Deprecated GSlice config API
[glib.git] / glib / gvarianttypeinfo.c
blob7a76d272f5ec3ffd68b48377e8c9e384835e9697
1 /*
2 * Copyright © 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the
17 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 * Boston, MA 02111-1307, USA.
20 * Author: Ryan Lortie <desrt@desrt.ca>
23 #include "config.h"
25 #include "gvarianttypeinfo.h"
27 #include <glib/gtestutils.h>
28 #include <glib/gthread.h>
29 #include <glib/gslice.h>
30 #include <glib/ghash.h>
32 /* < private >
33 * GVariantTypeInfo:
35 * This structure contains the necessary information to facilitate the
36 * serialisation and fast deserialisation of a given type of GVariant
37 * value. A GVariant instance holds a pointer to one of these
38 * structures to provide for efficient operation.
40 * The GVariantTypeInfo structures for all of the base types, plus the
41 * "variant" type are stored in a read-only static array.
43 * For container types, a hash table and reference counting is used to
44 * ensure that only one of these structures exists for any given type.
45 * In general, a container GVariantTypeInfo will exist for a given type
46 * only if one or more GVariant instances of that type exist or if
47 * another GVariantTypeInfo has that type as a subtype. For example, if
48 * a process contains a single GVariant instance with type "(asv)", then
49 * container GVariantTypeInfo structures will exist for "(asv)" and
50 * for "as" (note that "s" and "v" always exist in the static array).
52 * The trickiest part of GVariantTypeInfo (and in fact, the major reason
53 * for its existence) is the storage of somewhat magical constants that
54 * allow for O(1) lookups of items in tuples. This is described below.
56 * 'container_class' is set to 'a' or 'r' if the GVariantTypeInfo is
57 * contained inside of an ArrayInfo or TupleInfo, respectively. This
58 * allows the storage of the necessary additional information.
60 * 'fixed_size' is set to the fixed size of the type, if applicable, or
61 * 0 otherwise (since no type has a fixed size of 0).
63 * 'alignment' is set to one less than the alignment requirement for
64 * this type. This makes many operations much more convenient.
66 struct _GVariantTypeInfo
68 gsize fixed_size;
69 guchar alignment;
70 guchar container_class;
73 /* Container types are reference counted. They also need to have their
74 * type string stored explicitly since it is not merely a single letter.
76 typedef struct
78 GVariantTypeInfo info;
80 gchar *type_string;
81 gint ref_count;
82 } ContainerInfo;
84 /* For 'array' and 'maybe' types, we store some extra information on the
85 * end of the GVariantTypeInfo struct -- the element type (ie: "s" for
86 * "as"). The container GVariantTypeInfo structure holds a reference to
87 * the element typeinfo.
89 typedef struct
91 ContainerInfo container;
93 GVariantTypeInfo *element;
94 } ArrayInfo;
96 /* For 'tuple' and 'dict entry' types, we store extra information for
97 * each member -- its type and how to find it inside the serialised data
98 * in O(1) time using 4 variables -- 'i', 'a', 'b', and 'c'. See the
99 * comment on GVariantMemberInfo in gvarianttypeinfo.h.
101 typedef struct
103 ContainerInfo container;
105 GVariantMemberInfo *members;
106 gsize n_members;
107 } TupleInfo;
110 /* Hard-code the base types in a constant array */
111 static const GVariantTypeInfo g_variant_type_info_basic_table[24] = {
112 #define fixed_aligned(x) x, x - 1
113 #define not_a_type 0,
114 #define unaligned 0, 0
115 #define aligned(x) 0, x - 1
116 /* 'b' */ { fixed_aligned(1) }, /* boolean */
117 /* 'c' */ { not_a_type },
118 /* 'd' */ { fixed_aligned(8) }, /* double */
119 /* 'e' */ { not_a_type },
120 /* 'f' */ { not_a_type },
121 /* 'g' */ { unaligned }, /* signature string */
122 /* 'h' */ { fixed_aligned(4) }, /* file handle (int32) */
123 /* 'i' */ { fixed_aligned(4) }, /* int32 */
124 /* 'j' */ { not_a_type },
125 /* 'k' */ { not_a_type },
126 /* 'l' */ { not_a_type },
127 /* 'm' */ { not_a_type },
128 /* 'n' */ { fixed_aligned(2) }, /* int16 */
129 /* 'o' */ { unaligned }, /* object path string */
130 /* 'p' */ { not_a_type },
131 /* 'q' */ { fixed_aligned(2) }, /* uint16 */
132 /* 'r' */ { not_a_type },
133 /* 's' */ { unaligned }, /* string */
134 /* 't' */ { fixed_aligned(8) }, /* uint64 */
135 /* 'u' */ { fixed_aligned(4) }, /* uint32 */
136 /* 'v' */ { aligned(8) }, /* variant */
137 /* 'w' */ { not_a_type },
138 /* 'x' */ { fixed_aligned(8) }, /* int64 */
139 /* 'y' */ { fixed_aligned(1) }, /* byte */
140 #undef fixed_aligned
141 #undef not_a_type
142 #undef unaligned
143 #undef aligned
146 /* We need to have type strings to return for the base types. We store
147 * those in another array. Since all base type strings are single
148 * characters this is easy. By not storing pointers to strings into the
149 * GVariantTypeInfo itself, we save a bunch of relocations.
151 static const char g_variant_type_info_basic_chars[24][2] = {
152 "b", " ", "d", " ", " ", "g", "h", "i", " ", " ", " ", " ",
153 "n", "o", " ", "q", " ", "s", "t", "u", "v", " ", "x", "y"
156 /* sanity checks to make debugging easier */
157 static void
158 g_variant_type_info_check (const GVariantTypeInfo *info,
159 char container_class)
161 g_assert (!container_class || info->container_class == container_class);
163 /* alignment can only be one of these */
164 g_assert (info->alignment == 0 || info->alignment == 1 ||
165 info->alignment == 3 || info->alignment == 7);
167 if (info->container_class)
169 ContainerInfo *container = (ContainerInfo *) info;
171 /* extra checks for containers */
172 g_assert_cmpint (container->ref_count, >, 0);
173 g_assert (container->type_string != NULL);
175 else
177 gint index;
179 /* if not a container, then ensure that it is a valid member of
180 * the basic types table
182 index = info - g_variant_type_info_basic_table;
184 g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
185 g_assert (G_N_ELEMENTS (g_variant_type_info_basic_chars) == 24);
186 g_assert (0 <= index && index < 24);
187 g_assert (g_variant_type_info_basic_chars[index][0] != ' ');
191 /* < private >
192 * g_variant_type_info_get_type_string:
193 * @info: a #GVariantTypeInfo
195 * Gets the type string for @info. The string is nul-terminated.
197 const gchar *
198 g_variant_type_info_get_type_string (GVariantTypeInfo *info)
200 g_variant_type_info_check (info, 0);
202 if (info->container_class)
204 ContainerInfo *container = (ContainerInfo *) info;
206 /* containers have their type string stored inside them */
207 return container->type_string;
209 else
211 gint index;
213 /* look up the type string in the base type array. the call to
214 * g_variant_type_info_check() above already ensured validity.
216 index = info - g_variant_type_info_basic_table;
218 return g_variant_type_info_basic_chars[index];
222 /* < private >
223 * g_variant_type_info_query:
224 * @info: a #GVariantTypeInfo
225 * @alignment: (allow-none): the location to store the alignment, or %NULL
226 * @fixed_size: (allow-none): the location to store the fixed size, or %NULL
228 * Queries @info to determine the alignment requirements and fixed size
229 * (if any) of the type.
231 * @fixed_size, if non-%NULL is set to the fixed size of the type, or 0
232 * to indicate that the type is a variable-sized type. No type has a
233 * fixed size of 0.
235 * @alignment, if non-%NULL, is set to one less than the required
236 * alignment of the type. For example, for a 32bit integer, @alignment
237 * would be set to 3. This allows you to round an integer up to the
238 * proper alignment by performing the following efficient calculation:
240 * offset += ((-offset) & alignment);
242 void
243 g_variant_type_info_query (GVariantTypeInfo *info,
244 guint *alignment,
245 gsize *fixed_size)
247 g_variant_type_info_check (info, 0);
249 if (alignment)
250 *alignment = info->alignment;
252 if (fixed_size)
253 *fixed_size = info->fixed_size;
256 /* == array == */
257 #define GV_ARRAY_INFO_CLASS 'a'
258 static ArrayInfo *
259 GV_ARRAY_INFO (GVariantTypeInfo *info)
261 g_variant_type_info_check (info, GV_ARRAY_INFO_CLASS);
263 return (ArrayInfo *) info;
266 static void
267 array_info_free (GVariantTypeInfo *info)
269 ArrayInfo *array_info;
271 g_assert (info->container_class == GV_ARRAY_INFO_CLASS);
272 array_info = (ArrayInfo *) info;
274 g_variant_type_info_unref (array_info->element);
275 g_slice_free (ArrayInfo, array_info);
278 static ContainerInfo *
279 array_info_new (const GVariantType *type)
281 ArrayInfo *info;
283 info = g_slice_new (ArrayInfo);
284 info->container.info.container_class = GV_ARRAY_INFO_CLASS;
286 info->element = g_variant_type_info_get (g_variant_type_element (type));
287 info->container.info.alignment = info->element->alignment;
288 info->container.info.fixed_size = 0;
290 return (ContainerInfo *) info;
293 /* < private >
294 * g_variant_type_info_element:
295 * @info: a #GVariantTypeInfo for an array or maybe type
297 * Returns the element type for the array or maybe type. A reference is
298 * not added, so the caller must add their own.
300 GVariantTypeInfo *
301 g_variant_type_info_element (GVariantTypeInfo *info)
303 return GV_ARRAY_INFO (info)->element;
306 /* < private >
307 * g_variant_type_query_element:
308 * @info: a #GVariantTypeInfo for an array or maybe type
309 * @alignment: (allow-none): the location to store the alignment, or %NULL
310 * @fixed_size: (allow-none): the location to store the fixed size, or %NULL
312 * Returns the alignment requires and fixed size (if any) for the
313 * element type of the array. This call is a convenience wrapper around
314 * g_variant_type_info_element() and g_variant_type_info_query().
316 void
317 g_variant_type_info_query_element (GVariantTypeInfo *info,
318 guint *alignment,
319 gsize *fixed_size)
321 g_variant_type_info_query (GV_ARRAY_INFO (info)->element,
322 alignment, fixed_size);
325 /* == tuple == */
326 #define GV_TUPLE_INFO_CLASS 'r'
327 static TupleInfo *
328 GV_TUPLE_INFO (GVariantTypeInfo *info)
330 g_variant_type_info_check (info, GV_TUPLE_INFO_CLASS);
332 return (TupleInfo *) info;
335 static void
336 tuple_info_free (GVariantTypeInfo *info)
338 TupleInfo *tuple_info;
339 gint i;
341 g_assert (info->container_class == GV_TUPLE_INFO_CLASS);
342 tuple_info = (TupleInfo *) info;
344 for (i = 0; i < tuple_info->n_members; i++)
345 g_variant_type_info_unref (tuple_info->members[i].type_info);
347 g_slice_free1 (sizeof (GVariantMemberInfo) * tuple_info->n_members,
348 tuple_info->members);
349 g_slice_free (TupleInfo, tuple_info);
352 static void
353 tuple_allocate_members (const GVariantType *type,
354 GVariantMemberInfo **members,
355 gsize *n_members)
357 const GVariantType *item_type;
358 gsize i = 0;
360 *n_members = g_variant_type_n_items (type);
361 *members = g_slice_alloc (sizeof (GVariantMemberInfo) * *n_members);
363 item_type = g_variant_type_first (type);
364 while (item_type)
366 GVariantMemberInfo *member = &(*members)[i++];
368 member->type_info = g_variant_type_info_get (item_type);
369 item_type = g_variant_type_next (item_type);
371 if (member->type_info->fixed_size)
372 member->ending_type = G_VARIANT_MEMBER_ENDING_FIXED;
373 else if (item_type == NULL)
374 member->ending_type = G_VARIANT_MEMBER_ENDING_LAST;
375 else
376 member->ending_type = G_VARIANT_MEMBER_ENDING_OFFSET;
379 g_assert (i == *n_members);
382 /* this is g_variant_type_info_query for a given member of the tuple.
383 * before the access is done, it is ensured that the item is within
384 * range and %FALSE is returned if not.
386 static gboolean
387 tuple_get_item (TupleInfo *info,
388 GVariantMemberInfo *item,
389 gsize *d,
390 gsize *e)
392 if (&info->members[info->n_members] == item)
393 return FALSE;
395 *d = item->type_info->alignment;
396 *e = item->type_info->fixed_size;
397 return TRUE;
400 /* Read the documentation for #GVariantMemberInfo in gvarianttype.h
401 * before attempting to understand this.
403 * This function adds one set of "magic constant" values (for one item
404 * in the tuple) to the table.
406 * The algorithm in tuple_generate_table() calculates values of 'a', 'b'
407 * and 'c' for each item, such that the procedure for finding the item
408 * is to start at the end of the previous variable-sized item, add 'a',
409 * then round up to the nearest multiple of 'b', then then add 'c'.
410 * Note that 'b' is stored in the usual "one less than" form. ie:
412 * start = ROUND_UP(prev_end + a, (b + 1)) + c;
414 * We tweak these values a little to allow for a slightly easier
415 * computation and more compact storage.
417 static void
418 tuple_table_append (GVariantMemberInfo **items,
419 gsize i,
420 gsize a,
421 gsize b,
422 gsize c)
424 GVariantMemberInfo *item = (*items)++;
426 /* We can shift multiples of the alignment size from 'c' into 'a'.
427 * As long as we're shifting whole multiples, it won't affect the
428 * result. This means that we can take the "aligned" portion off of
429 * 'c' and add it into 'a'.
431 * Imagine (for sake of clarity) that ROUND_10 rounds up to the
432 * nearest 10. It is clear that:
434 * ROUND_10(a) + c == ROUND_10(a + 10*(c / 10)) + (c % 10)
436 * ie: remove the 10s portion of 'c' and add it onto 'a'.
438 * To put some numbers on it, imagine we start with a = 34 and c = 27:
440 * ROUND_10(34) + 27 = 40 + 27 = 67
442 * but also, we can split 27 up into 20 and 7 and do this:
444 * ROUND_10(34 + 20) + 7 = ROUND_10(54) + 7 = 60 + 7 = 67
445 * ^^ ^
446 * without affecting the result. We do that here.
448 * This reduction in the size of 'c' means that we can store it in a
449 * gchar instead of a gsize. Due to how the structure is packed, this
450 * ends up saving us 'two pointer sizes' per item in each tuple when
451 * allocating using GSlice.
453 a += ~b & c; /* take the "aligned" part of 'c' and add to 'a' */
454 c &= b; /* chop 'c' to contain only the unaligned part */
457 /* Finally, we made one last adjustment. Recall:
459 * start = ROUND_UP(prev_end + a, (b + 1)) + c;
461 * Forgetting the '+ c' for the moment:
463 * ROUND_UP(prev_end + a, (b + 1));
465 * we can do a "round up" operation by adding 1 less than the amount
466 * to round up to, then rounding down. ie:
468 * #define ROUND_UP(x, y) ROUND_DOWN(x + (y-1), y)
470 * Of course, for rounding down to a power of two, we can just mask
471 * out the appropriate number of low order bits:
473 * #define ROUND_DOWN(x, y) (x & ~(y - 1))
475 * Which gives us
477 * #define ROUND_UP(x, y) (x + (y - 1) & ~(y - 1))
479 * but recall that our alignment value 'b' is already "one less".
480 * This means that to round 'prev_end + a' up to 'b' we can just do:
482 * ((prev_end + a) + b) & ~b
484 * Associativity, and putting the 'c' back on:
486 * (prev_end + (a + b)) & ~b + c
488 * Now, since (a + b) is constant, we can just add 'b' to 'a' now and
489 * store that as the number to add to prev_end. Then we use ~b as the
490 * number to take a bitwise 'and' with. Finally, 'c' is added on.
492 * Note, however, that all the low order bits of the 'aligned' value
493 * are masked out and that all of the high order bits of 'c' have been
494 * "moved" to 'a' (in the previous step). This means that there are
495 * no overlapping bits in the addition -- so we can do a bitwise 'or'
496 * equivalently.
498 * This means that we can now compute the start address of a given
499 * item in the tuple using the algorithm given in the documentation
500 * for #GVariantMemberInfo:
502 * item_start = ((prev_end + a) & b) | c;
505 item->i = i;
506 item->a = a + b;
507 item->b = ~b;
508 item->c = c;
511 static gsize
512 tuple_align (gsize offset,
513 guint alignment)
515 return offset + ((-offset) & alignment);
518 /* This function is the heart of the algorithm for calculating 'i', 'a',
519 * 'b' and 'c' for each item in the tuple.
521 * Imagine we want to find the start of the "i" in the type "(su(qx)ni)".
522 * That's a string followed by a uint32, then a tuple containing a
523 * uint16 and a int64, then an int16, then our "i". In order to get to
524 * our "i" we:
526 * Start at the end of the string, align to 4 (for the uint32), add 4.
527 * Align to 8, add 16 (for the tuple). Align to 2, add 2 (for the
528 * int16). Then we're there. It turns out that, given 3 simple rules,
529 * we can flatten this iteration into one addition, one alignment, then
530 * one more addition.
532 * The loop below plays through each item in the tuple, querying its
533 * alignment and fixed_size into 'd' and 'e', respectively. At all
534 * times the variables 'a', 'b', and 'c' are maintained such that in
535 * order to get to the current point, you add 'a', align to 'b' then add
536 * 'c'. 'b' is kept in "one less than" form. For each item, the proper
537 * alignment is applied to find the values of 'a', 'b' and 'c' to get to
538 * the start of that item. Those values are recorded into the table.
539 * The fixed size of the item (if applicable) is then added on.
541 * These 3 rules are how 'a', 'b' and 'c' are modified for alignment and
542 * addition of fixed size. They have been proven correct but are
543 * presented here, without proof:
545 * 1) in order to "align to 'd'" where 'd' is less than or equal to the
546 * largest level of alignment seen so far ('b'), you align 'c' to
547 * 'd'.
548 * 2) in order to "align to 'd'" where 'd' is greater than the largest
549 * level of alignment seen so far, you add 'c' aligned to 'b' to the
550 * value of 'a', set 'b' to 'd' (ie: increase the 'largest alignment
551 * seen') and reset 'c' to 0.
552 * 3) in order to "add 'e'", just add 'e' to 'c'.
554 static void
555 tuple_generate_table (TupleInfo *info)
557 GVariantMemberInfo *items = info->members;
558 gsize i = -1, a = 0, b = 0, c = 0, d, e;
560 /* iterate over each item in the tuple.
561 * 'd' will be the alignment of the item (in one-less form)
562 * 'e' will be the fixed size (or 0 for variable-size items)
564 while (tuple_get_item (info, items, &d, &e))
566 /* align to 'd' */
567 if (d <= b)
568 c = tuple_align (c, d); /* rule 1 */
569 else
570 a += tuple_align (c, b), b = d, c = 0; /* rule 2 */
572 /* the start of the item is at this point (ie: right after we
573 * have aligned for it). store this information in the table.
575 tuple_table_append (&items, i, a, b, c);
577 /* "move past" the item by adding in its size. */
578 if (e == 0)
579 /* variable size:
581 * we'll have an offset stored to mark the end of this item, so
582 * just bump the offset index to give us a new starting point
583 * and reset all the counters.
585 i++, a = b = c = 0;
586 else
587 /* fixed size */
588 c += e; /* rule 3 */
592 static void
593 tuple_set_base_info (TupleInfo *info)
595 GVariantTypeInfo *base = &info->container.info;
597 if (info->n_members > 0)
599 GVariantMemberInfo *m;
601 /* the alignment requirement of the tuple is the alignment
602 * requirement of its largest item.
604 base->alignment = 0;
605 for (m = info->members; m < &info->members[info->n_members]; m++)
606 /* can find the max of a list of "one less than" powers of two
607 * by 'or'ing them
609 base->alignment |= m->type_info->alignment;
611 m--; /* take 'm' back to the last item */
613 /* the structure only has a fixed size if no variable-size
614 * offsets are stored and the last item is fixed-sized too (since
615 * an offset is never stored for the last item).
617 if (m->i == -1 && m->type_info->fixed_size)
618 /* in that case, the fixed size can be found by finding the
619 * start of the last item (in the usual way) and adding its
620 * fixed size.
622 * if a tuple has a fixed size then it is always a multiple of
623 * the alignment requirement (to make packing into arrays
624 * easier) so we round up to that here.
626 base->fixed_size =
627 tuple_align (((m->a & m->b) | m->c) + m->type_info->fixed_size,
628 base->alignment);
629 else
630 /* else, the tuple is not fixed size */
631 base->fixed_size = 0;
633 else
635 /* the empty tuple: '()'.
637 * has a size of 1 and an no alignment requirement.
639 * It has a size of 1 (not 0) for two practical reasons:
641 * 1) So we can determine how many of them are in an array
642 * without dividing by zero or without other tricks.
644 * 2) Even if we had some trick to know the number of items in
645 * the array (as GVariant did at one time) this would open a
646 * potential denial of service attack: an attacker could send
647 * you an extremely small array (in terms of number of bytes)
648 * containing trillions of zero-sized items. If you iterated
649 * over this array you would effectively infinite-loop your
650 * program. By forcing a size of at least one, we bound the
651 * amount of computation done in response to a message to a
652 * reasonable function of the size of that message.
654 base->alignment = 0;
655 base->fixed_size = 1;
659 static ContainerInfo *
660 tuple_info_new (const GVariantType *type)
662 TupleInfo *info;
664 info = g_slice_new (TupleInfo);
665 info->container.info.container_class = GV_TUPLE_INFO_CLASS;
667 tuple_allocate_members (type, &info->members, &info->n_members);
668 tuple_generate_table (info);
669 tuple_set_base_info (info);
671 return (ContainerInfo *) info;
674 /* < private >
675 * g_variant_type_info_n_members:
676 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
678 * Returns the number of members in a tuple or dictionary entry type.
679 * For a dictionary entry this will always be 2.
681 gsize
682 g_variant_type_info_n_members (GVariantTypeInfo *info)
684 return GV_TUPLE_INFO (info)->n_members;
687 /* < private >
688 * g_variant_type_info_member_info:
689 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
690 * @index: the member to fetch information for
692 * Returns the #GVariantMemberInfo for a given member. See
693 * documentation for that structure for why you would want this
694 * information.
696 * @index must refer to a valid child (ie: strictly less than
697 * g_variant_type_info_n_members() returns).
699 const GVariantMemberInfo *
700 g_variant_type_info_member_info (GVariantTypeInfo *info,
701 gsize index)
703 TupleInfo *tuple_info = GV_TUPLE_INFO (info);
705 if (index < tuple_info->n_members)
706 return &tuple_info->members[index];
708 return NULL;
711 /* == new/ref/unref == */
712 static GRecMutex g_variant_type_info_lock;
713 static GHashTable *g_variant_type_info_table;
715 /* < private >
716 * g_variant_type_info_get:
717 * @type: a #GVariantType
719 * Returns a reference to a #GVariantTypeInfo for @type.
721 * If an info structure already exists for this type, a new reference is
722 * returned. If not, the required calculations are performed and a new
723 * info structure is returned.
725 * It is appropriate to call g_variant_type_info_unref() on the return
726 * value.
728 GVariantTypeInfo *
729 g_variant_type_info_get (const GVariantType *type)
731 char type_char;
733 type_char = g_variant_type_peek_string (type)[0];
735 if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
736 type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY ||
737 type_char == G_VARIANT_TYPE_INFO_CHAR_TUPLE ||
738 type_char == G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY)
740 GVariantTypeInfo *info;
741 gchar *type_string;
743 type_string = g_variant_type_dup_string (type);
745 g_rec_mutex_lock (&g_variant_type_info_lock);
747 if (g_variant_type_info_table == NULL)
748 g_variant_type_info_table = g_hash_table_new (g_str_hash,
749 g_str_equal);
750 info = g_hash_table_lookup (g_variant_type_info_table, type_string);
752 if (info == NULL)
754 ContainerInfo *container;
756 if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
757 type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY)
759 container = array_info_new (type);
761 else /* tuple or dict entry */
763 container = tuple_info_new (type);
766 info = (GVariantTypeInfo *) container;
767 container->type_string = type_string;
768 container->ref_count = 1;
770 g_hash_table_insert (g_variant_type_info_table, type_string, info);
771 type_string = NULL;
773 else
774 g_variant_type_info_ref (info);
776 g_rec_mutex_unlock (&g_variant_type_info_lock);
777 g_variant_type_info_check (info, 0);
778 g_free (type_string);
780 return info;
782 else
784 const GVariantTypeInfo *info;
785 int index;
787 index = type_char - 'b';
788 g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
789 g_assert_cmpint (0, <=, index);
790 g_assert_cmpint (index, <, 24);
792 info = g_variant_type_info_basic_table + index;
793 g_variant_type_info_check (info, 0);
795 return (GVariantTypeInfo *) info;
799 /* < private >
800 * g_variant_type_info_ref:
801 * @info: a #GVariantTypeInfo
803 * Adds a reference to @info.
805 GVariantTypeInfo *
806 g_variant_type_info_ref (GVariantTypeInfo *info)
808 g_variant_type_info_check (info, 0);
810 if (info->container_class)
812 ContainerInfo *container = (ContainerInfo *) info;
814 g_assert_cmpint (container->ref_count, >, 0);
815 g_atomic_int_inc (&container->ref_count);
818 return info;
821 /* < private >
822 * g_variant_type_info_unref:
823 * @info: a #GVariantTypeInfo
825 * Releases a reference held on @info. This may result in @info being
826 * freed.
828 void
829 g_variant_type_info_unref (GVariantTypeInfo *info)
831 g_variant_type_info_check (info, 0);
833 if (info->container_class)
835 ContainerInfo *container = (ContainerInfo *) info;
837 g_rec_mutex_lock (&g_variant_type_info_lock);
838 if (g_atomic_int_dec_and_test (&container->ref_count))
840 g_hash_table_remove (g_variant_type_info_table,
841 container->type_string);
842 if (g_hash_table_size (g_variant_type_info_table) == 0)
844 g_hash_table_unref (g_variant_type_info_table);
845 g_variant_type_info_table = NULL;
847 g_rec_mutex_unlock (&g_variant_type_info_lock);
849 g_free (container->type_string);
851 if (info->container_class == GV_ARRAY_INFO_CLASS)
852 array_info_free (info);
854 else if (info->container_class == GV_TUPLE_INFO_CLASS)
855 tuple_info_free (info);
857 else
858 g_assert_not_reached ();
860 else
861 g_rec_mutex_unlock (&g_variant_type_info_lock);
865 void
866 g_variant_type_info_assert_no_infos (void)
868 g_assert (g_variant_type_info_table == NULL);