Meson: Group all glib tests into a single dict
[glib.git] / gobject / gobject.c
blob555ca3fae2c0ea4163dd930617f37645a391ccc2
1 /* GObject - GLib Type, Object, Parameter and Signal Library
2 * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General
15 * Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 * MT safe with regards to reference counting.
22 #include "config.h"
24 #include <string.h>
25 #include <signal.h>
27 #include "gobject.h"
28 #include "gtype-private.h"
29 #include "gvaluecollector.h"
30 #include "gsignal.h"
31 #include "gparamspecs.h"
32 #include "gvaluetypes.h"
33 #include "gobject_trace.h"
34 #include "gconstructor.h"
36 /**
37 * SECTION:objects
38 * @title: GObject
39 * @short_description: The base object type
40 * @see_also: #GParamSpecObject, g_param_spec_object()
42 * GObject is the fundamental type providing the common attributes and
43 * methods for all object types in GTK+, Pango and other libraries
44 * based on GObject. The GObject class provides methods for object
45 * construction and destruction, property access methods, and signal
46 * support. Signals are described in detail [here][gobject-Signals].
48 * For a tutorial on implementing a new GObject class, see [How to define and
49 * implement a new GObject][howto-gobject]. For a list of naming conventions for
50 * GObjects and their methods, see the [GType conventions][gtype-conventions].
51 * For the high-level concepts behind GObject, read [Instantiable classed types:
52 * Objects][gtype-instantiable-classed].
54 * ## Floating references # {#floating-ref}
56 * GInitiallyUnowned is derived from GObject. The only difference between
57 * the two is that the initial reference of a GInitiallyUnowned is flagged
58 * as a "floating" reference. This means that it is not specifically
59 * claimed to be "owned" by any code portion. The main motivation for
60 * providing floating references is C convenience. In particular, it
61 * allows code to be written as:
62 * |[<!-- language="C" -->
63 * container = create_container ();
64 * container_add_child (container, create_child());
65 * ]|
66 * If container_add_child() calls g_object_ref_sink() on the passed-in child,
67 * no reference of the newly created child is leaked. Without floating
68 * references, container_add_child() can only g_object_ref() the new child,
69 * so to implement this code without reference leaks, it would have to be
70 * written as:
71 * |[<!-- language="C" -->
72 * Child *child;
73 * container = create_container ();
74 * child = create_child ();
75 * container_add_child (container, child);
76 * g_object_unref (child);
77 * ]|
78 * The floating reference can be converted into an ordinary reference by
79 * calling g_object_ref_sink(). For already sunken objects (objects that
80 * don't have a floating reference anymore), g_object_ref_sink() is equivalent
81 * to g_object_ref() and returns a new reference.
83 * Since floating references are useful almost exclusively for C convenience,
84 * language bindings that provide automated reference and memory ownership
85 * maintenance (such as smart pointers or garbage collection) should not
86 * expose floating references in their API.
88 * Some object implementations may need to save an objects floating state
89 * across certain code portions (an example is #GtkMenu), to achieve this,
90 * the following sequence can be used:
92 * |[<!-- language="C" -->
93 * // save floating state
94 * gboolean was_floating = g_object_is_floating (object);
95 * g_object_ref_sink (object);
96 * // protected code portion
98 * ...
100 * // restore floating state
101 * if (was_floating)
102 * g_object_force_floating (object);
103 * else
104 * g_object_unref (object); // release previously acquired reference
105 * ]|
109 /* --- macros --- */
110 #define PARAM_SPEC_PARAM_ID(pspec) ((pspec)->param_id)
111 #define PARAM_SPEC_SET_PARAM_ID(pspec, id) ((pspec)->param_id = (id))
113 #define OBJECT_HAS_TOGGLE_REF_FLAG 0x1
114 #define OBJECT_HAS_TOGGLE_REF(object) \
115 ((g_datalist_get_flags (&(object)->qdata) & OBJECT_HAS_TOGGLE_REF_FLAG) != 0)
116 #define OBJECT_FLOATING_FLAG 0x2
118 #define CLASS_HAS_PROPS_FLAG 0x1
119 #define CLASS_HAS_PROPS(class) \
120 ((class)->flags & CLASS_HAS_PROPS_FLAG)
121 #define CLASS_HAS_CUSTOM_CONSTRUCTOR(class) \
122 ((class)->constructor != g_object_constructor)
123 #define CLASS_HAS_CUSTOM_CONSTRUCTED(class) \
124 ((class)->constructed != g_object_constructed)
126 #define CLASS_HAS_DERIVED_CLASS_FLAG 0x2
127 #define CLASS_HAS_DERIVED_CLASS(class) \
128 ((class)->flags & CLASS_HAS_DERIVED_CLASS_FLAG)
130 /* --- signals --- */
131 enum {
132 NOTIFY,
133 LAST_SIGNAL
137 /* --- properties --- */
138 enum {
139 PROP_NONE
143 /* --- prototypes --- */
144 static void g_object_base_class_init (GObjectClass *class);
145 static void g_object_base_class_finalize (GObjectClass *class);
146 static void g_object_do_class_init (GObjectClass *class);
147 static void g_object_init (GObject *object,
148 GObjectClass *class);
149 static GObject* g_object_constructor (GType type,
150 guint n_construct_properties,
151 GObjectConstructParam *construct_params);
152 static void g_object_constructed (GObject *object);
153 static void g_object_real_dispose (GObject *object);
154 static void g_object_finalize (GObject *object);
155 static void g_object_do_set_property (GObject *object,
156 guint property_id,
157 const GValue *value,
158 GParamSpec *pspec);
159 static void g_object_do_get_property (GObject *object,
160 guint property_id,
161 GValue *value,
162 GParamSpec *pspec);
163 static void g_value_object_init (GValue *value);
164 static void g_value_object_free_value (GValue *value);
165 static void g_value_object_copy_value (const GValue *src_value,
166 GValue *dest_value);
167 static void g_value_object_transform_value (const GValue *src_value,
168 GValue *dest_value);
169 static gpointer g_value_object_peek_pointer (const GValue *value);
170 static gchar* g_value_object_collect_value (GValue *value,
171 guint n_collect_values,
172 GTypeCValue *collect_values,
173 guint collect_flags);
174 static gchar* g_value_object_lcopy_value (const GValue *value,
175 guint n_collect_values,
176 GTypeCValue *collect_values,
177 guint collect_flags);
178 static void g_object_dispatch_properties_changed (GObject *object,
179 guint n_pspecs,
180 GParamSpec **pspecs);
181 static guint object_floating_flag_handler (GObject *object,
182 gint job);
184 static void object_interface_check_properties (gpointer check_data,
185 gpointer g_iface);
187 /* --- typedefs --- */
188 typedef struct _GObjectNotifyQueue GObjectNotifyQueue;
190 struct _GObjectNotifyQueue
192 GSList *pspecs;
193 guint16 n_pspecs;
194 guint16 freeze_count;
197 /* --- variables --- */
198 G_LOCK_DEFINE_STATIC (closure_array_mutex);
199 G_LOCK_DEFINE_STATIC (weak_refs_mutex);
200 G_LOCK_DEFINE_STATIC (toggle_refs_mutex);
201 static GQuark quark_closure_array = 0;
202 static GQuark quark_weak_refs = 0;
203 static GQuark quark_toggle_refs = 0;
204 static GQuark quark_notify_queue;
205 static GQuark quark_in_construction;
206 static GParamSpecPool *pspec_pool = NULL;
207 static gulong gobject_signals[LAST_SIGNAL] = { 0, };
208 static guint (*floating_flag_handler) (GObject*, gint) = object_floating_flag_handler;
209 /* qdata pointing to GSList<GWeakRef *>, protected by weak_locations_lock */
210 static GQuark quark_weak_locations = 0;
211 static GRWLock weak_locations_lock;
213 G_LOCK_DEFINE_STATIC(notify_lock);
215 /* --- functions --- */
216 static void
217 g_object_notify_queue_free (gpointer data)
219 GObjectNotifyQueue *nqueue = data;
221 g_slist_free (nqueue->pspecs);
222 g_slice_free (GObjectNotifyQueue, nqueue);
225 static GObjectNotifyQueue*
226 g_object_notify_queue_freeze (GObject *object,
227 gboolean conditional)
229 GObjectNotifyQueue *nqueue;
231 G_LOCK(notify_lock);
232 nqueue = g_datalist_id_get_data (&object->qdata, quark_notify_queue);
233 if (!nqueue)
235 if (conditional)
237 G_UNLOCK(notify_lock);
238 return NULL;
241 nqueue = g_slice_new0 (GObjectNotifyQueue);
242 g_datalist_id_set_data_full (&object->qdata, quark_notify_queue,
243 nqueue, g_object_notify_queue_free);
246 if (nqueue->freeze_count >= 65535)
247 g_critical("Free queue for %s (%p) is larger than 65535,"
248 " called g_object_freeze_notify() too often."
249 " Forgot to call g_object_thaw_notify() or infinite loop",
250 G_OBJECT_TYPE_NAME (object), object);
251 else
252 nqueue->freeze_count++;
253 G_UNLOCK(notify_lock);
255 return nqueue;
258 static void
259 g_object_notify_queue_thaw (GObject *object,
260 GObjectNotifyQueue *nqueue)
262 GParamSpec *pspecs_mem[16], **pspecs, **free_me = NULL;
263 GSList *slist;
264 guint n_pspecs = 0;
266 g_return_if_fail (nqueue->freeze_count > 0);
267 g_return_if_fail (g_atomic_int_get(&object->ref_count) > 0);
269 G_LOCK(notify_lock);
271 /* Just make sure we never get into some nasty race condition */
272 if (G_UNLIKELY(nqueue->freeze_count == 0)) {
273 G_UNLOCK(notify_lock);
274 g_warning ("%s: property-changed notification for %s(%p) is not frozen",
275 G_STRFUNC, G_OBJECT_TYPE_NAME (object), object);
276 return;
279 nqueue->freeze_count--;
280 if (nqueue->freeze_count) {
281 G_UNLOCK(notify_lock);
282 return;
285 pspecs = nqueue->n_pspecs > 16 ? free_me = g_new (GParamSpec*, nqueue->n_pspecs) : pspecs_mem;
287 for (slist = nqueue->pspecs; slist; slist = slist->next)
289 pspecs[n_pspecs++] = slist->data;
291 g_datalist_id_set_data (&object->qdata, quark_notify_queue, NULL);
293 G_UNLOCK(notify_lock);
295 if (n_pspecs)
296 G_OBJECT_GET_CLASS (object)->dispatch_properties_changed (object, n_pspecs, pspecs);
297 g_free (free_me);
300 static void
301 g_object_notify_queue_add (GObject *object,
302 GObjectNotifyQueue *nqueue,
303 GParamSpec *pspec)
305 G_LOCK(notify_lock);
307 g_assert (nqueue->n_pspecs < 65535);
309 if (g_slist_find (nqueue->pspecs, pspec) == NULL)
311 nqueue->pspecs = g_slist_prepend (nqueue->pspecs, pspec);
312 nqueue->n_pspecs++;
315 G_UNLOCK(notify_lock);
318 #ifdef G_ENABLE_DEBUG
319 G_LOCK_DEFINE_STATIC (debug_objects);
320 static guint debug_objects_count = 0;
321 static GHashTable *debug_objects_ht = NULL;
323 static void
324 debug_objects_foreach (gpointer key,
325 gpointer value,
326 gpointer user_data)
328 GObject *object = value;
330 g_message ("[%p] stale %s\tref_count=%u",
331 object,
332 G_OBJECT_TYPE_NAME (object),
333 object->ref_count);
336 #ifdef G_HAS_CONSTRUCTORS
337 #ifdef G_DEFINE_DESTRUCTOR_NEEDS_PRAGMA
338 #pragma G_DEFINE_DESTRUCTOR_PRAGMA_ARGS(debug_objects_atexit)
339 #endif
340 G_DEFINE_DESTRUCTOR(debug_objects_atexit)
341 #endif /* G_HAS_CONSTRUCTORS */
343 static void
344 debug_objects_atexit (void)
346 GOBJECT_IF_DEBUG (OBJECTS,
348 G_LOCK (debug_objects);
349 g_message ("stale GObjects: %u", debug_objects_count);
350 g_hash_table_foreach (debug_objects_ht, debug_objects_foreach, NULL);
351 G_UNLOCK (debug_objects);
354 #endif /* G_ENABLE_DEBUG */
356 void
357 _g_object_type_init (void)
359 static gboolean initialized = FALSE;
360 static const GTypeFundamentalInfo finfo = {
361 G_TYPE_FLAG_CLASSED | G_TYPE_FLAG_INSTANTIATABLE | G_TYPE_FLAG_DERIVABLE | G_TYPE_FLAG_DEEP_DERIVABLE,
363 GTypeInfo info = {
364 sizeof (GObjectClass),
365 (GBaseInitFunc) g_object_base_class_init,
366 (GBaseFinalizeFunc) g_object_base_class_finalize,
367 (GClassInitFunc) g_object_do_class_init,
368 NULL /* class_destroy */,
369 NULL /* class_data */,
370 sizeof (GObject),
371 0 /* n_preallocs */,
372 (GInstanceInitFunc) g_object_init,
373 NULL, /* value_table */
375 static const GTypeValueTable value_table = {
376 g_value_object_init, /* value_init */
377 g_value_object_free_value, /* value_free */
378 g_value_object_copy_value, /* value_copy */
379 g_value_object_peek_pointer, /* value_peek_pointer */
380 "p", /* collect_format */
381 g_value_object_collect_value, /* collect_value */
382 "p", /* lcopy_format */
383 g_value_object_lcopy_value, /* lcopy_value */
385 GType type;
387 g_return_if_fail (initialized == FALSE);
388 initialized = TRUE;
390 /* G_TYPE_OBJECT
392 info.value_table = &value_table;
393 type = g_type_register_fundamental (G_TYPE_OBJECT, g_intern_static_string ("GObject"), &info, &finfo, 0);
394 g_assert (type == G_TYPE_OBJECT);
395 g_value_register_transform_func (G_TYPE_OBJECT, G_TYPE_OBJECT, g_value_object_transform_value);
397 #if G_ENABLE_DEBUG
398 /* We cannot use GOBJECT_IF_DEBUG here because of the G_HAS_CONSTRUCTORS
399 * conditional in between, as the C spec leaves conditionals inside macro
400 * expansions as undefined behavior. Only GCC and Clang are known to work
401 * but compilation breaks on MSVC.
403 * See: https://bugzilla.gnome.org/show_bug.cgi?id=769504
405 if (_g_type_debug_flags & G_TYPE_DEBUG_OBJECTS) \
407 debug_objects_ht = g_hash_table_new (g_direct_hash, NULL);
408 # ifndef G_HAS_CONSTRUCTORS
409 g_atexit (debug_objects_atexit);
410 # endif /* G_HAS_CONSTRUCTORS */
412 #endif /* G_ENABLE_DEBUG */
415 static void
416 g_object_base_class_init (GObjectClass *class)
418 GObjectClass *pclass = g_type_class_peek_parent (class);
420 /* Don't inherit HAS_DERIVED_CLASS flag from parent class */
421 class->flags &= ~CLASS_HAS_DERIVED_CLASS_FLAG;
423 if (pclass)
424 pclass->flags |= CLASS_HAS_DERIVED_CLASS_FLAG;
426 /* reset instance specific fields and methods that don't get inherited */
427 class->construct_properties = pclass ? g_slist_copy (pclass->construct_properties) : NULL;
428 class->get_property = NULL;
429 class->set_property = NULL;
432 static void
433 g_object_base_class_finalize (GObjectClass *class)
435 GList *list, *node;
437 _g_signals_destroy (G_OBJECT_CLASS_TYPE (class));
439 g_slist_free (class->construct_properties);
440 class->construct_properties = NULL;
441 list = g_param_spec_pool_list_owned (pspec_pool, G_OBJECT_CLASS_TYPE (class));
442 for (node = list; node; node = node->next)
444 GParamSpec *pspec = node->data;
446 g_param_spec_pool_remove (pspec_pool, pspec);
447 PARAM_SPEC_SET_PARAM_ID (pspec, 0);
448 g_param_spec_unref (pspec);
450 g_list_free (list);
453 static void
454 g_object_do_class_init (GObjectClass *class)
456 /* read the comment about typedef struct CArray; on why not to change this quark */
457 quark_closure_array = g_quark_from_static_string ("GObject-closure-array");
459 quark_weak_refs = g_quark_from_static_string ("GObject-weak-references");
460 quark_weak_locations = g_quark_from_static_string ("GObject-weak-locations");
461 quark_toggle_refs = g_quark_from_static_string ("GObject-toggle-references");
462 quark_notify_queue = g_quark_from_static_string ("GObject-notify-queue");
463 quark_in_construction = g_quark_from_static_string ("GObject-in-construction");
464 pspec_pool = g_param_spec_pool_new (TRUE);
466 class->constructor = g_object_constructor;
467 class->constructed = g_object_constructed;
468 class->set_property = g_object_do_set_property;
469 class->get_property = g_object_do_get_property;
470 class->dispose = g_object_real_dispose;
471 class->finalize = g_object_finalize;
472 class->dispatch_properties_changed = g_object_dispatch_properties_changed;
473 class->notify = NULL;
476 * GObject::notify:
477 * @gobject: the object which received the signal.
478 * @pspec: the #GParamSpec of the property which changed.
480 * The notify signal is emitted on an object when one of its properties has
481 * its value set through g_object_set_property(), g_object_set(), et al.
483 * Note that getting this signal doesn’t itself guarantee that the value of
484 * the property has actually changed. When it is emitted is determined by the
485 * derived GObject class. If the implementor did not create the property with
486 * %G_PARAM_EXPLICIT_NOTIFY, then any call to g_object_set_property() results
487 * in ::notify being emitted, even if the new value is the same as the old.
488 * If they did pass %G_PARAM_EXPLICIT_NOTIFY, then this signal is emitted only
489 * when they explicitly call g_object_notify() or g_object_notify_by_pspec(),
490 * and common practice is to do that only when the value has actually changed.
492 * This signal is typically used to obtain change notification for a
493 * single property, by specifying the property name as a detail in the
494 * g_signal_connect() call, like this:
495 * |[<!-- language="C" -->
496 * g_signal_connect (text_view->buffer, "notify::paste-target-list",
497 * G_CALLBACK (gtk_text_view_target_list_notify),
498 * text_view)
499 * ]|
500 * It is important to note that you must use
501 * [canonical][canonical-parameter-name] parameter names as
502 * detail strings for the notify signal.
504 gobject_signals[NOTIFY] =
505 g_signal_new (g_intern_static_string ("notify"),
506 G_TYPE_FROM_CLASS (class),
507 G_SIGNAL_RUN_FIRST | G_SIGNAL_NO_RECURSE | G_SIGNAL_DETAILED | G_SIGNAL_NO_HOOKS | G_SIGNAL_ACTION,
508 G_STRUCT_OFFSET (GObjectClass, notify),
509 NULL, NULL,
510 g_cclosure_marshal_VOID__PARAM,
511 G_TYPE_NONE,
512 1, G_TYPE_PARAM);
514 /* Install a check function that we'll use to verify that classes that
515 * implement an interface implement all properties for that interface
517 g_type_add_interface_check (NULL, object_interface_check_properties);
520 static inline gboolean
521 install_property_internal (GType g_type,
522 guint property_id,
523 GParamSpec *pspec)
525 if (g_param_spec_pool_lookup (pspec_pool, pspec->name, g_type, FALSE))
527 g_warning ("When installing property: type '%s' already has a property named '%s'",
528 g_type_name (g_type),
529 pspec->name);
530 return FALSE;
533 g_param_spec_ref_sink (pspec);
534 PARAM_SPEC_SET_PARAM_ID (pspec, property_id);
535 g_param_spec_pool_insert (pspec_pool, pspec, g_type);
536 return TRUE;
539 static gboolean
540 validate_pspec_to_install (GParamSpec *pspec)
542 g_return_val_if_fail (G_IS_PARAM_SPEC (pspec), FALSE);
543 g_return_val_if_fail (PARAM_SPEC_PARAM_ID (pspec) == 0, FALSE); /* paranoid */
545 g_return_val_if_fail (pspec->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE), FALSE);
547 if (pspec->flags & G_PARAM_CONSTRUCT)
548 g_return_val_if_fail ((pspec->flags & G_PARAM_CONSTRUCT_ONLY) == 0, FALSE);
550 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
551 g_return_val_if_fail (pspec->flags & G_PARAM_WRITABLE, FALSE);
553 return TRUE;
556 static gboolean
557 validate_and_install_class_property (GObjectClass *class,
558 GType oclass_type,
559 GType parent_type,
560 guint property_id,
561 GParamSpec *pspec)
563 if (!validate_pspec_to_install (pspec))
564 return FALSE;
566 if (pspec->flags & G_PARAM_WRITABLE)
567 g_return_val_if_fail (class->set_property != NULL, FALSE);
568 if (pspec->flags & G_PARAM_READABLE)
569 g_return_val_if_fail (class->get_property != NULL, FALSE);
571 class->flags |= CLASS_HAS_PROPS_FLAG;
572 if (install_property_internal (oclass_type, property_id, pspec))
574 if (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
575 class->construct_properties = g_slist_append (class->construct_properties, pspec);
577 /* for property overrides of construct properties, we have to get rid
578 * of the overidden inherited construct property
580 pspec = g_param_spec_pool_lookup (pspec_pool, pspec->name, parent_type, TRUE);
581 if (pspec && pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY))
582 class->construct_properties = g_slist_remove (class->construct_properties, pspec);
584 return TRUE;
586 else
587 return FALSE;
591 * g_object_class_install_property:
592 * @oclass: a #GObjectClass
593 * @property_id: the id for the new property
594 * @pspec: the #GParamSpec for the new property
596 * Installs a new property.
598 * All properties should be installed during the class initializer. It
599 * is possible to install properties after that, but doing so is not
600 * recommend, and specifically, is not guaranteed to be thread-safe vs.
601 * use of properties on the same type on other threads.
603 * Note that it is possible to redefine a property in a derived class,
604 * by installing a property with the same name. This can be useful at times,
605 * e.g. to change the range of allowed values or the default value.
607 void
608 g_object_class_install_property (GObjectClass *class,
609 guint property_id,
610 GParamSpec *pspec)
612 GType oclass_type, parent_type;
614 g_return_if_fail (G_IS_OBJECT_CLASS (class));
615 g_return_if_fail (property_id > 0);
617 oclass_type = G_OBJECT_CLASS_TYPE (class);
618 parent_type = g_type_parent (oclass_type);
620 if (CLASS_HAS_DERIVED_CLASS (class))
621 g_error ("Attempt to add property %s::%s to class after it was derived", G_OBJECT_CLASS_NAME (class), pspec->name);
623 (void) validate_and_install_class_property (class,
624 oclass_type,
625 parent_type,
626 property_id,
627 pspec);
631 * g_object_class_install_properties:
632 * @oclass: a #GObjectClass
633 * @n_pspecs: the length of the #GParamSpecs array
634 * @pspecs: (array length=n_pspecs): the #GParamSpecs array
635 * defining the new properties
637 * Installs new properties from an array of #GParamSpecs.
639 * All properties should be installed during the class initializer. It
640 * is possible to install properties after that, but doing so is not
641 * recommend, and specifically, is not guaranteed to be thread-safe vs.
642 * use of properties on the same type on other threads.
644 * The property id of each property is the index of each #GParamSpec in
645 * the @pspecs array.
647 * The property id of 0 is treated specially by #GObject and it should not
648 * be used to store a #GParamSpec.
650 * This function should be used if you plan to use a static array of
651 * #GParamSpecs and g_object_notify_by_pspec(). For instance, this
652 * class initialization:
654 * |[<!-- language="C" -->
655 * enum {
656 * PROP_0, PROP_FOO, PROP_BAR, N_PROPERTIES
657 * };
659 * static GParamSpec *obj_properties[N_PROPERTIES] = { NULL, };
661 * static void
662 * my_object_class_init (MyObjectClass *klass)
664 * GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
666 * obj_properties[PROP_FOO] =
667 * g_param_spec_int ("foo", "Foo", "Foo",
668 * -1, G_MAXINT,
669 * 0,
670 * G_PARAM_READWRITE);
672 * obj_properties[PROP_BAR] =
673 * g_param_spec_string ("bar", "Bar", "Bar",
674 * NULL,
675 * G_PARAM_READWRITE);
677 * gobject_class->set_property = my_object_set_property;
678 * gobject_class->get_property = my_object_get_property;
679 * g_object_class_install_properties (gobject_class,
680 * N_PROPERTIES,
681 * obj_properties);
683 * ]|
685 * allows calling g_object_notify_by_pspec() to notify of property changes:
687 * |[<!-- language="C" -->
688 * void
689 * my_object_set_foo (MyObject *self, gint foo)
691 * if (self->foo != foo)
693 * self->foo = foo;
694 * g_object_notify_by_pspec (G_OBJECT (self), obj_properties[PROP_FOO]);
697 * ]|
699 * Since: 2.26
701 void
702 g_object_class_install_properties (GObjectClass *oclass,
703 guint n_pspecs,
704 GParamSpec **pspecs)
706 GType oclass_type, parent_type;
707 gint i;
709 g_return_if_fail (G_IS_OBJECT_CLASS (oclass));
710 g_return_if_fail (n_pspecs > 1);
711 g_return_if_fail (pspecs[0] == NULL);
713 if (CLASS_HAS_DERIVED_CLASS (oclass))
714 g_error ("Attempt to add properties to %s after it was derived",
715 G_OBJECT_CLASS_NAME (oclass));
717 oclass_type = G_OBJECT_CLASS_TYPE (oclass);
718 parent_type = g_type_parent (oclass_type);
720 /* we skip the first element of the array as it would have a 0 prop_id */
721 for (i = 1; i < n_pspecs; i++)
723 GParamSpec *pspec = pspecs[i];
725 if (!validate_and_install_class_property (oclass,
726 oclass_type,
727 parent_type,
729 pspec))
731 break;
737 * g_object_interface_install_property:
738 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
739 * interface, or the default
740 * vtable for the interface.
741 * @pspec: the #GParamSpec for the new property
743 * Add a property to an interface; this is only useful for interfaces
744 * that are added to GObject-derived types. Adding a property to an
745 * interface forces all objects classes with that interface to have a
746 * compatible property. The compatible property could be a newly
747 * created #GParamSpec, but normally
748 * g_object_class_override_property() will be used so that the object
749 * class only needs to provide an implementation and inherits the
750 * property description, default value, bounds, and so forth from the
751 * interface property.
753 * This function is meant to be called from the interface's default
754 * vtable initialization function (the @class_init member of
755 * #GTypeInfo.) It must not be called after after @class_init has
756 * been called for any object types implementing this interface.
758 * If @pspec is a floating reference, it will be consumed.
760 * Since: 2.4
762 void
763 g_object_interface_install_property (gpointer g_iface,
764 GParamSpec *pspec)
766 GTypeInterface *iface_class = g_iface;
768 g_return_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type));
769 g_return_if_fail (!G_IS_PARAM_SPEC_OVERRIDE (pspec)); /* paranoid */
771 if (!validate_pspec_to_install (pspec))
772 return;
774 (void) install_property_internal (iface_class->g_type, 0, pspec);
778 * g_object_class_find_property:
779 * @oclass: a #GObjectClass
780 * @property_name: the name of the property to look up
782 * Looks up the #GParamSpec for a property of a class.
784 * Returns: (transfer none): the #GParamSpec for the property, or
785 * %NULL if the class doesn't have a property of that name
787 GParamSpec*
788 g_object_class_find_property (GObjectClass *class,
789 const gchar *property_name)
791 GParamSpec *pspec;
792 GParamSpec *redirect;
794 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL);
795 g_return_val_if_fail (property_name != NULL, NULL);
797 pspec = g_param_spec_pool_lookup (pspec_pool,
798 property_name,
799 G_OBJECT_CLASS_TYPE (class),
800 TRUE);
801 if (pspec)
803 redirect = g_param_spec_get_redirect_target (pspec);
804 if (redirect)
805 return redirect;
806 else
807 return pspec;
809 else
810 return NULL;
814 * g_object_interface_find_property:
815 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
816 * interface, or the default vtable for the interface
817 * @property_name: name of a property to lookup.
819 * Find the #GParamSpec with the given name for an
820 * interface. Generally, the interface vtable passed in as @g_iface
821 * will be the default vtable from g_type_default_interface_ref(), or,
822 * if you know the interface has already been loaded,
823 * g_type_default_interface_peek().
825 * Since: 2.4
827 * Returns: (transfer none): the #GParamSpec for the property of the
828 * interface with the name @property_name, or %NULL if no
829 * such property exists.
831 GParamSpec*
832 g_object_interface_find_property (gpointer g_iface,
833 const gchar *property_name)
835 GTypeInterface *iface_class = g_iface;
837 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type), NULL);
838 g_return_val_if_fail (property_name != NULL, NULL);
840 return g_param_spec_pool_lookup (pspec_pool,
841 property_name,
842 iface_class->g_type,
843 FALSE);
847 * g_object_class_override_property:
848 * @oclass: a #GObjectClass
849 * @property_id: the new property ID
850 * @name: the name of a property registered in a parent class or
851 * in an interface of this class.
853 * Registers @property_id as referring to a property with the name
854 * @name in a parent class or in an interface implemented by @oclass.
855 * This allows this class to "override" a property implementation in
856 * a parent class or to provide the implementation of a property from
857 * an interface.
859 * Internally, overriding is implemented by creating a property of type
860 * #GParamSpecOverride; generally operations that query the properties of
861 * the object class, such as g_object_class_find_property() or
862 * g_object_class_list_properties() will return the overridden
863 * property. However, in one case, the @construct_properties argument of
864 * the @constructor virtual function, the #GParamSpecOverride is passed
865 * instead, so that the @param_id field of the #GParamSpec will be
866 * correct. For virtually all uses, this makes no difference. If you
867 * need to get the overridden property, you can call
868 * g_param_spec_get_redirect_target().
870 * Since: 2.4
872 void
873 g_object_class_override_property (GObjectClass *oclass,
874 guint property_id,
875 const gchar *name)
877 GParamSpec *overridden = NULL;
878 GParamSpec *new;
879 GType parent_type;
881 g_return_if_fail (G_IS_OBJECT_CLASS (oclass));
882 g_return_if_fail (property_id > 0);
883 g_return_if_fail (name != NULL);
885 /* Find the overridden property; first check parent types
887 parent_type = g_type_parent (G_OBJECT_CLASS_TYPE (oclass));
888 if (parent_type != G_TYPE_NONE)
889 overridden = g_param_spec_pool_lookup (pspec_pool,
890 name,
891 parent_type,
892 TRUE);
893 if (!overridden)
895 GType *ifaces;
896 guint n_ifaces;
898 /* Now check interfaces
900 ifaces = g_type_interfaces (G_OBJECT_CLASS_TYPE (oclass), &n_ifaces);
901 while (n_ifaces-- && !overridden)
903 overridden = g_param_spec_pool_lookup (pspec_pool,
904 name,
905 ifaces[n_ifaces],
906 FALSE);
909 g_free (ifaces);
912 if (!overridden)
914 g_warning ("%s: Can't find property to override for '%s::%s'",
915 G_STRFUNC, G_OBJECT_CLASS_NAME (oclass), name);
916 return;
919 new = g_param_spec_override (name, overridden);
920 g_object_class_install_property (oclass, property_id, new);
924 * g_object_class_list_properties:
925 * @oclass: a #GObjectClass
926 * @n_properties: (out): return location for the length of the returned array
928 * Get an array of #GParamSpec* for all properties of a class.
930 * Returns: (array length=n_properties) (transfer container): an array of
931 * #GParamSpec* which should be freed after use
933 GParamSpec** /* free result */
934 g_object_class_list_properties (GObjectClass *class,
935 guint *n_properties_p)
937 GParamSpec **pspecs;
938 guint n;
940 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL);
942 pspecs = g_param_spec_pool_list (pspec_pool,
943 G_OBJECT_CLASS_TYPE (class),
944 &n);
945 if (n_properties_p)
946 *n_properties_p = n;
948 return pspecs;
952 * g_object_interface_list_properties:
953 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
954 * interface, or the default vtable for the interface
955 * @n_properties_p: (out): location to store number of properties returned.
957 * Lists the properties of an interface.Generally, the interface
958 * vtable passed in as @g_iface will be the default vtable from
959 * g_type_default_interface_ref(), or, if you know the interface has
960 * already been loaded, g_type_default_interface_peek().
962 * Since: 2.4
964 * Returns: (array length=n_properties_p) (transfer container): a
965 * pointer to an array of pointers to #GParamSpec
966 * structures. The paramspecs are owned by GLib, but the
967 * array should be freed with g_free() when you are done with
968 * it.
970 GParamSpec**
971 g_object_interface_list_properties (gpointer g_iface,
972 guint *n_properties_p)
974 GTypeInterface *iface_class = g_iface;
975 GParamSpec **pspecs;
976 guint n;
978 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class->g_type), NULL);
980 pspecs = g_param_spec_pool_list (pspec_pool,
981 iface_class->g_type,
982 &n);
983 if (n_properties_p)
984 *n_properties_p = n;
986 return pspecs;
989 static inline gboolean
990 object_in_construction (GObject *object)
992 return g_datalist_id_get_data (&object->qdata, quark_in_construction) != NULL;
995 static void
996 g_object_init (GObject *object,
997 GObjectClass *class)
999 object->ref_count = 1;
1000 object->qdata = NULL;
1002 if (CLASS_HAS_PROPS (class))
1004 /* freeze object's notification queue, g_object_newv() preserves pairedness */
1005 g_object_notify_queue_freeze (object, FALSE);
1008 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1010 /* mark object in-construction for notify_queue_thaw() and to allow construct-only properties */
1011 g_datalist_id_set_data (&object->qdata, quark_in_construction, object);
1014 GOBJECT_IF_DEBUG (OBJECTS,
1016 G_LOCK (debug_objects);
1017 debug_objects_count++;
1018 g_hash_table_add (debug_objects_ht, object);
1019 G_UNLOCK (debug_objects);
1023 static void
1024 g_object_do_set_property (GObject *object,
1025 guint property_id,
1026 const GValue *value,
1027 GParamSpec *pspec)
1029 switch (property_id)
1031 default:
1032 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
1033 break;
1037 static void
1038 g_object_do_get_property (GObject *object,
1039 guint property_id,
1040 GValue *value,
1041 GParamSpec *pspec)
1043 switch (property_id)
1045 default:
1046 G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
1047 break;
1051 static void
1052 g_object_real_dispose (GObject *object)
1054 g_signal_handlers_destroy (object);
1055 g_datalist_id_set_data (&object->qdata, quark_closure_array, NULL);
1056 g_datalist_id_set_data (&object->qdata, quark_weak_refs, NULL);
1059 static void
1060 g_object_finalize (GObject *object)
1062 if (object_in_construction (object))
1064 g_critical ("object %s %p finalized while still in-construction",
1065 G_OBJECT_TYPE_NAME (object), object);
1068 g_datalist_clear (&object->qdata);
1070 GOBJECT_IF_DEBUG (OBJECTS,
1072 G_LOCK (debug_objects);
1073 g_assert (g_hash_table_contains (debug_objects_ht, object));
1074 g_hash_table_remove (debug_objects_ht, object);
1075 debug_objects_count--;
1076 G_UNLOCK (debug_objects);
1080 static void
1081 g_object_dispatch_properties_changed (GObject *object,
1082 guint n_pspecs,
1083 GParamSpec **pspecs)
1085 guint i;
1087 for (i = 0; i < n_pspecs; i++)
1088 g_signal_emit (object, gobject_signals[NOTIFY], g_param_spec_get_name_quark (pspecs[i]), pspecs[i]);
1092 * g_object_run_dispose:
1093 * @object: a #GObject
1095 * Releases all references to other objects. This can be used to break
1096 * reference cycles.
1098 * This function should only be called from object system implementations.
1100 void
1101 g_object_run_dispose (GObject *object)
1103 g_return_if_fail (G_IS_OBJECT (object));
1104 g_return_if_fail (object->ref_count > 0);
1106 g_object_ref (object);
1107 TRACE (GOBJECT_OBJECT_DISPOSE(object,G_TYPE_FROM_INSTANCE(object), 0));
1108 G_OBJECT_GET_CLASS (object)->dispose (object);
1109 TRACE (GOBJECT_OBJECT_DISPOSE_END(object,G_TYPE_FROM_INSTANCE(object), 0));
1110 g_object_unref (object);
1114 * g_object_freeze_notify:
1115 * @object: a #GObject
1117 * Increases the freeze count on @object. If the freeze count is
1118 * non-zero, the emission of "notify" signals on @object is
1119 * stopped. The signals are queued until the freeze count is decreased
1120 * to zero. Duplicate notifications are squashed so that at most one
1121 * #GObject::notify signal is emitted for each property modified while the
1122 * object is frozen.
1124 * This is necessary for accessors that modify multiple properties to prevent
1125 * premature notification while the object is still being modified.
1127 void
1128 g_object_freeze_notify (GObject *object)
1130 g_return_if_fail (G_IS_OBJECT (object));
1132 if (g_atomic_int_get (&object->ref_count) == 0)
1133 return;
1135 g_object_ref (object);
1136 g_object_notify_queue_freeze (object, FALSE);
1137 g_object_unref (object);
1140 static GParamSpec *
1141 get_notify_pspec (GParamSpec *pspec)
1143 GParamSpec *redirected;
1145 /* we don't notify on non-READABLE parameters */
1146 if (~pspec->flags & G_PARAM_READABLE)
1147 return NULL;
1149 /* if the paramspec is redirected, notify on the target */
1150 redirected = g_param_spec_get_redirect_target (pspec);
1151 if (redirected != NULL)
1152 return redirected;
1154 /* else, notify normally */
1155 return pspec;
1158 static inline void
1159 g_object_notify_by_spec_internal (GObject *object,
1160 GParamSpec *pspec)
1162 GParamSpec *notify_pspec;
1164 notify_pspec = get_notify_pspec (pspec);
1166 if (notify_pspec != NULL)
1168 GObjectNotifyQueue *nqueue;
1170 /* conditional freeze: only increase freeze count if already frozen */
1171 nqueue = g_object_notify_queue_freeze (object, TRUE);
1173 if (nqueue != NULL)
1175 /* we're frozen, so add to the queue and release our freeze */
1176 g_object_notify_queue_add (object, nqueue, notify_pspec);
1177 g_object_notify_queue_thaw (object, nqueue);
1179 else
1180 /* not frozen, so just dispatch the notification directly */
1181 G_OBJECT_GET_CLASS (object)
1182 ->dispatch_properties_changed (object, 1, &notify_pspec);
1187 * g_object_notify:
1188 * @object: a #GObject
1189 * @property_name: the name of a property installed on the class of @object.
1191 * Emits a "notify" signal for the property @property_name on @object.
1193 * When possible, eg. when signaling a property change from within the class
1194 * that registered the property, you should use g_object_notify_by_pspec()
1195 * instead.
1197 * Note that emission of the notify signal may be blocked with
1198 * g_object_freeze_notify(). In this case, the signal emissions are queued
1199 * and will be emitted (in reverse order) when g_object_thaw_notify() is
1200 * called.
1202 void
1203 g_object_notify (GObject *object,
1204 const gchar *property_name)
1206 GParamSpec *pspec;
1208 g_return_if_fail (G_IS_OBJECT (object));
1209 g_return_if_fail (property_name != NULL);
1210 if (g_atomic_int_get (&object->ref_count) == 0)
1211 return;
1213 g_object_ref (object);
1214 /* We don't need to get the redirect target
1215 * (by, e.g. calling g_object_class_find_property())
1216 * because g_object_notify_queue_add() does that
1218 pspec = g_param_spec_pool_lookup (pspec_pool,
1219 property_name,
1220 G_OBJECT_TYPE (object),
1221 TRUE);
1223 if (!pspec)
1224 g_warning ("%s: object class '%s' has no property named '%s'",
1225 G_STRFUNC,
1226 G_OBJECT_TYPE_NAME (object),
1227 property_name);
1228 else
1229 g_object_notify_by_spec_internal (object, pspec);
1230 g_object_unref (object);
1234 * g_object_notify_by_pspec:
1235 * @object: a #GObject
1236 * @pspec: the #GParamSpec of a property installed on the class of @object.
1238 * Emits a "notify" signal for the property specified by @pspec on @object.
1240 * This function omits the property name lookup, hence it is faster than
1241 * g_object_notify().
1243 * One way to avoid using g_object_notify() from within the
1244 * class that registered the properties, and using g_object_notify_by_pspec()
1245 * instead, is to store the GParamSpec used with
1246 * g_object_class_install_property() inside a static array, e.g.:
1248 *|[<!-- language="C" -->
1249 * enum
1251 * PROP_0,
1252 * PROP_FOO,
1253 * PROP_LAST
1254 * };
1256 * static GParamSpec *properties[PROP_LAST];
1258 * static void
1259 * my_object_class_init (MyObjectClass *klass)
1261 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1262 * 0, 100,
1263 * 50,
1264 * G_PARAM_READWRITE);
1265 * g_object_class_install_property (gobject_class,
1266 * PROP_FOO,
1267 * properties[PROP_FOO]);
1269 * ]|
1271 * and then notify a change on the "foo" property with:
1273 * |[<!-- language="C" -->
1274 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1275 * ]|
1277 * Since: 2.26
1279 void
1280 g_object_notify_by_pspec (GObject *object,
1281 GParamSpec *pspec)
1284 g_return_if_fail (G_IS_OBJECT (object));
1285 g_return_if_fail (G_IS_PARAM_SPEC (pspec));
1287 if (g_atomic_int_get (&object->ref_count) == 0)
1288 return;
1290 g_object_ref (object);
1291 g_object_notify_by_spec_internal (object, pspec);
1292 g_object_unref (object);
1296 * g_object_thaw_notify:
1297 * @object: a #GObject
1299 * Reverts the effect of a previous call to
1300 * g_object_freeze_notify(). The freeze count is decreased on @object
1301 * and when it reaches zero, queued "notify" signals are emitted.
1303 * Duplicate notifications for each property are squashed so that at most one
1304 * #GObject::notify signal is emitted for each property, in the reverse order
1305 * in which they have been queued.
1307 * It is an error to call this function when the freeze count is zero.
1309 void
1310 g_object_thaw_notify (GObject *object)
1312 GObjectNotifyQueue *nqueue;
1314 g_return_if_fail (G_IS_OBJECT (object));
1315 if (g_atomic_int_get (&object->ref_count) == 0)
1316 return;
1318 g_object_ref (object);
1320 /* FIXME: Freezing is the only way to get at the notify queue.
1321 * So we freeze once and then thaw twice.
1323 nqueue = g_object_notify_queue_freeze (object, FALSE);
1324 g_object_notify_queue_thaw (object, nqueue);
1325 g_object_notify_queue_thaw (object, nqueue);
1327 g_object_unref (object);
1330 static void
1331 consider_issuing_property_deprecation_warning (const GParamSpec *pspec)
1333 static GHashTable *already_warned_table;
1334 static const gchar *enable_diagnostic;
1335 static GMutex already_warned_lock;
1336 gboolean already;
1338 if (!(pspec->flags & G_PARAM_DEPRECATED))
1339 return;
1341 if (g_once_init_enter (&enable_diagnostic))
1343 const gchar *value = g_getenv ("G_ENABLE_DIAGNOSTIC");
1345 if (!value)
1346 value = "0";
1348 g_once_init_leave (&enable_diagnostic, value);
1351 if (enable_diagnostic[0] == '0')
1352 return;
1354 /* We hash only on property names: this means that we could end up in
1355 * a situation where we fail to emit a warning about a pair of
1356 * same-named deprecated properties used on two separate types.
1357 * That's pretty unlikely to occur, and even if it does, you'll still
1358 * have seen the warning for the first one...
1360 * Doing it this way lets us hash directly on the (interned) property
1361 * name pointers.
1363 g_mutex_lock (&already_warned_lock);
1365 if (already_warned_table == NULL)
1366 already_warned_table = g_hash_table_new (NULL, NULL);
1368 already = g_hash_table_contains (already_warned_table, (gpointer) pspec->name);
1369 if (!already)
1370 g_hash_table_add (already_warned_table, (gpointer) pspec->name);
1372 g_mutex_unlock (&already_warned_lock);
1374 if (!already)
1375 g_warning ("The property %s:%s is deprecated and shouldn't be used "
1376 "anymore. It will be removed in a future version.",
1377 g_type_name (pspec->owner_type), pspec->name);
1380 static inline void
1381 object_get_property (GObject *object,
1382 GParamSpec *pspec,
1383 GValue *value)
1385 GObjectClass *class = g_type_class_peek (pspec->owner_type);
1386 guint param_id = PARAM_SPEC_PARAM_ID (pspec);
1387 GParamSpec *redirect;
1389 if (class == NULL)
1391 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1392 g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
1393 return;
1396 redirect = g_param_spec_get_redirect_target (pspec);
1397 if (redirect)
1398 pspec = redirect;
1400 consider_issuing_property_deprecation_warning (pspec);
1402 class->get_property (object, param_id, value, pspec);
1405 static inline void
1406 object_set_property (GObject *object,
1407 GParamSpec *pspec,
1408 const GValue *value,
1409 GObjectNotifyQueue *nqueue)
1411 GValue tmp_value = G_VALUE_INIT;
1412 GObjectClass *class = g_type_class_peek (pspec->owner_type);
1413 guint param_id = PARAM_SPEC_PARAM_ID (pspec);
1414 GParamSpec *redirect;
1416 if (class == NULL)
1418 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1419 g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
1420 return;
1423 redirect = g_param_spec_get_redirect_target (pspec);
1424 if (redirect)
1425 pspec = redirect;
1427 /* provide a copy to work from, convert (if necessary) and validate */
1428 g_value_init (&tmp_value, pspec->value_type);
1429 if (!g_value_transform (value, &tmp_value))
1430 g_warning ("unable to set property '%s' of type '%s' from value of type '%s'",
1431 pspec->name,
1432 g_type_name (pspec->value_type),
1433 G_VALUE_TYPE_NAME (value));
1434 else if (g_param_value_validate (pspec, &tmp_value) && !(pspec->flags & G_PARAM_LAX_VALIDATION))
1436 gchar *contents = g_strdup_value_contents (value);
1438 g_warning ("value \"%s\" of type '%s' is invalid or out of range for property '%s' of type '%s'",
1439 contents,
1440 G_VALUE_TYPE_NAME (value),
1441 pspec->name,
1442 g_type_name (pspec->value_type));
1443 g_free (contents);
1445 else
1447 class->set_property (object, param_id, &tmp_value, pspec);
1449 if (~pspec->flags & G_PARAM_EXPLICIT_NOTIFY)
1451 GParamSpec *notify_pspec;
1453 notify_pspec = get_notify_pspec (pspec);
1455 if (notify_pspec != NULL)
1456 g_object_notify_queue_add (object, nqueue, notify_pspec);
1459 g_value_unset (&tmp_value);
1462 static void
1463 object_interface_check_properties (gpointer check_data,
1464 gpointer g_iface)
1466 GTypeInterface *iface_class = g_iface;
1467 GObjectClass *class;
1468 GType iface_type = iface_class->g_type;
1469 GParamSpec **pspecs;
1470 guint n;
1472 class = g_type_class_ref (iface_class->g_instance_type);
1474 if (class == NULL)
1475 return;
1477 if (!G_IS_OBJECT_CLASS (class))
1478 goto out;
1480 pspecs = g_param_spec_pool_list (pspec_pool, iface_type, &n);
1482 while (n--)
1484 GParamSpec *class_pspec = g_param_spec_pool_lookup (pspec_pool,
1485 pspecs[n]->name,
1486 G_OBJECT_CLASS_TYPE (class),
1487 TRUE);
1489 if (!class_pspec)
1491 g_critical ("Object class %s doesn't implement property "
1492 "'%s' from interface '%s'",
1493 g_type_name (G_OBJECT_CLASS_TYPE (class)),
1494 pspecs[n]->name,
1495 g_type_name (iface_type));
1497 continue;
1500 /* We do a number of checks on the properties of an interface to
1501 * make sure that all classes implementing the interface are
1502 * overriding the properties in a sane way.
1504 * We do the checks in order of importance so that we can give
1505 * more useful error messages first.
1507 * First, we check that the implementation doesn't remove the
1508 * basic functionality (readability, writability) advertised by
1509 * the interface. Next, we check that it doesn't introduce
1510 * additional restrictions (such as construct-only). Finally, we
1511 * make sure the types are compatible.
1514 #define SUBSET(a,b,mask) (((a) & ~(b) & (mask)) == 0)
1515 /* If the property on the interface is readable then the
1516 * implementation must be readable. If the interface is writable
1517 * then the implementation must be writable.
1519 if (!SUBSET (pspecs[n]->flags, class_pspec->flags, G_PARAM_READABLE | G_PARAM_WRITABLE))
1521 g_critical ("Flags for property '%s' on class '%s' remove functionality compared with the "
1522 "property on interface '%s'\n", pspecs[n]->name,
1523 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type));
1524 continue;
1527 /* If the property on the interface is writable then we need to
1528 * make sure the implementation doesn't introduce new restrictions
1529 * on that writability (ie: construct-only).
1531 * If the interface was not writable to begin with then we don't
1532 * really have any problems here because "writable at construct
1533 * time only" is still more permissive than "read only".
1535 if (pspecs[n]->flags & G_PARAM_WRITABLE)
1537 if (!SUBSET (class_pspec->flags, pspecs[n]->flags, G_PARAM_CONSTRUCT_ONLY))
1539 g_critical ("Flags for property '%s' on class '%s' introduce additional restrictions on "
1540 "writability compared with the property on interface '%s'\n", pspecs[n]->name,
1541 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type));
1542 continue;
1545 #undef SUBSET
1547 /* If the property on the interface is readable then we are
1548 * effectively advertising that reading the property will return a
1549 * value of a specific type. All implementations of the interface
1550 * need to return items of this type -- but may be more
1551 * restrictive. For example, it is legal to have:
1553 * GtkWidget *get_item();
1555 * that is implemented by a function that always returns a
1556 * GtkEntry. In short: readability implies that the
1557 * implementation value type must be equal or more restrictive.
1559 * Similarly, if the property on the interface is writable then
1560 * must be able to accept the property being set to any value of
1561 * that type, including subclasses. In this case, we may also be
1562 * less restrictive. For example, it is legal to have:
1564 * set_item (GtkEntry *);
1566 * that is implemented by a function that will actually work with
1567 * any GtkWidget. In short: writability implies that the
1568 * implementation value type must be equal or less restrictive.
1570 * In the case that the property is both readable and writable
1571 * then the only way that both of the above can be satisfied is
1572 * with a type that is exactly equal.
1574 switch (pspecs[n]->flags & (G_PARAM_READABLE | G_PARAM_WRITABLE))
1576 case G_PARAM_READABLE | G_PARAM_WRITABLE:
1577 /* class pspec value type must have exact equality with interface */
1578 if (pspecs[n]->value_type != class_pspec->value_type)
1579 g_critical ("Read/writable property '%s' on class '%s' has type '%s' which is not exactly equal to the "
1580 "type '%s' of the property on the interface '%s'\n", pspecs[n]->name,
1581 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1582 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1583 break;
1585 case G_PARAM_READABLE:
1586 /* class pspec value type equal or more restrictive than interface */
1587 if (!g_type_is_a (class_pspec->value_type, pspecs[n]->value_type))
1588 g_critical ("Read-only property '%s' on class '%s' has type '%s' which is not equal to or more "
1589 "restrictive than the type '%s' of the property on the interface '%s'\n", pspecs[n]->name,
1590 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1591 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1592 break;
1594 case G_PARAM_WRITABLE:
1595 /* class pspec value type equal or less restrictive than interface */
1596 if (!g_type_is_a (pspecs[n]->value_type, class_pspec->value_type))
1597 g_critical ("Write-only property '%s' on class '%s' has type '%s' which is not equal to or less "
1598 "restrictive than the type '%s' of the property on the interface '%s' \n", pspecs[n]->name,
1599 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec)),
1600 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs[n])), g_type_name (iface_type));
1601 break;
1603 default:
1604 g_assert_not_reached ();
1608 g_free (pspecs);
1610 out:
1611 g_type_class_unref (class);
1614 GType
1615 g_object_get_type (void)
1617 return G_TYPE_OBJECT;
1621 * g_object_new: (skip)
1622 * @object_type: the type id of the #GObject subtype to instantiate
1623 * @first_property_name: the name of the first property
1624 * @...: the value of the first property, followed optionally by more
1625 * name/value pairs, followed by %NULL
1627 * Creates a new instance of a #GObject subtype and sets its properties.
1629 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1630 * which are not explicitly specified are set to their default values.
1632 * Returns: (transfer full) (type GObject.Object): a new instance of
1633 * @object_type
1635 gpointer
1636 g_object_new (GType object_type,
1637 const gchar *first_property_name,
1638 ...)
1640 GObject *object;
1641 va_list var_args;
1643 /* short circuit for calls supplying no properties */
1644 if (!first_property_name)
1645 return g_object_new_with_properties (object_type, 0, NULL, NULL);
1647 va_start (var_args, first_property_name);
1648 object = g_object_new_valist (object_type, first_property_name, var_args);
1649 va_end (var_args);
1651 return object;
1654 static gpointer
1655 g_object_new_with_custom_constructor (GObjectClass *class,
1656 GObjectConstructParam *params,
1657 guint n_params)
1659 GObjectNotifyQueue *nqueue = NULL;
1660 gboolean newly_constructed;
1661 GObjectConstructParam *cparams;
1662 GObject *object;
1663 GValue *cvalues;
1664 gint n_cparams;
1665 gint cvals_used;
1666 GSList *node;
1667 gint i;
1669 /* If we have ->constructed() then we have to do a lot more work.
1670 * It's possible that this is a singleton and it's also possible
1671 * that the user's constructor() will attempt to modify the values
1672 * that we pass in, so we'll need to allocate copies of them.
1673 * It's also possible that the user may attempt to call
1674 * g_object_set() from inside of their constructor, so we need to
1675 * add ourselves to a list of objects for which that is allowed
1676 * while their constructor() is running.
1679 /* Create the array of GObjectConstructParams for constructor() */
1680 n_cparams = g_slist_length (class->construct_properties);
1681 cparams = g_new (GObjectConstructParam, n_cparams);
1682 cvalues = g_new0 (GValue, n_cparams);
1683 cvals_used = 0;
1684 i = 0;
1686 /* As above, we may find the value in the passed-in params list.
1688 * If we have the value passed in then we can use the GValue from
1689 * it directly because it is safe to modify. If we use the
1690 * default value from the class, we had better not pass that in
1691 * and risk it being modified, so we create a new one.
1692 * */
1693 for (node = class->construct_properties; node; node = node->next)
1695 GParamSpec *pspec;
1696 GValue *value;
1697 gint j;
1699 pspec = node->data;
1700 value = NULL; /* to silence gcc... */
1702 for (j = 0; j < n_params; j++)
1703 if (params[j].pspec == pspec)
1705 consider_issuing_property_deprecation_warning (pspec);
1706 value = params[j].value;
1707 break;
1710 if (j == n_params)
1712 value = &cvalues[cvals_used++];
1713 g_value_init (value, pspec->value_type);
1714 g_param_value_set_default (pspec, value);
1717 cparams[i].pspec = pspec;
1718 cparams[i].value = value;
1719 i++;
1722 /* construct object from construction parameters */
1723 object = class->constructor (class->g_type_class.g_type, n_cparams, cparams);
1724 /* free construction values */
1725 g_free (cparams);
1726 while (cvals_used--)
1727 g_value_unset (&cvalues[cvals_used]);
1728 g_free (cvalues);
1730 /* There is code in the wild that relies on being able to return NULL
1731 * from its custom constructor. This was never a supported operation,
1732 * but since the code is already out there...
1734 if (object == NULL)
1736 g_critical ("Custom constructor for class %s returned NULL (which is invalid). "
1737 "Please use GInitable instead.", G_OBJECT_CLASS_NAME (class));
1738 return NULL;
1741 /* g_object_init() will have marked the object as being in-construction.
1742 * Check if the returned object still is so marked, or if this is an
1743 * already-existing singleton (in which case we should not do 'constructed').
1745 newly_constructed = object_in_construction (object);
1746 if (newly_constructed)
1747 g_datalist_id_set_data (&object->qdata, quark_in_construction, NULL);
1749 if (CLASS_HAS_PROPS (class))
1751 /* If this object was newly_constructed then g_object_init()
1752 * froze the queue. We need to freeze it here in order to get
1753 * the handle so that we can thaw it below (otherwise it will
1754 * be frozen forever).
1756 * We also want to do a freeze if we have any params to set,
1757 * even on a non-newly_constructed object.
1759 * It's possible that we have the case of non-newly created
1760 * singleton and all of the passed-in params were construct
1761 * properties so n_params > 0 but we will actually set no
1762 * properties. This is a pretty lame case to optimise, so
1763 * just ignore it and freeze anyway.
1765 if (newly_constructed || n_params)
1766 nqueue = g_object_notify_queue_freeze (object, FALSE);
1768 /* Remember: if it was newly_constructed then g_object_init()
1769 * already did a freeze, so we now have two. Release one.
1771 if (newly_constructed)
1772 g_object_notify_queue_thaw (object, nqueue);
1775 /* run 'constructed' handler if there is a custom one */
1776 if (newly_constructed && CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1777 class->constructed (object);
1779 /* set remaining properties */
1780 for (i = 0; i < n_params; i++)
1781 if (!(params[i].pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY)))
1783 consider_issuing_property_deprecation_warning (params[i].pspec);
1784 object_set_property (object, params[i].pspec, params[i].value, nqueue);
1787 /* If nqueue is non-NULL then we are frozen. Thaw it. */
1788 if (nqueue)
1789 g_object_notify_queue_thaw (object, nqueue);
1791 return object;
1794 static gpointer
1795 g_object_new_internal (GObjectClass *class,
1796 GObjectConstructParam *params,
1797 guint n_params)
1799 GObjectNotifyQueue *nqueue = NULL;
1800 GObject *object;
1802 if G_UNLIKELY (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1803 return g_object_new_with_custom_constructor (class, params, n_params);
1805 object = (GObject *) g_type_create_instance (class->g_type_class.g_type);
1807 if (CLASS_HAS_PROPS (class))
1809 GSList *node;
1811 /* This will have been setup in g_object_init() */
1812 nqueue = g_datalist_id_get_data (&object->qdata, quark_notify_queue);
1813 g_assert (nqueue != NULL);
1815 /* We will set exactly n_construct_properties construct
1816 * properties, but they may come from either the class default
1817 * values or the passed-in parameter list.
1819 for (node = class->construct_properties; node; node = node->next)
1821 const GValue *value;
1822 GParamSpec *pspec;
1823 gint j;
1825 pspec = node->data;
1826 value = NULL; /* to silence gcc... */
1828 for (j = 0; j < n_params; j++)
1829 if (params[j].pspec == pspec)
1831 consider_issuing_property_deprecation_warning (pspec);
1832 value = params[j].value;
1833 break;
1836 if (j == n_params)
1837 value = g_param_spec_get_default_value (pspec);
1839 object_set_property (object, pspec, value, nqueue);
1843 /* run 'constructed' handler if there is a custom one */
1844 if (CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1845 class->constructed (object);
1847 if (nqueue)
1849 gint i;
1851 /* Set remaining properties. The construct properties will
1852 * already have been taken, so set only the non-construct
1853 * ones.
1855 for (i = 0; i < n_params; i++)
1856 if (!(params[i].pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY)))
1858 consider_issuing_property_deprecation_warning (params[i].pspec);
1859 object_set_property (object, params[i].pspec, params[i].value, nqueue);
1862 g_object_notify_queue_thaw (object, nqueue);
1865 return object;
1869 static inline gboolean
1870 g_object_new_is_valid_property (GType object_type,
1871 GParamSpec *pspec,
1872 const char *name,
1873 GObjectConstructParam *params,
1874 int n_params)
1876 gint i;
1877 if (G_UNLIKELY (pspec == NULL))
1879 g_critical ("%s: object class '%s' has no property named '%s'",
1880 G_STRFUNC, g_type_name (object_type), name);
1881 return FALSE;
1884 if (G_UNLIKELY (~pspec->flags & G_PARAM_WRITABLE))
1886 g_critical ("%s: property '%s' of object class '%s' is not writable",
1887 G_STRFUNC, pspec->name, g_type_name (object_type));
1888 return FALSE;
1891 if (G_UNLIKELY (pspec->flags & (G_PARAM_CONSTRUCT | G_PARAM_CONSTRUCT_ONLY)))
1893 for (i = 0; i < n_params; i++)
1894 if (params[i].pspec == pspec)
1895 break;
1896 if (G_UNLIKELY (i != n_params))
1898 g_critical ("%s: property '%s' for type '%s' cannot be set twice",
1899 G_STRFUNC, name, g_type_name (object_type));
1900 return FALSE;
1903 return TRUE;
1908 * g_object_new_with_properties: (skip)
1909 * @object_type: the object type to instantiate
1910 * @n_properties: the number of properties
1911 * @names: (array length=n_properties): the names of each property to be set
1912 * @values: (array length=n_properties): the values of each property to be set
1914 * Creates a new instance of a #GObject subtype and sets its properties using
1915 * the provided arrays. Both arrays must have exactly @n_properties elements,
1916 * and the names and values correspond by index.
1918 * Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY)
1919 * which are not explicitly specified are set to their default values.
1921 * Returns: (type GObject.Object) (transfer full): a new instance of
1922 * @object_type
1924 * Since: 2.54
1926 GObject *
1927 g_object_new_with_properties (GType object_type,
1928 guint n_properties,
1929 const char *names[],
1930 const GValue values[])
1932 GObjectClass *class, *unref_class = NULL;
1933 GObject *object;
1935 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
1937 /* Try to avoid thrashing the ref_count if we don't need to (since
1938 * it's a locked operation).
1940 class = g_type_class_peek_static (object_type);
1942 if (class == NULL)
1943 class = unref_class = g_type_class_ref (object_type);
1945 if (n_properties > 0)
1947 guint i, count = 0;
1948 GObjectConstructParam *params;
1950 params = g_newa (GObjectConstructParam, n_properties);
1951 for (i = 0; i < n_properties; i++)
1953 GParamSpec *pspec;
1954 pspec = g_param_spec_pool_lookup (pspec_pool, names[i], object_type, TRUE);
1955 if (!g_object_new_is_valid_property (object_type, pspec, names[i], params, count))
1956 continue;
1957 params[count].pspec = pspec;
1959 /* Init GValue */
1960 params[count].value = g_newa (GValue, 1);
1961 memset (params[count].value, 0, sizeof (GValue));
1962 g_value_init (params[count].value, G_VALUE_TYPE (&values[i]));
1964 g_value_copy (&values[i], params[count].value);
1965 count++;
1967 object = g_object_new_internal (class, params, count);
1969 while (count--)
1970 g_value_unset (params[count].value);
1972 else
1973 object = g_object_new_internal (class, NULL, 0);
1975 if (unref_class != NULL)
1976 g_type_class_unref (unref_class);
1978 return object;
1982 * g_object_newv:
1983 * @object_type: the type id of the #GObject subtype to instantiate
1984 * @n_parameters: the length of the @parameters array
1985 * @parameters: (array length=n_parameters): an array of #GParameter
1987 * Creates a new instance of a #GObject subtype and sets its properties.
1989 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1990 * which are not explicitly specified are set to their default values.
1992 * Returns: (type GObject.Object) (transfer full): a new instance of
1993 * @object_type
1995 * Deprecated: 2.54: Use g_object_new_with_properties() instead.
1996 * deprecated. See #GParameter for more information.
1998 gpointer
1999 g_object_newv (GType object_type,
2000 guint n_parameters,
2001 GParameter *parameters)
2003 GObjectClass *class, *unref_class = NULL;
2004 GObject *object;
2006 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
2007 g_return_val_if_fail (n_parameters == 0 || parameters != NULL, NULL);
2009 /* Try to avoid thrashing the ref_count if we don't need to (since
2010 * it's a locked operation).
2012 class = g_type_class_peek_static (object_type);
2014 if (!class)
2015 class = unref_class = g_type_class_ref (object_type);
2017 if (n_parameters)
2019 GObjectConstructParam *cparams;
2020 guint i, j;
2022 cparams = g_newa (GObjectConstructParam, n_parameters);
2023 j = 0;
2025 for (i = 0; i < n_parameters; i++)
2027 GParamSpec *pspec;
2029 pspec = g_param_spec_pool_lookup (pspec_pool, parameters[i].name, object_type, TRUE);
2030 if (!g_object_new_is_valid_property (object_type, pspec, parameters[i].name, cparams, j))
2031 continue;
2033 cparams[j].pspec = pspec;
2034 cparams[j].value = &parameters[i].value;
2035 j++;
2038 object = g_object_new_internal (class, cparams, j);
2040 else
2041 /* Fast case: no properties passed in. */
2042 object = g_object_new_internal (class, NULL, 0);
2044 if (unref_class)
2045 g_type_class_unref (unref_class);
2047 return object;
2051 * g_object_new_valist: (skip)
2052 * @object_type: the type id of the #GObject subtype to instantiate
2053 * @first_property_name: the name of the first property
2054 * @var_args: the value of the first property, followed optionally by more
2055 * name/value pairs, followed by %NULL
2057 * Creates a new instance of a #GObject subtype and sets its properties.
2059 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
2060 * which are not explicitly specified are set to their default values.
2062 * Returns: a new instance of @object_type
2064 GObject*
2065 g_object_new_valist (GType object_type,
2066 const gchar *first_property_name,
2067 va_list var_args)
2069 GObjectClass *class, *unref_class = NULL;
2070 GObject *object;
2072 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type), NULL);
2074 /* Try to avoid thrashing the ref_count if we don't need to (since
2075 * it's a locked operation).
2077 class = g_type_class_peek_static (object_type);
2079 if (!class)
2080 class = unref_class = g_type_class_ref (object_type);
2082 if (first_property_name)
2084 GObjectConstructParam stack_params[16];
2085 GObjectConstructParam *params;
2086 const gchar *name;
2087 gint n_params = 0;
2089 name = first_property_name;
2090 params = stack_params;
2094 gchar *error = NULL;
2095 GParamSpec *pspec;
2097 pspec = g_param_spec_pool_lookup (pspec_pool, name, object_type, TRUE);
2099 if (!g_object_new_is_valid_property (object_type, pspec, name, params, n_params))
2100 break;
2102 if (n_params == 16)
2104 params = g_new (GObjectConstructParam, n_params + 1);
2105 memcpy (params, stack_params, sizeof stack_params);
2107 else if (n_params > 16)
2108 params = g_renew (GObjectConstructParam, params, n_params + 1);
2110 params[n_params].pspec = pspec;
2111 params[n_params].value = g_newa (GValue, 1);
2112 memset (params[n_params].value, 0, sizeof (GValue));
2114 G_VALUE_COLLECT_INIT (params[n_params].value, pspec->value_type, var_args, 0, &error);
2116 if (error)
2118 g_critical ("%s: %s", G_STRFUNC, error);
2119 g_value_unset (params[n_params].value);
2120 g_free (error);
2121 break;
2124 n_params++;
2126 while ((name = va_arg (var_args, const gchar *)));
2128 object = g_object_new_internal (class, params, n_params);
2130 while (n_params--)
2131 g_value_unset (params[n_params].value);
2133 if (params != stack_params)
2134 g_free (params);
2136 else
2137 /* Fast case: no properties passed in. */
2138 object = g_object_new_internal (class, NULL, 0);
2140 if (unref_class)
2141 g_type_class_unref (unref_class);
2143 return object;
2146 static GObject*
2147 g_object_constructor (GType type,
2148 guint n_construct_properties,
2149 GObjectConstructParam *construct_params)
2151 GObject *object;
2153 /* create object */
2154 object = (GObject*) g_type_create_instance (type);
2156 /* set construction parameters */
2157 if (n_construct_properties)
2159 GObjectNotifyQueue *nqueue = g_object_notify_queue_freeze (object, FALSE);
2161 /* set construct properties */
2162 while (n_construct_properties--)
2164 GValue *value = construct_params->value;
2165 GParamSpec *pspec = construct_params->pspec;
2167 construct_params++;
2168 object_set_property (object, pspec, value, nqueue);
2170 g_object_notify_queue_thaw (object, nqueue);
2171 /* the notification queue is still frozen from g_object_init(), so
2172 * we don't need to handle it here, g_object_newv() takes
2173 * care of that
2177 return object;
2180 static void
2181 g_object_constructed (GObject *object)
2183 /* empty default impl to allow unconditional upchaining */
2186 static inline gboolean
2187 g_object_set_is_valid_property (GObject *object,
2188 GParamSpec *pspec,
2189 const char *property_name)
2191 if (G_UNLIKELY (pspec == NULL))
2193 g_warning ("%s: object class '%s' has no property named '%s'",
2194 G_STRFUNC, G_OBJECT_TYPE_NAME (object), property_name);
2195 return FALSE;
2197 if (G_UNLIKELY (!(pspec->flags & G_PARAM_WRITABLE)))
2199 g_warning ("%s: property '%s' of object class '%s' is not writable",
2200 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
2201 return FALSE;
2203 if (G_UNLIKELY (((pspec->flags & G_PARAM_CONSTRUCT_ONLY) && !object_in_construction (object))))
2205 g_warning ("%s: construct property \"%s\" for object '%s' can't be set after construction",
2206 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
2207 return FALSE;
2209 return TRUE;
2213 * g_object_setv: (skip)
2214 * @object: a #GObject
2215 * @n_properties: the number of properties
2216 * @names: (array length=n_properties): the names of each property to be set
2217 * @values: (array length=n_properties): the values of each property to be set
2219 * Sets @n_properties properties for an @object.
2220 * Properties to be set will be taken from @values. All properties must be
2221 * valid. Warnings will be emitted and undefined behaviour may result if invalid
2222 * properties are passed in.
2224 * Since: 2.54
2226 void
2227 g_object_setv (GObject *object,
2228 guint n_properties,
2229 const gchar *names[],
2230 const GValue values[])
2232 guint i;
2233 GObjectNotifyQueue *nqueue;
2234 GParamSpec *pspec;
2235 GType obj_type;
2237 g_return_if_fail (G_IS_OBJECT (object));
2239 if (n_properties == 0)
2240 return;
2242 g_object_ref (object);
2243 obj_type = G_OBJECT_TYPE (object);
2244 nqueue = g_object_notify_queue_freeze (object, FALSE);
2245 for (i = 0; i < n_properties; i++)
2247 pspec = g_param_spec_pool_lookup (pspec_pool, names[i], obj_type, TRUE);
2249 if (!g_object_set_is_valid_property (object, pspec, names[i]))
2250 break;
2252 consider_issuing_property_deprecation_warning (pspec);
2253 object_set_property (object, pspec, &values[i], nqueue);
2256 g_object_notify_queue_thaw (object, nqueue);
2257 g_object_unref (object);
2261 * g_object_set_valist: (skip)
2262 * @object: a #GObject
2263 * @first_property_name: name of the first property to set
2264 * @var_args: value for the first property, followed optionally by more
2265 * name/value pairs, followed by %NULL
2267 * Sets properties on an object.
2269 void
2270 g_object_set_valist (GObject *object,
2271 const gchar *first_property_name,
2272 va_list var_args)
2274 GObjectNotifyQueue *nqueue;
2275 const gchar *name;
2277 g_return_if_fail (G_IS_OBJECT (object));
2279 g_object_ref (object);
2280 nqueue = g_object_notify_queue_freeze (object, FALSE);
2282 name = first_property_name;
2283 while (name)
2285 GValue value = G_VALUE_INIT;
2286 GParamSpec *pspec;
2287 gchar *error = NULL;
2289 pspec = g_param_spec_pool_lookup (pspec_pool,
2290 name,
2291 G_OBJECT_TYPE (object),
2292 TRUE);
2294 if (!g_object_set_is_valid_property (object, pspec, name))
2295 break;
2297 G_VALUE_COLLECT_INIT (&value, pspec->value_type, var_args,
2298 0, &error);
2299 if (error)
2301 g_warning ("%s: %s", G_STRFUNC, error);
2302 g_free (error);
2303 g_value_unset (&value);
2304 break;
2307 consider_issuing_property_deprecation_warning (pspec);
2308 object_set_property (object, pspec, &value, nqueue);
2309 g_value_unset (&value);
2311 name = va_arg (var_args, gchar*);
2314 g_object_notify_queue_thaw (object, nqueue);
2315 g_object_unref (object);
2318 static inline gboolean
2319 g_object_get_is_valid_property (GObject *object,
2320 GParamSpec *pspec,
2321 const char *property_name)
2323 if (G_UNLIKELY (pspec == NULL))
2325 g_warning ("%s: object class '%s' has no property named '%s'",
2326 G_STRFUNC, G_OBJECT_TYPE_NAME (object), property_name);
2327 return FALSE;
2329 if (G_UNLIKELY (!(pspec->flags & G_PARAM_READABLE)))
2331 g_warning ("%s: property '%s' of object class '%s' is not readable",
2332 G_STRFUNC, pspec->name, G_OBJECT_TYPE_NAME (object));
2333 return FALSE;
2335 return TRUE;
2339 * g_object_getv:
2340 * @object: a #GObject
2341 * @n_properties: the number of properties
2342 * @names: (array length=n_properties): the names of each property to get
2343 * @values: (array length=n_properties): the values of each property to get
2345 * Gets @n_properties properties for an @object.
2346 * Obtained properties will be set to @values. All properties must be valid.
2347 * Warnings will be emitted and undefined behaviour may result if invalid
2348 * properties are passed in.
2350 * Since: 2.54
2352 void
2353 g_object_getv (GObject *object,
2354 guint n_properties,
2355 const gchar *names[],
2356 GValue values[])
2358 guint i;
2359 GParamSpec *pspec;
2360 GType obj_type;
2362 g_return_if_fail (G_IS_OBJECT (object));
2364 if (n_properties == 0)
2365 return;
2367 g_object_ref (object);
2369 obj_type = G_OBJECT_TYPE (object);
2370 for (i = 0; i < n_properties; i++)
2372 pspec = g_param_spec_pool_lookup (pspec_pool,
2373 names[i],
2374 obj_type,
2375 TRUE);
2376 if (!g_object_get_is_valid_property (object, pspec, names[i]))
2377 break;
2379 memset (&values[i], 0, sizeof (GValue));
2380 g_value_init (&values[i], pspec->value_type);
2381 object_get_property (object, pspec, &values[i]);
2383 g_object_unref (object);
2387 * g_object_get_valist: (skip)
2388 * @object: a #GObject
2389 * @first_property_name: name of the first property to get
2390 * @var_args: return location for the first property, followed optionally by more
2391 * name/return location pairs, followed by %NULL
2393 * Gets properties of an object.
2395 * In general, a copy is made of the property contents and the caller
2396 * is responsible for freeing the memory in the appropriate manner for
2397 * the type, for instance by calling g_free() or g_object_unref().
2399 * See g_object_get().
2401 void
2402 g_object_get_valist (GObject *object,
2403 const gchar *first_property_name,
2404 va_list var_args)
2406 const gchar *name;
2408 g_return_if_fail (G_IS_OBJECT (object));
2410 g_object_ref (object);
2412 name = first_property_name;
2414 while (name)
2416 GValue value = G_VALUE_INIT;
2417 GParamSpec *pspec;
2418 gchar *error;
2420 pspec = g_param_spec_pool_lookup (pspec_pool,
2421 name,
2422 G_OBJECT_TYPE (object),
2423 TRUE);
2425 if (!g_object_get_is_valid_property (object, pspec, name))
2426 break;
2428 g_value_init (&value, pspec->value_type);
2430 object_get_property (object, pspec, &value);
2432 G_VALUE_LCOPY (&value, var_args, 0, &error);
2433 if (error)
2435 g_warning ("%s: %s", G_STRFUNC, error);
2436 g_free (error);
2437 g_value_unset (&value);
2438 break;
2441 g_value_unset (&value);
2443 name = va_arg (var_args, gchar*);
2446 g_object_unref (object);
2450 * g_object_set: (skip)
2451 * @object: (type GObject.Object): a #GObject
2452 * @first_property_name: name of the first property to set
2453 * @...: value for the first property, followed optionally by more
2454 * name/value pairs, followed by %NULL
2456 * Sets properties on an object.
2458 * Note that the "notify" signals are queued and only emitted (in
2459 * reverse order) after all properties have been set. See
2460 * g_object_freeze_notify().
2462 void
2463 g_object_set (gpointer _object,
2464 const gchar *first_property_name,
2465 ...)
2467 GObject *object = _object;
2468 va_list var_args;
2470 g_return_if_fail (G_IS_OBJECT (object));
2472 va_start (var_args, first_property_name);
2473 g_object_set_valist (object, first_property_name, var_args);
2474 va_end (var_args);
2478 * g_object_get: (skip)
2479 * @object: (type GObject.Object): a #GObject
2480 * @first_property_name: name of the first property to get
2481 * @...: return location for the first property, followed optionally by more
2482 * name/return location pairs, followed by %NULL
2484 * Gets properties of an object.
2486 * In general, a copy is made of the property contents and the caller
2487 * is responsible for freeing the memory in the appropriate manner for
2488 * the type, for instance by calling g_free() or g_object_unref().
2490 * Here is an example of using g_object_get() to get the contents
2491 * of three properties: an integer, a string and an object:
2492 * |[<!-- language="C" -->
2493 * gint intval;
2494 * gchar *strval;
2495 * GObject *objval;
2497 * g_object_get (my_object,
2498 * "int-property", &intval,
2499 * "str-property", &strval,
2500 * "obj-property", &objval,
2501 * NULL);
2503 * // Do something with intval, strval, objval
2505 * g_free (strval);
2506 * g_object_unref (objval);
2507 * ]|
2509 void
2510 g_object_get (gpointer _object,
2511 const gchar *first_property_name,
2512 ...)
2514 GObject *object = _object;
2515 va_list var_args;
2517 g_return_if_fail (G_IS_OBJECT (object));
2519 va_start (var_args, first_property_name);
2520 g_object_get_valist (object, first_property_name, var_args);
2521 va_end (var_args);
2525 * g_object_set_property:
2526 * @object: a #GObject
2527 * @property_name: the name of the property to set
2528 * @value: the value
2530 * Sets a property on an object.
2532 void
2533 g_object_set_property (GObject *object,
2534 const gchar *property_name,
2535 const GValue *value)
2537 g_object_setv (object, 1, &property_name, value);
2541 * g_object_get_property:
2542 * @object: a #GObject
2543 * @property_name: the name of the property to get
2544 * @value: return location for the property value
2546 * Gets a property of an object. @value must have been initialized to the
2547 * expected type of the property (or a type to which the expected type can be
2548 * transformed) using g_value_init().
2550 * In general, a copy is made of the property contents and the caller is
2551 * responsible for freeing the memory by calling g_value_unset().
2553 * Note that g_object_get_property() is really intended for language
2554 * bindings, g_object_get() is much more convenient for C programming.
2556 void
2557 g_object_get_property (GObject *object,
2558 const gchar *property_name,
2559 GValue *value)
2561 GParamSpec *pspec;
2563 g_return_if_fail (G_IS_OBJECT (object));
2564 g_return_if_fail (property_name != NULL);
2565 g_return_if_fail (G_IS_VALUE (value));
2567 g_object_ref (object);
2569 pspec = g_param_spec_pool_lookup (pspec_pool,
2570 property_name,
2571 G_OBJECT_TYPE (object),
2572 TRUE);
2574 if (g_object_get_is_valid_property (object, pspec, property_name))
2576 GValue *prop_value, tmp_value = G_VALUE_INIT;
2578 /* auto-conversion of the callers value type
2580 if (G_VALUE_TYPE (value) == pspec->value_type)
2582 g_value_reset (value);
2583 prop_value = value;
2585 else if (!g_value_type_transformable (pspec->value_type, G_VALUE_TYPE (value)))
2587 g_warning ("%s: can't retrieve property '%s' of type '%s' as value of type '%s'",
2588 G_STRFUNC, pspec->name,
2589 g_type_name (pspec->value_type),
2590 G_VALUE_TYPE_NAME (value));
2591 g_object_unref (object);
2592 return;
2594 else
2596 g_value_init (&tmp_value, pspec->value_type);
2597 prop_value = &tmp_value;
2599 object_get_property (object, pspec, prop_value);
2600 if (prop_value != value)
2602 g_value_transform (prop_value, value);
2603 g_value_unset (&tmp_value);
2607 g_object_unref (object);
2611 * g_object_connect: (skip)
2612 * @object: (type GObject.Object): a #GObject
2613 * @signal_spec: the spec for the first signal
2614 * @...: #GCallback for the first signal, followed by data for the
2615 * first signal, followed optionally by more signal
2616 * spec/callback/data triples, followed by %NULL
2618 * A convenience function to connect multiple signals at once.
2620 * The signal specs expected by this function have the form
2621 * "modifier::signal_name", where modifier can be one of the following:
2622 * * - signal: equivalent to g_signal_connect_data (..., NULL, 0)
2623 * - object-signal, object_signal: equivalent to g_signal_connect_object (..., 0)
2624 * - swapped-signal, swapped_signal: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED)
2625 * - swapped_object_signal, swapped-object-signal: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED)
2626 * - signal_after, signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_AFTER)
2627 * - object_signal_after, object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_AFTER)
2628 * - swapped_signal_after, swapped-signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2629 * - swapped_object_signal_after, swapped-object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2631 * |[<!-- language="C" -->
2632 * menu->toplevel = g_object_connect (g_object_new (GTK_TYPE_WINDOW,
2633 * "type", GTK_WINDOW_POPUP,
2634 * "child", menu,
2635 * NULL),
2636 * "signal::event", gtk_menu_window_event, menu,
2637 * "signal::size_request", gtk_menu_window_size_request, menu,
2638 * "signal::destroy", gtk_widget_destroyed, &menu->toplevel,
2639 * NULL);
2640 * ]|
2642 * Returns: (transfer none) (type GObject.Object): @object
2644 gpointer
2645 g_object_connect (gpointer _object,
2646 const gchar *signal_spec,
2647 ...)
2649 GObject *object = _object;
2650 va_list var_args;
2652 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
2653 g_return_val_if_fail (object->ref_count > 0, object);
2655 va_start (var_args, signal_spec);
2656 while (signal_spec)
2658 GCallback callback = va_arg (var_args, GCallback);
2659 gpointer data = va_arg (var_args, gpointer);
2661 if (strncmp (signal_spec, "signal::", 8) == 0)
2662 g_signal_connect_data (object, signal_spec + 8,
2663 callback, data, NULL,
2665 else if (strncmp (signal_spec, "object_signal::", 15) == 0 ||
2666 strncmp (signal_spec, "object-signal::", 15) == 0)
2667 g_signal_connect_object (object, signal_spec + 15,
2668 callback, data,
2670 else if (strncmp (signal_spec, "swapped_signal::", 16) == 0 ||
2671 strncmp (signal_spec, "swapped-signal::", 16) == 0)
2672 g_signal_connect_data (object, signal_spec + 16,
2673 callback, data, NULL,
2674 G_CONNECT_SWAPPED);
2675 else if (strncmp (signal_spec, "swapped_object_signal::", 23) == 0 ||
2676 strncmp (signal_spec, "swapped-object-signal::", 23) == 0)
2677 g_signal_connect_object (object, signal_spec + 23,
2678 callback, data,
2679 G_CONNECT_SWAPPED);
2680 else if (strncmp (signal_spec, "signal_after::", 14) == 0 ||
2681 strncmp (signal_spec, "signal-after::", 14) == 0)
2682 g_signal_connect_data (object, signal_spec + 14,
2683 callback, data, NULL,
2684 G_CONNECT_AFTER);
2685 else if (strncmp (signal_spec, "object_signal_after::", 21) == 0 ||
2686 strncmp (signal_spec, "object-signal-after::", 21) == 0)
2687 g_signal_connect_object (object, signal_spec + 21,
2688 callback, data,
2689 G_CONNECT_AFTER);
2690 else if (strncmp (signal_spec, "swapped_signal_after::", 22) == 0 ||
2691 strncmp (signal_spec, "swapped-signal-after::", 22) == 0)
2692 g_signal_connect_data (object, signal_spec + 22,
2693 callback, data, NULL,
2694 G_CONNECT_SWAPPED | G_CONNECT_AFTER);
2695 else if (strncmp (signal_spec, "swapped_object_signal_after::", 29) == 0 ||
2696 strncmp (signal_spec, "swapped-object-signal-after::", 29) == 0)
2697 g_signal_connect_object (object, signal_spec + 29,
2698 callback, data,
2699 G_CONNECT_SWAPPED | G_CONNECT_AFTER);
2700 else
2702 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC, signal_spec);
2703 break;
2705 signal_spec = va_arg (var_args, gchar*);
2707 va_end (var_args);
2709 return object;
2713 * g_object_disconnect: (skip)
2714 * @object: (type GObject.Object): a #GObject
2715 * @signal_spec: the spec for the first signal
2716 * @...: #GCallback for the first signal, followed by data for the first signal,
2717 * followed optionally by more signal spec/callback/data triples,
2718 * followed by %NULL
2720 * A convenience function to disconnect multiple signals at once.
2722 * The signal specs expected by this function have the form
2723 * "any_signal", which means to disconnect any signal with matching
2724 * callback and data, or "any_signal::signal_name", which only
2725 * disconnects the signal named "signal_name".
2727 void
2728 g_object_disconnect (gpointer _object,
2729 const gchar *signal_spec,
2730 ...)
2732 GObject *object = _object;
2733 va_list var_args;
2735 g_return_if_fail (G_IS_OBJECT (object));
2736 g_return_if_fail (object->ref_count > 0);
2738 va_start (var_args, signal_spec);
2739 while (signal_spec)
2741 GCallback callback = va_arg (var_args, GCallback);
2742 gpointer data = va_arg (var_args, gpointer);
2743 guint sid = 0, detail = 0, mask = 0;
2745 if (strncmp (signal_spec, "any_signal::", 12) == 0 ||
2746 strncmp (signal_spec, "any-signal::", 12) == 0)
2748 signal_spec += 12;
2749 mask = G_SIGNAL_MATCH_ID | G_SIGNAL_MATCH_FUNC | G_SIGNAL_MATCH_DATA;
2751 else if (strcmp (signal_spec, "any_signal") == 0 ||
2752 strcmp (signal_spec, "any-signal") == 0)
2754 signal_spec += 10;
2755 mask = G_SIGNAL_MATCH_FUNC | G_SIGNAL_MATCH_DATA;
2757 else
2759 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC, signal_spec);
2760 break;
2763 if ((mask & G_SIGNAL_MATCH_ID) &&
2764 !g_signal_parse_name (signal_spec, G_OBJECT_TYPE (object), &sid, &detail, FALSE))
2765 g_warning ("%s: invalid signal name \"%s\"", G_STRFUNC, signal_spec);
2766 else if (!g_signal_handlers_disconnect_matched (object, mask | (detail ? G_SIGNAL_MATCH_DETAIL : 0),
2767 sid, detail,
2768 NULL, (gpointer)callback, data))
2769 g_warning ("%s: signal handler %p(%p) is not connected", G_STRFUNC, callback, data);
2770 signal_spec = va_arg (var_args, gchar*);
2772 va_end (var_args);
2775 typedef struct {
2776 GObject *object;
2777 guint n_weak_refs;
2778 struct {
2779 GWeakNotify notify;
2780 gpointer data;
2781 } weak_refs[1]; /* flexible array */
2782 } WeakRefStack;
2784 static void
2785 weak_refs_notify (gpointer data)
2787 WeakRefStack *wstack = data;
2788 guint i;
2790 for (i = 0; i < wstack->n_weak_refs; i++)
2791 wstack->weak_refs[i].notify (wstack->weak_refs[i].data, wstack->object);
2792 g_free (wstack);
2796 * g_object_weak_ref: (skip)
2797 * @object: #GObject to reference weakly
2798 * @notify: callback to invoke before the object is freed
2799 * @data: extra data to pass to notify
2801 * Adds a weak reference callback to an object. Weak references are
2802 * used for notification when an object is finalized. They are called
2803 * "weak references" because they allow you to safely hold a pointer
2804 * to an object without calling g_object_ref() (g_object_ref() adds a
2805 * strong reference, that is, forces the object to stay alive).
2807 * Note that the weak references created by this method are not
2808 * thread-safe: they cannot safely be used in one thread if the
2809 * object's last g_object_unref() might happen in another thread.
2810 * Use #GWeakRef if thread-safety is required.
2812 void
2813 g_object_weak_ref (GObject *object,
2814 GWeakNotify notify,
2815 gpointer data)
2817 WeakRefStack *wstack;
2818 guint i;
2820 g_return_if_fail (G_IS_OBJECT (object));
2821 g_return_if_fail (notify != NULL);
2822 g_return_if_fail (object->ref_count >= 1);
2824 G_LOCK (weak_refs_mutex);
2825 wstack = g_datalist_id_remove_no_notify (&object->qdata, quark_weak_refs);
2826 if (wstack)
2828 i = wstack->n_weak_refs++;
2829 wstack = g_realloc (wstack, sizeof (*wstack) + sizeof (wstack->weak_refs[0]) * i);
2831 else
2833 wstack = g_renew (WeakRefStack, NULL, 1);
2834 wstack->object = object;
2835 wstack->n_weak_refs = 1;
2836 i = 0;
2838 wstack->weak_refs[i].notify = notify;
2839 wstack->weak_refs[i].data = data;
2840 g_datalist_id_set_data_full (&object->qdata, quark_weak_refs, wstack, weak_refs_notify);
2841 G_UNLOCK (weak_refs_mutex);
2845 * g_object_weak_unref: (skip)
2846 * @object: #GObject to remove a weak reference from
2847 * @notify: callback to search for
2848 * @data: data to search for
2850 * Removes a weak reference callback to an object.
2852 void
2853 g_object_weak_unref (GObject *object,
2854 GWeakNotify notify,
2855 gpointer data)
2857 WeakRefStack *wstack;
2858 gboolean found_one = FALSE;
2860 g_return_if_fail (G_IS_OBJECT (object));
2861 g_return_if_fail (notify != NULL);
2863 G_LOCK (weak_refs_mutex);
2864 wstack = g_datalist_id_get_data (&object->qdata, quark_weak_refs);
2865 if (wstack)
2867 guint i;
2869 for (i = 0; i < wstack->n_weak_refs; i++)
2870 if (wstack->weak_refs[i].notify == notify &&
2871 wstack->weak_refs[i].data == data)
2873 found_one = TRUE;
2874 wstack->n_weak_refs -= 1;
2875 if (i != wstack->n_weak_refs)
2876 wstack->weak_refs[i] = wstack->weak_refs[wstack->n_weak_refs];
2878 break;
2881 G_UNLOCK (weak_refs_mutex);
2882 if (!found_one)
2883 g_warning ("%s: couldn't find weak ref %p(%p)", G_STRFUNC, notify, data);
2887 * g_object_add_weak_pointer: (skip)
2888 * @object: The object that should be weak referenced.
2889 * @weak_pointer_location: (inout) (not optional): The memory address
2890 * of a pointer.
2892 * Adds a weak reference from weak_pointer to @object to indicate that
2893 * the pointer located at @weak_pointer_location is only valid during
2894 * the lifetime of @object. When the @object is finalized,
2895 * @weak_pointer will be set to %NULL.
2897 * Note that as with g_object_weak_ref(), the weak references created by
2898 * this method are not thread-safe: they cannot safely be used in one
2899 * thread if the object's last g_object_unref() might happen in another
2900 * thread. Use #GWeakRef if thread-safety is required.
2902 void
2903 g_object_add_weak_pointer (GObject *object,
2904 gpointer *weak_pointer_location)
2906 g_return_if_fail (G_IS_OBJECT (object));
2907 g_return_if_fail (weak_pointer_location != NULL);
2909 g_object_weak_ref (object,
2910 (GWeakNotify) g_nullify_pointer,
2911 weak_pointer_location);
2915 * g_object_remove_weak_pointer: (skip)
2916 * @object: The object that is weak referenced.
2917 * @weak_pointer_location: (inout) (not optional): The memory address
2918 * of a pointer.
2920 * Removes a weak reference from @object that was previously added
2921 * using g_object_add_weak_pointer(). The @weak_pointer_location has
2922 * to match the one used with g_object_add_weak_pointer().
2924 void
2925 g_object_remove_weak_pointer (GObject *object,
2926 gpointer *weak_pointer_location)
2928 g_return_if_fail (G_IS_OBJECT (object));
2929 g_return_if_fail (weak_pointer_location != NULL);
2931 g_object_weak_unref (object,
2932 (GWeakNotify) g_nullify_pointer,
2933 weak_pointer_location);
2936 static guint
2937 object_floating_flag_handler (GObject *object,
2938 gint job)
2940 switch (job)
2942 gpointer oldvalue;
2943 case +1: /* force floating if possible */
2945 oldvalue = g_atomic_pointer_get (&object->qdata);
2946 while (!g_atomic_pointer_compare_and_exchange ((void**) &object->qdata, oldvalue,
2947 (gpointer) ((gsize) oldvalue | OBJECT_FLOATING_FLAG)));
2948 return (gsize) oldvalue & OBJECT_FLOATING_FLAG;
2949 case -1: /* sink if possible */
2951 oldvalue = g_atomic_pointer_get (&object->qdata);
2952 while (!g_atomic_pointer_compare_and_exchange ((void**) &object->qdata, oldvalue,
2953 (gpointer) ((gsize) oldvalue & ~(gsize) OBJECT_FLOATING_FLAG)));
2954 return (gsize) oldvalue & OBJECT_FLOATING_FLAG;
2955 default: /* check floating */
2956 return 0 != ((gsize) g_atomic_pointer_get (&object->qdata) & OBJECT_FLOATING_FLAG);
2961 * g_object_is_floating:
2962 * @object: (type GObject.Object): a #GObject
2964 * Checks whether @object has a [floating][floating-ref] reference.
2966 * Since: 2.10
2968 * Returns: %TRUE if @object has a floating reference
2970 gboolean
2971 g_object_is_floating (gpointer _object)
2973 GObject *object = _object;
2974 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
2975 return floating_flag_handler (object, 0);
2979 * g_object_ref_sink:
2980 * @object: (type GObject.Object): a #GObject
2982 * Increase the reference count of @object, and possibly remove the
2983 * [floating][floating-ref] reference, if @object has a floating reference.
2985 * In other words, if the object is floating, then this call "assumes
2986 * ownership" of the floating reference, converting it to a normal
2987 * reference by clearing the floating flag while leaving the reference
2988 * count unchanged. If the object is not floating, then this call
2989 * adds a new normal reference increasing the reference count by one.
2991 * Since GLib 2.56, the type of @object will be propagated to the return type
2992 * under the same conditions as for g_object_ref().
2994 * Since: 2.10
2996 * Returns: (type GObject.Object) (transfer none): @object
2998 gpointer
2999 (g_object_ref_sink) (gpointer _object)
3001 GObject *object = _object;
3002 gboolean was_floating;
3003 g_return_val_if_fail (G_IS_OBJECT (object), object);
3004 g_return_val_if_fail (object->ref_count >= 1, object);
3005 g_object_ref (object);
3006 was_floating = floating_flag_handler (object, -1);
3007 if (was_floating)
3008 g_object_unref (object);
3009 return object;
3013 * g_object_force_floating:
3014 * @object: a #GObject
3016 * This function is intended for #GObject implementations to re-enforce
3017 * a [floating][floating-ref] object reference. Doing this is seldom
3018 * required: all #GInitiallyUnowneds are created with a floating reference
3019 * which usually just needs to be sunken by calling g_object_ref_sink().
3021 * Since: 2.10
3023 void
3024 g_object_force_floating (GObject *object)
3026 g_return_if_fail (G_IS_OBJECT (object));
3027 g_return_if_fail (object->ref_count >= 1);
3029 floating_flag_handler (object, +1);
3032 typedef struct {
3033 GObject *object;
3034 guint n_toggle_refs;
3035 struct {
3036 GToggleNotify notify;
3037 gpointer data;
3038 } toggle_refs[1]; /* flexible array */
3039 } ToggleRefStack;
3041 static void
3042 toggle_refs_notify (GObject *object,
3043 gboolean is_last_ref)
3045 ToggleRefStack tstack, *tstackptr;
3047 G_LOCK (toggle_refs_mutex);
3048 tstackptr = g_datalist_id_get_data (&object->qdata, quark_toggle_refs);
3049 tstack = *tstackptr;
3050 G_UNLOCK (toggle_refs_mutex);
3052 /* Reentrancy here is not as tricky as it seems, because a toggle reference
3053 * will only be notified when there is exactly one of them.
3055 g_assert (tstack.n_toggle_refs == 1);
3056 tstack.toggle_refs[0].notify (tstack.toggle_refs[0].data, tstack.object, is_last_ref);
3060 * g_object_add_toggle_ref: (skip)
3061 * @object: a #GObject
3062 * @notify: a function to call when this reference is the
3063 * last reference to the object, or is no longer
3064 * the last reference.
3065 * @data: data to pass to @notify
3067 * Increases the reference count of the object by one and sets a
3068 * callback to be called when all other references to the object are
3069 * dropped, or when this is already the last reference to the object
3070 * and another reference is established.
3072 * This functionality is intended for binding @object to a proxy
3073 * object managed by another memory manager. This is done with two
3074 * paired references: the strong reference added by
3075 * g_object_add_toggle_ref() and a reverse reference to the proxy
3076 * object which is either a strong reference or weak reference.
3078 * The setup is that when there are no other references to @object,
3079 * only a weak reference is held in the reverse direction from @object
3080 * to the proxy object, but when there are other references held to
3081 * @object, a strong reference is held. The @notify callback is called
3082 * when the reference from @object to the proxy object should be
3083 * "toggled" from strong to weak (@is_last_ref true) or weak to strong
3084 * (@is_last_ref false).
3086 * Since a (normal) reference must be held to the object before
3087 * calling g_object_add_toggle_ref(), the initial state of the reverse
3088 * link is always strong.
3090 * Multiple toggle references may be added to the same gobject,
3091 * however if there are multiple toggle references to an object, none
3092 * of them will ever be notified until all but one are removed. For
3093 * this reason, you should only ever use a toggle reference if there
3094 * is important state in the proxy object.
3096 * Since: 2.8
3098 void
3099 g_object_add_toggle_ref (GObject *object,
3100 GToggleNotify notify,
3101 gpointer data)
3103 ToggleRefStack *tstack;
3104 guint i;
3106 g_return_if_fail (G_IS_OBJECT (object));
3107 g_return_if_fail (notify != NULL);
3108 g_return_if_fail (object->ref_count >= 1);
3110 g_object_ref (object);
3112 G_LOCK (toggle_refs_mutex);
3113 tstack = g_datalist_id_remove_no_notify (&object->qdata, quark_toggle_refs);
3114 if (tstack)
3116 i = tstack->n_toggle_refs++;
3117 /* allocate i = tstate->n_toggle_refs - 1 positions beyond the 1 declared
3118 * in tstate->toggle_refs */
3119 tstack = g_realloc (tstack, sizeof (*tstack) + sizeof (tstack->toggle_refs[0]) * i);
3121 else
3123 tstack = g_renew (ToggleRefStack, NULL, 1);
3124 tstack->object = object;
3125 tstack->n_toggle_refs = 1;
3126 i = 0;
3129 /* Set a flag for fast lookup after adding the first toggle reference */
3130 if (tstack->n_toggle_refs == 1)
3131 g_datalist_set_flags (&object->qdata, OBJECT_HAS_TOGGLE_REF_FLAG);
3133 tstack->toggle_refs[i].notify = notify;
3134 tstack->toggle_refs[i].data = data;
3135 g_datalist_id_set_data_full (&object->qdata, quark_toggle_refs, tstack,
3136 (GDestroyNotify)g_free);
3137 G_UNLOCK (toggle_refs_mutex);
3141 * g_object_remove_toggle_ref: (skip)
3142 * @object: a #GObject
3143 * @notify: a function to call when this reference is the
3144 * last reference to the object, or is no longer
3145 * the last reference.
3146 * @data: data to pass to @notify
3148 * Removes a reference added with g_object_add_toggle_ref(). The
3149 * reference count of the object is decreased by one.
3151 * Since: 2.8
3153 void
3154 g_object_remove_toggle_ref (GObject *object,
3155 GToggleNotify notify,
3156 gpointer data)
3158 ToggleRefStack *tstack;
3159 gboolean found_one = FALSE;
3161 g_return_if_fail (G_IS_OBJECT (object));
3162 g_return_if_fail (notify != NULL);
3164 G_LOCK (toggle_refs_mutex);
3165 tstack = g_datalist_id_get_data (&object->qdata, quark_toggle_refs);
3166 if (tstack)
3168 guint i;
3170 for (i = 0; i < tstack->n_toggle_refs; i++)
3171 if (tstack->toggle_refs[i].notify == notify &&
3172 tstack->toggle_refs[i].data == data)
3174 found_one = TRUE;
3175 tstack->n_toggle_refs -= 1;
3176 if (i != tstack->n_toggle_refs)
3177 tstack->toggle_refs[i] = tstack->toggle_refs[tstack->n_toggle_refs];
3179 if (tstack->n_toggle_refs == 0)
3180 g_datalist_unset_flags (&object->qdata, OBJECT_HAS_TOGGLE_REF_FLAG);
3182 break;
3185 G_UNLOCK (toggle_refs_mutex);
3187 if (found_one)
3188 g_object_unref (object);
3189 else
3190 g_warning ("%s: couldn't find toggle ref %p(%p)", G_STRFUNC, notify, data);
3194 * g_object_ref:
3195 * @object: (type GObject.Object): a #GObject
3197 * Increases the reference count of @object.
3199 * Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
3200 * of @object will be propagated to the return type (using the GCC typeof()
3201 * extension), so any casting the caller needs to do on the return type must be
3202 * explicit.
3204 * Returns: (type GObject.Object) (transfer none): the same @object
3206 gpointer
3207 (g_object_ref) (gpointer _object)
3209 GObject *object = _object;
3210 gint old_val;
3212 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3213 g_return_val_if_fail (object->ref_count > 0, NULL);
3215 old_val = g_atomic_int_add (&object->ref_count, 1);
3217 if (old_val == 1 && OBJECT_HAS_TOGGLE_REF (object))
3218 toggle_refs_notify (object, FALSE);
3220 TRACE (GOBJECT_OBJECT_REF(object,G_TYPE_FROM_INSTANCE(object),old_val));
3222 return object;
3226 * g_object_unref:
3227 * @object: (type GObject.Object): a #GObject
3229 * Decreases the reference count of @object. When its reference count
3230 * drops to 0, the object is finalized (i.e. its memory is freed).
3232 * If the pointer to the #GObject may be reused in future (for example, if it is
3233 * an instance variable of another object), it is recommended to clear the
3234 * pointer to %NULL rather than retain a dangling pointer to a potentially
3235 * invalid #GObject instance. Use g_clear_object() for this.
3237 void
3238 g_object_unref (gpointer _object)
3240 GObject *object = _object;
3241 gint old_ref;
3243 g_return_if_fail (G_IS_OBJECT (object));
3244 g_return_if_fail (object->ref_count > 0);
3246 /* here we want to atomically do: if (ref_count>1) { ref_count--; return; } */
3247 retry_atomic_decrement1:
3248 old_ref = g_atomic_int_get (&object->ref_count);
3249 if (old_ref > 1)
3251 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3252 gboolean has_toggle_ref = OBJECT_HAS_TOGGLE_REF (object);
3254 if (!g_atomic_int_compare_and_exchange ((int *)&object->ref_count, old_ref, old_ref - 1))
3255 goto retry_atomic_decrement1;
3257 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
3259 /* if we went from 2->1 we need to notify toggle refs if any */
3260 if (old_ref == 2 && has_toggle_ref) /* The last ref being held in this case is owned by the toggle_ref */
3261 toggle_refs_notify (object, TRUE);
3263 else
3265 GSList **weak_locations;
3267 /* The only way that this object can live at this point is if
3268 * there are outstanding weak references already established
3269 * before we got here.
3271 * If there were not already weak references then no more can be
3272 * established at this time, because the other thread would have
3273 * to hold a strong ref in order to call
3274 * g_object_add_weak_pointer() and then we wouldn't be here.
3276 weak_locations = g_datalist_id_get_data (&object->qdata, quark_weak_locations);
3278 if (weak_locations != NULL)
3280 g_rw_lock_writer_lock (&weak_locations_lock);
3282 /* It is possible that one of the weak references beat us to
3283 * the lock. Make sure the refcount is still what we expected
3284 * it to be.
3286 old_ref = g_atomic_int_get (&object->ref_count);
3287 if (old_ref != 1)
3289 g_rw_lock_writer_unlock (&weak_locations_lock);
3290 goto retry_atomic_decrement1;
3293 /* We got the lock first, so the object will definitely die
3294 * now. Clear out all the weak references.
3296 while (*weak_locations)
3298 GWeakRef *weak_ref_location = (*weak_locations)->data;
3300 weak_ref_location->priv.p = NULL;
3301 *weak_locations = g_slist_delete_link (*weak_locations, *weak_locations);
3304 g_rw_lock_writer_unlock (&weak_locations_lock);
3307 /* we are about to remove the last reference */
3308 TRACE (GOBJECT_OBJECT_DISPOSE(object,G_TYPE_FROM_INSTANCE(object), 1));
3309 G_OBJECT_GET_CLASS (object)->dispose (object);
3310 TRACE (GOBJECT_OBJECT_DISPOSE_END(object,G_TYPE_FROM_INSTANCE(object), 1));
3312 /* may have been re-referenced meanwhile */
3313 retry_atomic_decrement2:
3314 old_ref = g_atomic_int_get ((int *)&object->ref_count);
3315 if (old_ref > 1)
3317 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3318 gboolean has_toggle_ref = OBJECT_HAS_TOGGLE_REF (object);
3320 if (!g_atomic_int_compare_and_exchange ((int *)&object->ref_count, old_ref, old_ref - 1))
3321 goto retry_atomic_decrement2;
3323 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
3325 /* if we went from 2->1 we need to notify toggle refs if any */
3326 if (old_ref == 2 && has_toggle_ref) /* The last ref being held in this case is owned by the toggle_ref */
3327 toggle_refs_notify (object, TRUE);
3329 return;
3332 /* we are still in the process of taking away the last ref */
3333 g_datalist_id_set_data (&object->qdata, quark_closure_array, NULL);
3334 g_signal_handlers_destroy (object);
3335 g_datalist_id_set_data (&object->qdata, quark_weak_refs, NULL);
3337 /* decrement the last reference */
3338 old_ref = g_atomic_int_add (&object->ref_count, -1);
3340 TRACE (GOBJECT_OBJECT_UNREF(object,G_TYPE_FROM_INSTANCE(object),old_ref));
3342 /* may have been re-referenced meanwhile */
3343 if (G_LIKELY (old_ref == 1))
3345 TRACE (GOBJECT_OBJECT_FINALIZE(object,G_TYPE_FROM_INSTANCE(object)));
3346 G_OBJECT_GET_CLASS (object)->finalize (object);
3348 TRACE (GOBJECT_OBJECT_FINALIZE_END(object,G_TYPE_FROM_INSTANCE(object)));
3350 GOBJECT_IF_DEBUG (OBJECTS,
3352 /* catch objects not chaining finalize handlers */
3353 G_LOCK (debug_objects);
3354 g_assert (!g_hash_table_contains (debug_objects_ht, object));
3355 G_UNLOCK (debug_objects);
3357 g_type_free_instance ((GTypeInstance*) object);
3363 * g_clear_object: (skip)
3364 * @object_ptr: a pointer to a #GObject reference
3366 * Clears a reference to a #GObject.
3368 * @object_ptr must not be %NULL.
3370 * If the reference is %NULL then this function does nothing.
3371 * Otherwise, the reference count of the object is decreased and the
3372 * pointer is set to %NULL.
3374 * A macro is also included that allows this function to be used without
3375 * pointer casts.
3377 * Since: 2.28
3379 #undef g_clear_object
3380 void
3381 g_clear_object (volatile GObject **object_ptr)
3383 g_clear_pointer (object_ptr, g_object_unref);
3387 * g_object_get_qdata:
3388 * @object: The GObject to get a stored user data pointer from
3389 * @quark: A #GQuark, naming the user data pointer
3391 * This function gets back user data pointers stored via
3392 * g_object_set_qdata().
3394 * Returns: (transfer none) (nullable): The user data pointer set, or %NULL
3396 gpointer
3397 g_object_get_qdata (GObject *object,
3398 GQuark quark)
3400 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3402 return quark ? g_datalist_id_get_data (&object->qdata, quark) : NULL;
3406 * g_object_set_qdata: (skip)
3407 * @object: The GObject to set store a user data pointer
3408 * @quark: A #GQuark, naming the user data pointer
3409 * @data: (nullable): An opaque user data pointer
3411 * This sets an opaque, named pointer on an object.
3412 * The name is specified through a #GQuark (retrived e.g. via
3413 * g_quark_from_static_string()), and the pointer
3414 * can be gotten back from the @object with g_object_get_qdata()
3415 * until the @object is finalized.
3416 * Setting a previously set user data pointer, overrides (frees)
3417 * the old pointer set, using #NULL as pointer essentially
3418 * removes the data stored.
3420 void
3421 g_object_set_qdata (GObject *object,
3422 GQuark quark,
3423 gpointer data)
3425 g_return_if_fail (G_IS_OBJECT (object));
3426 g_return_if_fail (quark > 0);
3428 g_datalist_id_set_data (&object->qdata, quark, data);
3432 * g_object_dup_qdata: (skip)
3433 * @object: the #GObject to store user data on
3434 * @quark: a #GQuark, naming the user data pointer
3435 * @dup_func: (nullable): function to dup the value
3436 * @user_data: (nullable): passed as user_data to @dup_func
3438 * This is a variant of g_object_get_qdata() which returns
3439 * a 'duplicate' of the value. @dup_func defines the
3440 * meaning of 'duplicate' in this context, it could e.g.
3441 * take a reference on a ref-counted object.
3443 * If the @quark is not set on the object then @dup_func
3444 * will be called with a %NULL argument.
3446 * Note that @dup_func is called while user data of @object
3447 * is locked.
3449 * This function can be useful to avoid races when multiple
3450 * threads are using object data on the same key on the same
3451 * object.
3453 * Returns: the result of calling @dup_func on the value
3454 * associated with @quark on @object, or %NULL if not set.
3455 * If @dup_func is %NULL, the value is returned
3456 * unmodified.
3458 * Since: 2.34
3460 gpointer
3461 g_object_dup_qdata (GObject *object,
3462 GQuark quark,
3463 GDuplicateFunc dup_func,
3464 gpointer user_data)
3466 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3467 g_return_val_if_fail (quark > 0, NULL);
3469 return g_datalist_id_dup_data (&object->qdata, quark, dup_func, user_data);
3473 * g_object_replace_qdata: (skip)
3474 * @object: the #GObject to store user data on
3475 * @quark: a #GQuark, naming the user data pointer
3476 * @oldval: (nullable): the old value to compare against
3477 * @newval: (nullable): the new value
3478 * @destroy: (nullable): a destroy notify for the new value
3479 * @old_destroy: (out) (optional): destroy notify for the existing value
3481 * Compares the user data for the key @quark on @object with
3482 * @oldval, and if they are the same, replaces @oldval with
3483 * @newval.
3485 * This is like a typical atomic compare-and-exchange
3486 * operation, for user data on an object.
3488 * If the previous value was replaced then ownership of the
3489 * old value (@oldval) is passed to the caller, including
3490 * the registered destroy notify for it (passed out in @old_destroy).
3491 * It’s up to the caller to free this as needed, which may
3492 * or may not include using @old_destroy as sometimes replacement
3493 * should not destroy the object in the normal way.
3495 * Returns: %TRUE if the existing value for @quark was replaced
3496 * by @newval, %FALSE otherwise.
3498 * Since: 2.34
3500 gboolean
3501 g_object_replace_qdata (GObject *object,
3502 GQuark quark,
3503 gpointer oldval,
3504 gpointer newval,
3505 GDestroyNotify destroy,
3506 GDestroyNotify *old_destroy)
3508 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
3509 g_return_val_if_fail (quark > 0, FALSE);
3511 return g_datalist_id_replace_data (&object->qdata, quark,
3512 oldval, newval, destroy,
3513 old_destroy);
3517 * g_object_set_qdata_full: (skip)
3518 * @object: The GObject to set store a user data pointer
3519 * @quark: A #GQuark, naming the user data pointer
3520 * @data: (nullable): An opaque user data pointer
3521 * @destroy: (nullable): Function to invoke with @data as argument, when @data
3522 * needs to be freed
3524 * This function works like g_object_set_qdata(), but in addition,
3525 * a void (*destroy) (gpointer) function may be specified which is
3526 * called with @data as argument when the @object is finalized, or
3527 * the data is being overwritten by a call to g_object_set_qdata()
3528 * with the same @quark.
3530 void
3531 g_object_set_qdata_full (GObject *object,
3532 GQuark quark,
3533 gpointer data,
3534 GDestroyNotify destroy)
3536 g_return_if_fail (G_IS_OBJECT (object));
3537 g_return_if_fail (quark > 0);
3539 g_datalist_id_set_data_full (&object->qdata, quark, data,
3540 data ? destroy : (GDestroyNotify) NULL);
3544 * g_object_steal_qdata:
3545 * @object: The GObject to get a stored user data pointer from
3546 * @quark: A #GQuark, naming the user data pointer
3548 * This function gets back user data pointers stored via
3549 * g_object_set_qdata() and removes the @data from object
3550 * without invoking its destroy() function (if any was
3551 * set).
3552 * Usually, calling this function is only required to update
3553 * user data pointers with a destroy notifier, for example:
3554 * |[<!-- language="C" -->
3555 * void
3556 * object_add_to_user_list (GObject *object,
3557 * const gchar *new_string)
3559 * // the quark, naming the object data
3560 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
3561 * // retrive the old string list
3562 * GList *list = g_object_steal_qdata (object, quark_string_list);
3564 * // prepend new string
3565 * list = g_list_prepend (list, g_strdup (new_string));
3566 * // this changed 'list', so we need to set it again
3567 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
3569 * static void
3570 * free_string_list (gpointer data)
3572 * GList *node, *list = data;
3574 * for (node = list; node; node = node->next)
3575 * g_free (node->data);
3576 * g_list_free (list);
3578 * ]|
3579 * Using g_object_get_qdata() in the above example, instead of
3580 * g_object_steal_qdata() would have left the destroy function set,
3581 * and thus the partial string list would have been freed upon
3582 * g_object_set_qdata_full().
3584 * Returns: (transfer full) (nullable): The user data pointer set, or %NULL
3586 gpointer
3587 g_object_steal_qdata (GObject *object,
3588 GQuark quark)
3590 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3591 g_return_val_if_fail (quark > 0, NULL);
3593 return g_datalist_id_remove_no_notify (&object->qdata, quark);
3597 * g_object_get_data:
3598 * @object: #GObject containing the associations
3599 * @key: name of the key for that association
3601 * Gets a named field from the objects table of associations (see g_object_set_data()).
3603 * Returns: (transfer none) (nullable): the data if found,
3604 * or %NULL if no such data exists.
3606 gpointer
3607 g_object_get_data (GObject *object,
3608 const gchar *key)
3610 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3611 g_return_val_if_fail (key != NULL, NULL);
3613 return g_datalist_get_data (&object->qdata, key);
3617 * g_object_set_data:
3618 * @object: #GObject containing the associations.
3619 * @key: name of the key
3620 * @data: (nullable): data to associate with that key
3622 * Each object carries around a table of associations from
3623 * strings to pointers. This function lets you set an association.
3625 * If the object already had an association with that name,
3626 * the old association will be destroyed.
3628 void
3629 g_object_set_data (GObject *object,
3630 const gchar *key,
3631 gpointer data)
3633 g_return_if_fail (G_IS_OBJECT (object));
3634 g_return_if_fail (key != NULL);
3636 g_datalist_id_set_data (&object->qdata, g_quark_from_string (key), data);
3640 * g_object_dup_data: (skip)
3641 * @object: the #GObject to store user data on
3642 * @key: a string, naming the user data pointer
3643 * @dup_func: (nullable): function to dup the value
3644 * @user_data: (nullable): passed as user_data to @dup_func
3646 * This is a variant of g_object_get_data() which returns
3647 * a 'duplicate' of the value. @dup_func defines the
3648 * meaning of 'duplicate' in this context, it could e.g.
3649 * take a reference on a ref-counted object.
3651 * If the @key is not set on the object then @dup_func
3652 * will be called with a %NULL argument.
3654 * Note that @dup_func is called while user data of @object
3655 * is locked.
3657 * This function can be useful to avoid races when multiple
3658 * threads are using object data on the same key on the same
3659 * object.
3661 * Returns: the result of calling @dup_func on the value
3662 * associated with @key on @object, or %NULL if not set.
3663 * If @dup_func is %NULL, the value is returned
3664 * unmodified.
3666 * Since: 2.34
3668 gpointer
3669 g_object_dup_data (GObject *object,
3670 const gchar *key,
3671 GDuplicateFunc dup_func,
3672 gpointer user_data)
3674 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3675 g_return_val_if_fail (key != NULL, NULL);
3677 return g_datalist_id_dup_data (&object->qdata,
3678 g_quark_from_string (key),
3679 dup_func, user_data);
3683 * g_object_replace_data: (skip)
3684 * @object: the #GObject to store user data on
3685 * @key: a string, naming the user data pointer
3686 * @oldval: (nullable): the old value to compare against
3687 * @newval: (nullable): the new value
3688 * @destroy: (nullable): a destroy notify for the new value
3689 * @old_destroy: (out) (optional): destroy notify for the existing value
3691 * Compares the user data for the key @key on @object with
3692 * @oldval, and if they are the same, replaces @oldval with
3693 * @newval.
3695 * This is like a typical atomic compare-and-exchange
3696 * operation, for user data on an object.
3698 * If the previous value was replaced then ownership of the
3699 * old value (@oldval) is passed to the caller, including
3700 * the registered destroy notify for it (passed out in @old_destroy).
3701 * It’s up to the caller to free this as needed, which may
3702 * or may not include using @old_destroy as sometimes replacement
3703 * should not destroy the object in the normal way.
3705 * Returns: %TRUE if the existing value for @key was replaced
3706 * by @newval, %FALSE otherwise.
3708 * Since: 2.34
3710 gboolean
3711 g_object_replace_data (GObject *object,
3712 const gchar *key,
3713 gpointer oldval,
3714 gpointer newval,
3715 GDestroyNotify destroy,
3716 GDestroyNotify *old_destroy)
3718 g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
3719 g_return_val_if_fail (key != NULL, FALSE);
3721 return g_datalist_id_replace_data (&object->qdata,
3722 g_quark_from_string (key),
3723 oldval, newval, destroy,
3724 old_destroy);
3728 * g_object_set_data_full: (skip)
3729 * @object: #GObject containing the associations
3730 * @key: name of the key
3731 * @data: (nullable): data to associate with that key
3732 * @destroy: (nullable): function to call when the association is destroyed
3734 * Like g_object_set_data() except it adds notification
3735 * for when the association is destroyed, either by setting it
3736 * to a different value or when the object is destroyed.
3738 * Note that the @destroy callback is not called if @data is %NULL.
3740 void
3741 g_object_set_data_full (GObject *object,
3742 const gchar *key,
3743 gpointer data,
3744 GDestroyNotify destroy)
3746 g_return_if_fail (G_IS_OBJECT (object));
3747 g_return_if_fail (key != NULL);
3749 g_datalist_id_set_data_full (&object->qdata, g_quark_from_string (key), data,
3750 data ? destroy : (GDestroyNotify) NULL);
3754 * g_object_steal_data:
3755 * @object: #GObject containing the associations
3756 * @key: name of the key
3758 * Remove a specified datum from the object's data associations,
3759 * without invoking the association's destroy handler.
3761 * Returns: (transfer full) (nullable): the data if found, or %NULL
3762 * if no such data exists.
3764 gpointer
3765 g_object_steal_data (GObject *object,
3766 const gchar *key)
3768 GQuark quark;
3770 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
3771 g_return_val_if_fail (key != NULL, NULL);
3773 quark = g_quark_try_string (key);
3775 return quark ? g_datalist_id_remove_no_notify (&object->qdata, quark) : NULL;
3778 static void
3779 g_value_object_init (GValue *value)
3781 value->data[0].v_pointer = NULL;
3784 static void
3785 g_value_object_free_value (GValue *value)
3787 if (value->data[0].v_pointer)
3788 g_object_unref (value->data[0].v_pointer);
3791 static void
3792 g_value_object_copy_value (const GValue *src_value,
3793 GValue *dest_value)
3795 if (src_value->data[0].v_pointer)
3796 dest_value->data[0].v_pointer = g_object_ref (src_value->data[0].v_pointer);
3797 else
3798 dest_value->data[0].v_pointer = NULL;
3801 static void
3802 g_value_object_transform_value (const GValue *src_value,
3803 GValue *dest_value)
3805 if (src_value->data[0].v_pointer && g_type_is_a (G_OBJECT_TYPE (src_value->data[0].v_pointer), G_VALUE_TYPE (dest_value)))
3806 dest_value->data[0].v_pointer = g_object_ref (src_value->data[0].v_pointer);
3807 else
3808 dest_value->data[0].v_pointer = NULL;
3811 static gpointer
3812 g_value_object_peek_pointer (const GValue *value)
3814 return value->data[0].v_pointer;
3817 static gchar*
3818 g_value_object_collect_value (GValue *value,
3819 guint n_collect_values,
3820 GTypeCValue *collect_values,
3821 guint collect_flags)
3823 if (collect_values[0].v_pointer)
3825 GObject *object = collect_values[0].v_pointer;
3827 if (object->g_type_instance.g_class == NULL)
3828 return g_strconcat ("invalid unclassed object pointer for value type '",
3829 G_VALUE_TYPE_NAME (value),
3830 "'",
3831 NULL);
3832 else if (!g_value_type_compatible (G_OBJECT_TYPE (object), G_VALUE_TYPE (value)))
3833 return g_strconcat ("invalid object type '",
3834 G_OBJECT_TYPE_NAME (object),
3835 "' for value type '",
3836 G_VALUE_TYPE_NAME (value),
3837 "'",
3838 NULL);
3839 /* never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types */
3840 value->data[0].v_pointer = g_object_ref (object);
3842 else
3843 value->data[0].v_pointer = NULL;
3845 return NULL;
3848 static gchar*
3849 g_value_object_lcopy_value (const GValue *value,
3850 guint n_collect_values,
3851 GTypeCValue *collect_values,
3852 guint collect_flags)
3854 GObject **object_p = collect_values[0].v_pointer;
3856 if (!object_p)
3857 return g_strdup_printf ("value location for '%s' passed as NULL", G_VALUE_TYPE_NAME (value));
3859 if (!value->data[0].v_pointer)
3860 *object_p = NULL;
3861 else if (collect_flags & G_VALUE_NOCOPY_CONTENTS)
3862 *object_p = value->data[0].v_pointer;
3863 else
3864 *object_p = g_object_ref (value->data[0].v_pointer);
3866 return NULL;
3870 * g_value_set_object:
3871 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3872 * @v_object: (type GObject.Object) (nullable): object value to be set
3874 * Set the contents of a %G_TYPE_OBJECT derived #GValue to @v_object.
3876 * g_value_set_object() increases the reference count of @v_object
3877 * (the #GValue holds a reference to @v_object). If you do not wish
3878 * to increase the reference count of the object (i.e. you wish to
3879 * pass your current reference to the #GValue because you no longer
3880 * need it), use g_value_take_object() instead.
3882 * It is important that your #GValue holds a reference to @v_object (either its
3883 * own, or one it has taken) to ensure that the object won't be destroyed while
3884 * the #GValue still exists).
3886 void
3887 g_value_set_object (GValue *value,
3888 gpointer v_object)
3890 GObject *old;
3892 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value));
3894 old = value->data[0].v_pointer;
3896 if (v_object)
3898 g_return_if_fail (G_IS_OBJECT (v_object));
3899 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object), G_VALUE_TYPE (value)));
3901 value->data[0].v_pointer = v_object;
3902 g_object_ref (value->data[0].v_pointer);
3904 else
3905 value->data[0].v_pointer = NULL;
3907 if (old)
3908 g_object_unref (old);
3912 * g_value_set_object_take_ownership: (skip)
3913 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3914 * @v_object: (nullable): object value to be set
3916 * This is an internal function introduced mainly for C marshallers.
3918 * Deprecated: 2.4: Use g_value_take_object() instead.
3920 void
3921 g_value_set_object_take_ownership (GValue *value,
3922 gpointer v_object)
3924 g_value_take_object (value, v_object);
3928 * g_value_take_object: (skip)
3929 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3930 * @v_object: (nullable): object value to be set
3932 * Sets the contents of a %G_TYPE_OBJECT derived #GValue to @v_object
3933 * and takes over the ownership of the callers reference to @v_object;
3934 * the caller doesn't have to unref it any more (i.e. the reference
3935 * count of the object is not increased).
3937 * If you want the #GValue to hold its own reference to @v_object, use
3938 * g_value_set_object() instead.
3940 * Since: 2.4
3942 void
3943 g_value_take_object (GValue *value,
3944 gpointer v_object)
3946 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value));
3948 if (value->data[0].v_pointer)
3950 g_object_unref (value->data[0].v_pointer);
3951 value->data[0].v_pointer = NULL;
3954 if (v_object)
3956 g_return_if_fail (G_IS_OBJECT (v_object));
3957 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object), G_VALUE_TYPE (value)));
3959 value->data[0].v_pointer = v_object; /* we take over the reference count */
3964 * g_value_get_object:
3965 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3967 * Get the contents of a %G_TYPE_OBJECT derived #GValue.
3969 * Returns: (type GObject.Object) (transfer none): object contents of @value
3971 gpointer
3972 g_value_get_object (const GValue *value)
3974 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value), NULL);
3976 return value->data[0].v_pointer;
3980 * g_value_dup_object:
3981 * @value: a valid #GValue whose type is derived from %G_TYPE_OBJECT
3983 * Get the contents of a %G_TYPE_OBJECT derived #GValue, increasing
3984 * its reference count. If the contents of the #GValue are %NULL, then
3985 * %NULL will be returned.
3987 * Returns: (type GObject.Object) (transfer full): object content of @value,
3988 * should be unreferenced when no longer needed.
3990 gpointer
3991 g_value_dup_object (const GValue *value)
3993 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value), NULL);
3995 return value->data[0].v_pointer ? g_object_ref (value->data[0].v_pointer) : NULL;
3999 * g_signal_connect_object: (skip)
4000 * @instance: (type GObject.TypeInstance): the instance to connect to.
4001 * @detailed_signal: a string of the form "signal-name::detail".
4002 * @c_handler: the #GCallback to connect.
4003 * @gobject: (type GObject.Object) (nullable): the object to pass as data
4004 * to @c_handler.
4005 * @connect_flags: a combination of #GConnectFlags.
4007 * This is similar to g_signal_connect_data(), but uses a closure which
4008 * ensures that the @gobject stays alive during the call to @c_handler
4009 * by temporarily adding a reference count to @gobject.
4011 * When the @gobject is destroyed the signal handler will be automatically
4012 * disconnected. Note that this is not currently threadsafe (ie:
4013 * emitting a signal while @gobject is being destroyed in another thread
4014 * is not safe).
4016 * Returns: the handler id.
4018 gulong
4019 g_signal_connect_object (gpointer instance,
4020 const gchar *detailed_signal,
4021 GCallback c_handler,
4022 gpointer gobject,
4023 GConnectFlags connect_flags)
4025 g_return_val_if_fail (G_TYPE_CHECK_INSTANCE (instance), 0);
4026 g_return_val_if_fail (detailed_signal != NULL, 0);
4027 g_return_val_if_fail (c_handler != NULL, 0);
4029 if (gobject)
4031 GClosure *closure;
4033 g_return_val_if_fail (G_IS_OBJECT (gobject), 0);
4035 closure = ((connect_flags & G_CONNECT_SWAPPED) ? g_cclosure_new_object_swap : g_cclosure_new_object) (c_handler, gobject);
4037 return g_signal_connect_closure (instance, detailed_signal, closure, connect_flags & G_CONNECT_AFTER);
4039 else
4040 return g_signal_connect_data (instance, detailed_signal, c_handler, NULL, NULL, connect_flags);
4043 typedef struct {
4044 GObject *object;
4045 guint n_closures;
4046 GClosure *closures[1]; /* flexible array */
4047 } CArray;
4048 /* don't change this structure without supplying an accessor for
4049 * watched closures, e.g.:
4050 * GSList* g_object_list_watched_closures (GObject *object)
4052 * CArray *carray;
4053 * g_return_val_if_fail (G_IS_OBJECT (object), NULL);
4054 * carray = g_object_get_data (object, "GObject-closure-array");
4055 * if (carray)
4057 * GSList *slist = NULL;
4058 * guint i;
4059 * for (i = 0; i < carray->n_closures; i++)
4060 * slist = g_slist_prepend (slist, carray->closures[i]);
4061 * return slist;
4063 * return NULL;
4067 static void
4068 object_remove_closure (gpointer data,
4069 GClosure *closure)
4071 GObject *object = data;
4072 CArray *carray;
4073 guint i;
4075 G_LOCK (closure_array_mutex);
4076 carray = g_object_get_qdata (object, quark_closure_array);
4077 for (i = 0; i < carray->n_closures; i++)
4078 if (carray->closures[i] == closure)
4080 carray->n_closures--;
4081 if (i < carray->n_closures)
4082 carray->closures[i] = carray->closures[carray->n_closures];
4083 G_UNLOCK (closure_array_mutex);
4084 return;
4086 G_UNLOCK (closure_array_mutex);
4087 g_assert_not_reached ();
4090 static void
4091 destroy_closure_array (gpointer data)
4093 CArray *carray = data;
4094 GObject *object = carray->object;
4095 guint i, n = carray->n_closures;
4097 for (i = 0; i < n; i++)
4099 GClosure *closure = carray->closures[i];
4101 /* removing object_remove_closure() upfront is probably faster than
4102 * letting it fiddle with quark_closure_array which is empty anyways
4104 g_closure_remove_invalidate_notifier (closure, object, object_remove_closure);
4105 g_closure_invalidate (closure);
4107 g_free (carray);
4111 * g_object_watch_closure:
4112 * @object: GObject restricting lifetime of @closure
4113 * @closure: GClosure to watch
4115 * This function essentially limits the life time of the @closure to
4116 * the life time of the object. That is, when the object is finalized,
4117 * the @closure is invalidated by calling g_closure_invalidate() on
4118 * it, in order to prevent invocations of the closure with a finalized
4119 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
4120 * added as marshal guards to the @closure, to ensure that an extra
4121 * reference count is held on @object during invocation of the
4122 * @closure. Usually, this function will be called on closures that
4123 * use this @object as closure data.
4125 void
4126 g_object_watch_closure (GObject *object,
4127 GClosure *closure)
4129 CArray *carray;
4130 guint i;
4132 g_return_if_fail (G_IS_OBJECT (object));
4133 g_return_if_fail (closure != NULL);
4134 g_return_if_fail (closure->is_invalid == FALSE);
4135 g_return_if_fail (closure->in_marshal == FALSE);
4136 g_return_if_fail (object->ref_count > 0); /* this doesn't work on finalizing objects */
4138 g_closure_add_invalidate_notifier (closure, object, object_remove_closure);
4139 g_closure_add_marshal_guards (closure,
4140 object, (GClosureNotify) g_object_ref,
4141 object, (GClosureNotify) g_object_unref);
4142 G_LOCK (closure_array_mutex);
4143 carray = g_datalist_id_remove_no_notify (&object->qdata, quark_closure_array);
4144 if (!carray)
4146 carray = g_renew (CArray, NULL, 1);
4147 carray->object = object;
4148 carray->n_closures = 1;
4149 i = 0;
4151 else
4153 i = carray->n_closures++;
4154 carray = g_realloc (carray, sizeof (*carray) + sizeof (carray->closures[0]) * i);
4156 carray->closures[i] = closure;
4157 g_datalist_id_set_data_full (&object->qdata, quark_closure_array, carray, destroy_closure_array);
4158 G_UNLOCK (closure_array_mutex);
4162 * g_closure_new_object:
4163 * @sizeof_closure: the size of the structure to allocate, must be at least
4164 * `sizeof (GClosure)`
4165 * @object: a #GObject pointer to store in the @data field of the newly
4166 * allocated #GClosure
4168 * A variant of g_closure_new_simple() which stores @object in the
4169 * @data field of the closure and calls g_object_watch_closure() on
4170 * @object and the created closure. This function is mainly useful
4171 * when implementing new types of closures.
4173 * Returns: (transfer full): a newly allocated #GClosure
4175 GClosure*
4176 g_closure_new_object (guint sizeof_closure,
4177 GObject *object)
4179 GClosure *closure;
4181 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
4182 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
4184 closure = g_closure_new_simple (sizeof_closure, object);
4185 g_object_watch_closure (object, closure);
4187 return closure;
4191 * g_cclosure_new_object: (skip)
4192 * @callback_func: the function to invoke
4193 * @object: a #GObject pointer to pass to @callback_func
4195 * A variant of g_cclosure_new() which uses @object as @user_data and
4196 * calls g_object_watch_closure() on @object and the created
4197 * closure. This function is useful when you have a callback closely
4198 * associated with a #GObject, and want the callback to no longer run
4199 * after the object is is freed.
4201 * Returns: a new #GCClosure
4203 GClosure*
4204 g_cclosure_new_object (GCallback callback_func,
4205 GObject *object)
4207 GClosure *closure;
4209 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
4210 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
4211 g_return_val_if_fail (callback_func != NULL, NULL);
4213 closure = g_cclosure_new (callback_func, object, NULL);
4214 g_object_watch_closure (object, closure);
4216 return closure;
4220 * g_cclosure_new_object_swap: (skip)
4221 * @callback_func: the function to invoke
4222 * @object: a #GObject pointer to pass to @callback_func
4224 * A variant of g_cclosure_new_swap() which uses @object as @user_data
4225 * and calls g_object_watch_closure() on @object and the created
4226 * closure. This function is useful when you have a callback closely
4227 * associated with a #GObject, and want the callback to no longer run
4228 * after the object is is freed.
4230 * Returns: a new #GCClosure
4232 GClosure*
4233 g_cclosure_new_object_swap (GCallback callback_func,
4234 GObject *object)
4236 GClosure *closure;
4238 g_return_val_if_fail (G_IS_OBJECT (object), NULL);
4239 g_return_val_if_fail (object->ref_count > 0, NULL); /* this doesn't work on finalizing objects */
4240 g_return_val_if_fail (callback_func != NULL, NULL);
4242 closure = g_cclosure_new_swap (callback_func, object, NULL);
4243 g_object_watch_closure (object, closure);
4245 return closure;
4248 gsize
4249 g_object_compat_control (gsize what,
4250 gpointer data)
4252 switch (what)
4254 gpointer *pp;
4255 case 1: /* floating base type */
4256 return G_TYPE_INITIALLY_UNOWNED;
4257 case 2: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4258 floating_flag_handler = (guint(*)(GObject*,gint)) data;
4259 return 1;
4260 case 3: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4261 pp = data;
4262 *pp = floating_flag_handler;
4263 return 1;
4264 default:
4265 return 0;
4269 G_DEFINE_TYPE (GInitiallyUnowned, g_initially_unowned, G_TYPE_OBJECT)
4271 static void
4272 g_initially_unowned_init (GInitiallyUnowned *object)
4274 g_object_force_floating (object);
4277 static void
4278 g_initially_unowned_class_init (GInitiallyUnownedClass *klass)
4283 * GWeakRef:
4285 * A structure containing a weak reference to a #GObject. It can either
4286 * be empty (i.e. point to %NULL), or point to an object for as long as
4287 * at least one "strong" reference to that object exists. Before the
4288 * object's #GObjectClass.dispose method is called, every #GWeakRef
4289 * associated with becomes empty (i.e. points to %NULL).
4291 * Like #GValue, #GWeakRef can be statically allocated, stack- or
4292 * heap-allocated, or embedded in larger structures.
4294 * Unlike g_object_weak_ref() and g_object_add_weak_pointer(), this weak
4295 * reference is thread-safe: converting a weak pointer to a reference is
4296 * atomic with respect to invalidation of weak pointers to destroyed
4297 * objects.
4299 * If the object's #GObjectClass.dispose method results in additional
4300 * references to the object being held, any #GWeakRefs taken
4301 * before it was disposed will continue to point to %NULL. If
4302 * #GWeakRefs are taken after the object is disposed and
4303 * re-referenced, they will continue to point to it until its refcount
4304 * goes back to zero, at which point they too will be invalidated.
4308 * g_weak_ref_init: (skip)
4309 * @weak_ref: (inout): uninitialized or empty location for a weak
4310 * reference
4311 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4313 * Initialise a non-statically-allocated #GWeakRef.
4315 * This function also calls g_weak_ref_set() with @object on the
4316 * freshly-initialised weak reference.
4318 * This function should always be matched with a call to
4319 * g_weak_ref_clear(). It is not necessary to use this function for a
4320 * #GWeakRef in static storage because it will already be
4321 * properly initialised. Just use g_weak_ref_set() directly.
4323 * Since: 2.32
4325 void
4326 g_weak_ref_init (GWeakRef *weak_ref,
4327 gpointer object)
4329 weak_ref->priv.p = NULL;
4331 g_weak_ref_set (weak_ref, object);
4335 * g_weak_ref_clear: (skip)
4336 * @weak_ref: (inout): location of a weak reference, which
4337 * may be empty
4339 * Frees resources associated with a non-statically-allocated #GWeakRef.
4340 * After this call, the #GWeakRef is left in an undefined state.
4342 * You should only call this on a #GWeakRef that previously had
4343 * g_weak_ref_init() called on it.
4345 * Since: 2.32
4347 void
4348 g_weak_ref_clear (GWeakRef *weak_ref)
4350 g_weak_ref_set (weak_ref, NULL);
4352 /* be unkind */
4353 weak_ref->priv.p = (void *) 0xccccccccu;
4357 * g_weak_ref_get: (skip)
4358 * @weak_ref: (inout): location of a weak reference to a #GObject
4360 * If @weak_ref is not empty, atomically acquire a strong
4361 * reference to the object it points to, and return that reference.
4363 * This function is needed because of the potential race between taking
4364 * the pointer value and g_object_ref() on it, if the object was losing
4365 * its last reference at the same time in a different thread.
4367 * The caller should release the resulting reference in the usual way,
4368 * by using g_object_unref().
4370 * Returns: (transfer full) (type GObject.Object): the object pointed to
4371 * by @weak_ref, or %NULL if it was empty
4373 * Since: 2.32
4375 gpointer
4376 g_weak_ref_get (GWeakRef *weak_ref)
4378 gpointer object_or_null;
4380 g_return_val_if_fail (weak_ref!= NULL, NULL);
4382 g_rw_lock_reader_lock (&weak_locations_lock);
4384 object_or_null = weak_ref->priv.p;
4386 if (object_or_null != NULL)
4387 g_object_ref (object_or_null);
4389 g_rw_lock_reader_unlock (&weak_locations_lock);
4391 return object_or_null;
4395 * g_weak_ref_set: (skip)
4396 * @weak_ref: location for a weak reference
4397 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4399 * Change the object to which @weak_ref points, or set it to
4400 * %NULL.
4402 * You must own a strong reference on @object while calling this
4403 * function.
4405 * Since: 2.32
4407 void
4408 g_weak_ref_set (GWeakRef *weak_ref,
4409 gpointer object)
4411 GSList **weak_locations;
4412 GObject *new_object;
4413 GObject *old_object;
4415 g_return_if_fail (weak_ref != NULL);
4416 g_return_if_fail (object == NULL || G_IS_OBJECT (object));
4418 new_object = object;
4420 g_rw_lock_writer_lock (&weak_locations_lock);
4422 /* We use the extra level of indirection here so that if we have ever
4423 * had a weak pointer installed at any point in time on this object,
4424 * we can see that there is a non-NULL value associated with the
4425 * weak-pointer quark and know that this value will not change at any
4426 * point in the object's lifetime.
4428 * Both properties are important for reducing the amount of times we
4429 * need to acquire locks and for decreasing the duration of time the
4430 * lock is held while avoiding some rather tricky races.
4432 * Specifically: we can avoid having to do an extra unconditional lock
4433 * in g_object_unref() without worrying about some extremely tricky
4434 * races.
4437 old_object = weak_ref->priv.p;
4438 if (new_object != old_object)
4440 weak_ref->priv.p = new_object;
4442 /* Remove the weak ref from the old object */
4443 if (old_object != NULL)
4445 weak_locations = g_datalist_id_get_data (&old_object->qdata, quark_weak_locations);
4446 /* for it to point to an object, the object must have had it added once */
4447 g_assert (weak_locations != NULL);
4449 *weak_locations = g_slist_remove (*weak_locations, weak_ref);
4452 /* Add the weak ref to the new object */
4453 if (new_object != NULL)
4455 weak_locations = g_datalist_id_get_data (&new_object->qdata, quark_weak_locations);
4457 if (weak_locations == NULL)
4459 weak_locations = g_new0 (GSList *, 1);
4460 g_datalist_id_set_data_full (&new_object->qdata, quark_weak_locations, weak_locations, g_free);
4463 *weak_locations = g_slist_prepend (*weak_locations, weak_ref);
4467 g_rw_lock_writer_unlock (&weak_locations_lock);