multiple of dist less or equal 2^32. */
515 guint32 maxvalue;
516 if (dist <= 0x80000000u) /* 2^31 */
518 /* maxvalue = 2^32 - 1 - (2^32 % dist) */
519 guint32 leftover = (0x80000000u % dist) * 2;
520 if (leftover >= dist) leftover -= dist;
521 maxvalue = 0xffffffffu - leftover;
523 else
524 maxvalue = dist - 1;
527 random = g_rand_int (rand);
528 while (random > maxvalue);
530 random %= dist;
532 break;
533 default:
534 random = 0; /* Quiet GCC */
535 g_assert_not_reached ();
538 return begin + random;
542 * g_rand_double:
543 * @rand_: a #GRand.
545 * Returns the next random #gdouble from @rand_ equally distributed over
546 * the range [0..1).
548 * Return value: A random number.
550 gdouble
551 g_rand_double (GRand* rand)
553 /* We set all 52 bits after the point for this, not only the first
554 32. Thats why we need two calls to g_rand_int */
555 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
556 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
558 /* The following might happen due to very bad rounding luck, but
559 * actually this should be more than rare, we just try again then */
560 if (retval >= 1.0)
561 return g_rand_double (rand);
563 return retval;
567 * g_rand_double_range:
568 * @rand_: a #GRand.
569 * @begin: lower closed bound of the interval.
570 * @end: upper open bound of the interval.
572 * Returns the next random #gdouble from @rand_ equally distributed over
573 * the range [@begin..@end).
575 * Return value: A random number.
577 gdouble
578 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
580 gdouble r;
582 r = g_rand_double (rand);
584 return r * end - (r - 1) * begin;
588 * g_random_boolean:
589 * @Returns: a random #gboolean.
591 * Returns a random #gboolean. This corresponds to a unbiased coin toss.
594 * g_random_int:
596 * Return a random #guint32 equally distributed over the range
597 * [0..2^32-1].
599 * Return value: A random number.
601 guint32
602 g_random_int (void)
604 guint32 result;
605 G_LOCK (global_random);
606 if (!global_random)
607 global_random = g_rand_new ();
609 result = g_rand_int (global_random);
610 G_UNLOCK (global_random);
611 return result;
615 * g_random_int_range:
616 * @begin: lower closed bound of the interval.
617 * @end: upper open bound of the interval.
619 * Returns a random #gint32 equally distributed over the range
620 * [@begin..@end-1].
622 * Return value: A random number.
624 gint32
625 g_random_int_range (gint32 begin, gint32 end)
627 gint32 result;
628 G_LOCK (global_random);
629 if (!global_random)
630 global_random = g_rand_new ();
632 result = g_rand_int_range (global_random, begin, end);
633 G_UNLOCK (global_random);
634 return result;
638 * g_random_double:
640 * Returns a random #gdouble equally distributed over the range [0..1).
642 * Return value: A random number.
644 gdouble
645 g_random_double (void)
647 double result;
648 G_LOCK (global_random);
649 if (!global_random)
650 global_random = g_rand_new ();
652 result = g_rand_double (global_random);
653 G_UNLOCK (global_random);
654 return result;
658 * g_random_double_range:
659 * @begin: lower closed bound of the interval.
660 * @end: upper open bound of the interval.
662 * Returns a random #gdouble equally distributed over the range [@begin..@end).
664 * Return value: A random number.
666 gdouble
667 g_random_double_range (gdouble begin, gdouble end)
669 double result;
670 G_LOCK (global_random);
671 if (!global_random)
672 global_random = g_rand_new ();
674 result = g_rand_double_range (global_random, begin, end);
675 G_UNLOCK (global_random);
676 return result;
680 * g_random_set_seed:
681 * @seed: a value to reinitialize the global random number generator.
683 * Sets the seed for the global random number generator, which is used
684 * by the <function>g_random_*</function> functions, to @seed.
686 void
687 g_random_set_seed (guint32 seed)
689 G_LOCK (global_random);
690 if (!global_random)
691 global_random = g_rand_new_with_seed (seed);
692 else
693 g_rand_set_seed (global_random, seed);
694 G_UNLOCK (global_random);