2 * Copyright © 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 * Author: Ryan Lortie <desrt@desrt.ca>
23 #include "gvarianttypeinfo.h"
25 #include <glib/gtestutils.h>
26 #include <glib/gthread.h>
27 #include <glib/gslice.h>
28 #include <glib/ghash.h>
33 * This structure contains the necessary information to facilitate the
34 * serialisation and fast deserialisation of a given type of GVariant
35 * value. A GVariant instance holds a pointer to one of these
36 * structures to provide for efficient operation.
38 * The GVariantTypeInfo structures for all of the base types, plus the
39 * "variant" type are stored in a read-only static array.
41 * For container types, a hash table and reference counting is used to
42 * ensure that only one of these structures exists for any given type.
43 * In general, a container GVariantTypeInfo will exist for a given type
44 * only if one or more GVariant instances of that type exist or if
45 * another GVariantTypeInfo has that type as a subtype. For example, if
46 * a process contains a single GVariant instance with type "(asv)", then
47 * container GVariantTypeInfo structures will exist for "(asv)" and
48 * for "as" (note that "s" and "v" always exist in the static array).
50 * The trickiest part of GVariantTypeInfo (and in fact, the major reason
51 * for its existence) is the storage of somewhat magical constants that
52 * allow for O(1) lookups of items in tuples. This is described below.
54 * 'container_class' is set to 'a' or 'r' if the GVariantTypeInfo is
55 * contained inside of an ArrayInfo or TupleInfo, respectively. This
56 * allows the storage of the necessary additional information.
58 * 'fixed_size' is set to the fixed size of the type, if applicable, or
59 * 0 otherwise (since no type has a fixed size of 0).
61 * 'alignment' is set to one less than the alignment requirement for
62 * this type. This makes many operations much more convenient.
64 struct _GVariantTypeInfo
68 guchar container_class
;
71 /* Container types are reference counted. They also need to have their
72 * type string stored explicitly since it is not merely a single letter.
76 GVariantTypeInfo info
;
82 /* For 'array' and 'maybe' types, we store some extra information on the
83 * end of the GVariantTypeInfo struct -- the element type (ie: "s" for
84 * "as"). The container GVariantTypeInfo structure holds a reference to
85 * the element typeinfo.
89 ContainerInfo container
;
91 GVariantTypeInfo
*element
;
94 /* For 'tuple' and 'dict entry' types, we store extra information for
95 * each member -- its type and how to find it inside the serialised data
96 * in O(1) time using 4 variables -- 'i', 'a', 'b', and 'c'. See the
97 * comment on GVariantMemberInfo in gvarianttypeinfo.h.
101 ContainerInfo container
;
103 GVariantMemberInfo
*members
;
108 /* Hard-code the base types in a constant array */
109 static const GVariantTypeInfo g_variant_type_info_basic_table
[24] = {
110 #define fixed_aligned(x) x, x - 1
111 #define not_a_type 0,
112 #define unaligned 0, 0
113 #define aligned(x) 0, x - 1
114 /* 'b' */ { fixed_aligned(1) }, /* boolean */
115 /* 'c' */ { not_a_type
},
116 /* 'd' */ { fixed_aligned(8) }, /* double */
117 /* 'e' */ { not_a_type
},
118 /* 'f' */ { not_a_type
},
119 /* 'g' */ { unaligned
}, /* signature string */
120 /* 'h' */ { fixed_aligned(4) }, /* file handle (int32) */
121 /* 'i' */ { fixed_aligned(4) }, /* int32 */
122 /* 'j' */ { not_a_type
},
123 /* 'k' */ { not_a_type
},
124 /* 'l' */ { not_a_type
},
125 /* 'm' */ { not_a_type
},
126 /* 'n' */ { fixed_aligned(2) }, /* int16 */
127 /* 'o' */ { unaligned
}, /* object path string */
128 /* 'p' */ { not_a_type
},
129 /* 'q' */ { fixed_aligned(2) }, /* uint16 */
130 /* 'r' */ { not_a_type
},
131 /* 's' */ { unaligned
}, /* string */
132 /* 't' */ { fixed_aligned(8) }, /* uint64 */
133 /* 'u' */ { fixed_aligned(4) }, /* uint32 */
134 /* 'v' */ { aligned(8) }, /* variant */
135 /* 'w' */ { not_a_type
},
136 /* 'x' */ { fixed_aligned(8) }, /* int64 */
137 /* 'y' */ { fixed_aligned(1) }, /* byte */
144 /* We need to have type strings to return for the base types. We store
145 * those in another array. Since all base type strings are single
146 * characters this is easy. By not storing pointers to strings into the
147 * GVariantTypeInfo itself, we save a bunch of relocations.
149 static const char g_variant_type_info_basic_chars
[24][2] = {
150 "b", " ", "d", " ", " ", "g", "h", "i", " ", " ", " ", " ",
151 "n", "o", " ", "q", " ", "s", "t", "u", "v", " ", "x", "y"
154 /* sanity checks to make debugging easier */
156 g_variant_type_info_check (const GVariantTypeInfo
*info
,
157 char container_class
)
159 g_assert (!container_class
|| info
->container_class
== container_class
);
161 /* alignment can only be one of these */
162 g_assert (info
->alignment
== 0 || info
->alignment
== 1 ||
163 info
->alignment
== 3 || info
->alignment
== 7);
165 if (info
->container_class
)
167 ContainerInfo
*container
= (ContainerInfo
*) info
;
169 /* extra checks for containers */
170 g_assert_cmpint (container
->ref_count
, >, 0);
171 g_assert (container
->type_string
!= NULL
);
177 /* if not a container, then ensure that it is a valid member of
178 * the basic types table
180 index
= info
- g_variant_type_info_basic_table
;
182 g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table
) == 24);
183 g_assert (G_N_ELEMENTS (g_variant_type_info_basic_chars
) == 24);
184 g_assert (0 <= index
&& index
< 24);
185 g_assert (g_variant_type_info_basic_chars
[index
][0] != ' ');
190 * g_variant_type_info_get_type_string:
191 * @info: a #GVariantTypeInfo
193 * Gets the type string for @info. The string is nul-terminated.
196 g_variant_type_info_get_type_string (GVariantTypeInfo
*info
)
198 g_variant_type_info_check (info
, 0);
200 if (info
->container_class
)
202 ContainerInfo
*container
= (ContainerInfo
*) info
;
204 /* containers have their type string stored inside them */
205 return container
->type_string
;
211 /* look up the type string in the base type array. the call to
212 * g_variant_type_info_check() above already ensured validity.
214 index
= info
- g_variant_type_info_basic_table
;
216 return g_variant_type_info_basic_chars
[index
];
221 * g_variant_type_info_query:
222 * @info: a #GVariantTypeInfo
223 * @alignment: (nullable): the location to store the alignment, or %NULL
224 * @fixed_size: (nullable): the location to store the fixed size, or %NULL
226 * Queries @info to determine the alignment requirements and fixed size
227 * (if any) of the type.
229 * @fixed_size, if non-%NULL is set to the fixed size of the type, or 0
230 * to indicate that the type is a variable-sized type. No type has a
233 * @alignment, if non-%NULL, is set to one less than the required
234 * alignment of the type. For example, for a 32bit integer, @alignment
235 * would be set to 3. This allows you to round an integer up to the
236 * proper alignment by performing the following efficient calculation:
238 * offset += ((-offset) & alignment);
241 g_variant_type_info_query (GVariantTypeInfo
*info
,
245 g_variant_type_info_check (info
, 0);
248 *alignment
= info
->alignment
;
251 *fixed_size
= info
->fixed_size
;
255 #define GV_ARRAY_INFO_CLASS 'a'
257 GV_ARRAY_INFO (GVariantTypeInfo
*info
)
259 g_variant_type_info_check (info
, GV_ARRAY_INFO_CLASS
);
261 return (ArrayInfo
*) info
;
265 array_info_free (GVariantTypeInfo
*info
)
267 ArrayInfo
*array_info
;
269 g_assert (info
->container_class
== GV_ARRAY_INFO_CLASS
);
270 array_info
= (ArrayInfo
*) info
;
272 g_variant_type_info_unref (array_info
->element
);
273 g_slice_free (ArrayInfo
, array_info
);
276 static ContainerInfo
*
277 array_info_new (const GVariantType
*type
)
281 info
= g_slice_new (ArrayInfo
);
282 info
->container
.info
.container_class
= GV_ARRAY_INFO_CLASS
;
284 info
->element
= g_variant_type_info_get (g_variant_type_element (type
));
285 info
->container
.info
.alignment
= info
->element
->alignment
;
286 info
->container
.info
.fixed_size
= 0;
288 return (ContainerInfo
*) info
;
292 * g_variant_type_info_element:
293 * @info: a #GVariantTypeInfo for an array or maybe type
295 * Returns the element type for the array or maybe type. A reference is
296 * not added, so the caller must add their own.
299 g_variant_type_info_element (GVariantTypeInfo
*info
)
301 return GV_ARRAY_INFO (info
)->element
;
305 * g_variant_type_query_element:
306 * @info: a #GVariantTypeInfo for an array or maybe type
307 * @alignment: (nullable): the location to store the alignment, or %NULL
308 * @fixed_size: (nullable): the location to store the fixed size, or %NULL
310 * Returns the alignment requires and fixed size (if any) for the
311 * element type of the array. This call is a convenience wrapper around
312 * g_variant_type_info_element() and g_variant_type_info_query().
315 g_variant_type_info_query_element (GVariantTypeInfo
*info
,
319 g_variant_type_info_query (GV_ARRAY_INFO (info
)->element
,
320 alignment
, fixed_size
);
324 #define GV_TUPLE_INFO_CLASS 'r'
326 GV_TUPLE_INFO (GVariantTypeInfo
*info
)
328 g_variant_type_info_check (info
, GV_TUPLE_INFO_CLASS
);
330 return (TupleInfo
*) info
;
334 tuple_info_free (GVariantTypeInfo
*info
)
336 TupleInfo
*tuple_info
;
339 g_assert (info
->container_class
== GV_TUPLE_INFO_CLASS
);
340 tuple_info
= (TupleInfo
*) info
;
342 for (i
= 0; i
< tuple_info
->n_members
; i
++)
343 g_variant_type_info_unref (tuple_info
->members
[i
].type_info
);
345 g_slice_free1 (sizeof (GVariantMemberInfo
) * tuple_info
->n_members
,
346 tuple_info
->members
);
347 g_slice_free (TupleInfo
, tuple_info
);
351 tuple_allocate_members (const GVariantType
*type
,
352 GVariantMemberInfo
**members
,
355 const GVariantType
*item_type
;
358 *n_members
= g_variant_type_n_items (type
);
359 *members
= g_slice_alloc (sizeof (GVariantMemberInfo
) * *n_members
);
361 item_type
= g_variant_type_first (type
);
364 GVariantMemberInfo
*member
= &(*members
)[i
++];
366 member
->type_info
= g_variant_type_info_get (item_type
);
367 item_type
= g_variant_type_next (item_type
);
369 if (member
->type_info
->fixed_size
)
370 member
->ending_type
= G_VARIANT_MEMBER_ENDING_FIXED
;
371 else if (item_type
== NULL
)
372 member
->ending_type
= G_VARIANT_MEMBER_ENDING_LAST
;
374 member
->ending_type
= G_VARIANT_MEMBER_ENDING_OFFSET
;
377 g_assert (i
== *n_members
);
380 /* this is g_variant_type_info_query for a given member of the tuple.
381 * before the access is done, it is ensured that the item is within
382 * range and %FALSE is returned if not.
385 tuple_get_item (TupleInfo
*info
,
386 GVariantMemberInfo
*item
,
390 if (&info
->members
[info
->n_members
] == item
)
393 *d
= item
->type_info
->alignment
;
394 *e
= item
->type_info
->fixed_size
;
398 /* Read the documentation for #GVariantMemberInfo in gvarianttype.h
399 * before attempting to understand this.
401 * This function adds one set of "magic constant" values (for one item
402 * in the tuple) to the table.
404 * The algorithm in tuple_generate_table() calculates values of 'a', 'b'
405 * and 'c' for each item, such that the procedure for finding the item
406 * is to start at the end of the previous variable-sized item, add 'a',
407 * then round up to the nearest multiple of 'b', then then add 'c'.
408 * Note that 'b' is stored in the usual "one less than" form. ie:
410 * start = ROUND_UP(prev_end + a, (b + 1)) + c;
412 * We tweak these values a little to allow for a slightly easier
413 * computation and more compact storage.
416 tuple_table_append (GVariantMemberInfo
**items
,
422 GVariantMemberInfo
*item
= (*items
)++;
424 /* We can shift multiples of the alignment size from 'c' into 'a'.
425 * As long as we're shifting whole multiples, it won't affect the
426 * result. This means that we can take the "aligned" portion off of
427 * 'c' and add it into 'a'.
429 * Imagine (for sake of clarity) that ROUND_10 rounds up to the
430 * nearest 10. It is clear that:
432 * ROUND_10(a) + c == ROUND_10(a + 10*(c / 10)) + (c % 10)
434 * ie: remove the 10s portion of 'c' and add it onto 'a'.
436 * To put some numbers on it, imagine we start with a = 34 and c = 27:
438 * ROUND_10(34) + 27 = 40 + 27 = 67
440 * but also, we can split 27 up into 20 and 7 and do this:
442 * ROUND_10(34 + 20) + 7 = ROUND_10(54) + 7 = 60 + 7 = 67
444 * without affecting the result. We do that here.
446 * This reduction in the size of 'c' means that we can store it in a
447 * gchar instead of a gsize. Due to how the structure is packed, this
448 * ends up saving us 'two pointer sizes' per item in each tuple when
449 * allocating using GSlice.
451 a
+= ~b
& c
; /* take the "aligned" part of 'c' and add to 'a' */
452 c
&= b
; /* chop 'c' to contain only the unaligned part */
455 /* Finally, we made one last adjustment. Recall:
457 * start = ROUND_UP(prev_end + a, (b + 1)) + c;
459 * Forgetting the '+ c' for the moment:
461 * ROUND_UP(prev_end + a, (b + 1));
463 * we can do a "round up" operation by adding 1 less than the amount
464 * to round up to, then rounding down. ie:
466 * #define ROUND_UP(x, y) ROUND_DOWN(x + (y-1), y)
468 * Of course, for rounding down to a power of two, we can just mask
469 * out the appropriate number of low order bits:
471 * #define ROUND_DOWN(x, y) (x & ~(y - 1))
475 * #define ROUND_UP(x, y) (x + (y - 1) & ~(y - 1))
477 * but recall that our alignment value 'b' is already "one less".
478 * This means that to round 'prev_end + a' up to 'b' we can just do:
480 * ((prev_end + a) + b) & ~b
482 * Associativity, and putting the 'c' back on:
484 * (prev_end + (a + b)) & ~b + c
486 * Now, since (a + b) is constant, we can just add 'b' to 'a' now and
487 * store that as the number to add to prev_end. Then we use ~b as the
488 * number to take a bitwise 'and' with. Finally, 'c' is added on.
490 * Note, however, that all the low order bits of the 'aligned' value
491 * are masked out and that all of the high order bits of 'c' have been
492 * "moved" to 'a' (in the previous step). This means that there are
493 * no overlapping bits in the addition -- so we can do a bitwise 'or'
496 * This means that we can now compute the start address of a given
497 * item in the tuple using the algorithm given in the documentation
498 * for #GVariantMemberInfo:
500 * item_start = ((prev_end + a) & b) | c;
510 tuple_align (gsize offset
,
513 return offset
+ ((-offset
) & alignment
);
516 /* This function is the heart of the algorithm for calculating 'i', 'a',
517 * 'b' and 'c' for each item in the tuple.
519 * Imagine we want to find the start of the "i" in the type "(su(qx)ni)".
520 * That's a string followed by a uint32, then a tuple containing a
521 * uint16 and a int64, then an int16, then our "i". In order to get to
524 * Start at the end of the string, align to 4 (for the uint32), add 4.
525 * Align to 8, add 16 (for the tuple). Align to 2, add 2 (for the
526 * int16). Then we're there. It turns out that, given 3 simple rules,
527 * we can flatten this iteration into one addition, one alignment, then
530 * The loop below plays through each item in the tuple, querying its
531 * alignment and fixed_size into 'd' and 'e', respectively. At all
532 * times the variables 'a', 'b', and 'c' are maintained such that in
533 * order to get to the current point, you add 'a', align to 'b' then add
534 * 'c'. 'b' is kept in "one less than" form. For each item, the proper
535 * alignment is applied to find the values of 'a', 'b' and 'c' to get to
536 * the start of that item. Those values are recorded into the table.
537 * The fixed size of the item (if applicable) is then added on.
539 * These 3 rules are how 'a', 'b' and 'c' are modified for alignment and
540 * addition of fixed size. They have been proven correct but are
541 * presented here, without proof:
543 * 1) in order to "align to 'd'" where 'd' is less than or equal to the
544 * largest level of alignment seen so far ('b'), you align 'c' to
546 * 2) in order to "align to 'd'" where 'd' is greater than the largest
547 * level of alignment seen so far, you add 'c' aligned to 'b' to the
548 * value of 'a', set 'b' to 'd' (ie: increase the 'largest alignment
549 * seen') and reset 'c' to 0.
550 * 3) in order to "add 'e'", just add 'e' to 'c'.
553 tuple_generate_table (TupleInfo
*info
)
555 GVariantMemberInfo
*items
= info
->members
;
556 gsize i
= -1, a
= 0, b
= 0, c
= 0, d
, e
;
558 /* iterate over each item in the tuple.
559 * 'd' will be the alignment of the item (in one-less form)
560 * 'e' will be the fixed size (or 0 for variable-size items)
562 while (tuple_get_item (info
, items
, &d
, &e
))
566 c
= tuple_align (c
, d
); /* rule 1 */
568 a
+= tuple_align (c
, b
), b
= d
, c
= 0; /* rule 2 */
570 /* the start of the item is at this point (ie: right after we
571 * have aligned for it). store this information in the table.
573 tuple_table_append (&items
, i
, a
, b
, c
);
575 /* "move past" the item by adding in its size. */
579 * we'll have an offset stored to mark the end of this item, so
580 * just bump the offset index to give us a new starting point
581 * and reset all the counters.
591 tuple_set_base_info (TupleInfo
*info
)
593 GVariantTypeInfo
*base
= &info
->container
.info
;
595 if (info
->n_members
> 0)
597 GVariantMemberInfo
*m
;
599 /* the alignment requirement of the tuple is the alignment
600 * requirement of its largest item.
603 for (m
= info
->members
; m
< &info
->members
[info
->n_members
]; m
++)
604 /* can find the max of a list of "one less than" powers of two
607 base
->alignment
|= m
->type_info
->alignment
;
609 m
--; /* take 'm' back to the last item */
611 /* the structure only has a fixed size if no variable-size
612 * offsets are stored and the last item is fixed-sized too (since
613 * an offset is never stored for the last item).
615 if (m
->i
== -1 && m
->type_info
->fixed_size
)
616 /* in that case, the fixed size can be found by finding the
617 * start of the last item (in the usual way) and adding its
620 * if a tuple has a fixed size then it is always a multiple of
621 * the alignment requirement (to make packing into arrays
622 * easier) so we round up to that here.
625 tuple_align (((m
->a
& m
->b
) | m
->c
) + m
->type_info
->fixed_size
,
628 /* else, the tuple is not fixed size */
629 base
->fixed_size
= 0;
633 /* the empty tuple: '()'.
635 * has a size of 1 and an no alignment requirement.
637 * It has a size of 1 (not 0) for two practical reasons:
639 * 1) So we can determine how many of them are in an array
640 * without dividing by zero or without other tricks.
642 * 2) Even if we had some trick to know the number of items in
643 * the array (as GVariant did at one time) this would open a
644 * potential denial of service attack: an attacker could send
645 * you an extremely small array (in terms of number of bytes)
646 * containing trillions of zero-sized items. If you iterated
647 * over this array you would effectively infinite-loop your
648 * program. By forcing a size of at least one, we bound the
649 * amount of computation done in response to a message to a
650 * reasonable function of the size of that message.
653 base
->fixed_size
= 1;
657 static ContainerInfo
*
658 tuple_info_new (const GVariantType
*type
)
662 info
= g_slice_new (TupleInfo
);
663 info
->container
.info
.container_class
= GV_TUPLE_INFO_CLASS
;
665 tuple_allocate_members (type
, &info
->members
, &info
->n_members
);
666 tuple_generate_table (info
);
667 tuple_set_base_info (info
);
669 return (ContainerInfo
*) info
;
673 * g_variant_type_info_n_members:
674 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
676 * Returns the number of members in a tuple or dictionary entry type.
677 * For a dictionary entry this will always be 2.
680 g_variant_type_info_n_members (GVariantTypeInfo
*info
)
682 return GV_TUPLE_INFO (info
)->n_members
;
686 * g_variant_type_info_member_info:
687 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
688 * @index: the member to fetch information for
690 * Returns the #GVariantMemberInfo for a given member. See
691 * documentation for that structure for why you would want this
694 * @index must refer to a valid child (ie: strictly less than
695 * g_variant_type_info_n_members() returns).
697 const GVariantMemberInfo
*
698 g_variant_type_info_member_info (GVariantTypeInfo
*info
,
701 TupleInfo
*tuple_info
= GV_TUPLE_INFO (info
);
703 if (index
< tuple_info
->n_members
)
704 return &tuple_info
->members
[index
];
709 /* == new/ref/unref == */
710 static GRecMutex g_variant_type_info_lock
;
711 static GHashTable
*g_variant_type_info_table
;
714 * g_variant_type_info_get:
715 * @type: a #GVariantType
717 * Returns a reference to a #GVariantTypeInfo for @type.
719 * If an info structure already exists for this type, a new reference is
720 * returned. If not, the required calculations are performed and a new
721 * info structure is returned.
723 * It is appropriate to call g_variant_type_info_unref() on the return
727 g_variant_type_info_get (const GVariantType
*type
)
731 type_char
= g_variant_type_peek_string (type
)[0];
733 if (type_char
== G_VARIANT_TYPE_INFO_CHAR_MAYBE
||
734 type_char
== G_VARIANT_TYPE_INFO_CHAR_ARRAY
||
735 type_char
== G_VARIANT_TYPE_INFO_CHAR_TUPLE
||
736 type_char
== G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY
)
738 GVariantTypeInfo
*info
;
741 type_string
= g_variant_type_dup_string (type
);
743 g_rec_mutex_lock (&g_variant_type_info_lock
);
745 if (g_variant_type_info_table
== NULL
)
746 g_variant_type_info_table
= g_hash_table_new (g_str_hash
,
748 info
= g_hash_table_lookup (g_variant_type_info_table
, type_string
);
752 ContainerInfo
*container
;
754 if (type_char
== G_VARIANT_TYPE_INFO_CHAR_MAYBE
||
755 type_char
== G_VARIANT_TYPE_INFO_CHAR_ARRAY
)
757 container
= array_info_new (type
);
759 else /* tuple or dict entry */
761 container
= tuple_info_new (type
);
764 info
= (GVariantTypeInfo
*) container
;
765 container
->type_string
= type_string
;
766 container
->ref_count
= 1;
768 g_hash_table_insert (g_variant_type_info_table
, type_string
, info
);
772 g_variant_type_info_ref (info
);
774 g_rec_mutex_unlock (&g_variant_type_info_lock
);
775 g_variant_type_info_check (info
, 0);
776 g_free (type_string
);
782 const GVariantTypeInfo
*info
;
785 index
= type_char
- 'b';
786 g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table
) == 24);
787 g_assert_cmpint (0, <=, index
);
788 g_assert_cmpint (index
, <, 24);
790 info
= g_variant_type_info_basic_table
+ index
;
791 g_variant_type_info_check (info
, 0);
793 return (GVariantTypeInfo
*) info
;
798 * g_variant_type_info_ref:
799 * @info: a #GVariantTypeInfo
801 * Adds a reference to @info.
804 g_variant_type_info_ref (GVariantTypeInfo
*info
)
806 g_variant_type_info_check (info
, 0);
808 if (info
->container_class
)
810 ContainerInfo
*container
= (ContainerInfo
*) info
;
812 g_assert_cmpint (container
->ref_count
, >, 0);
813 g_atomic_int_inc (&container
->ref_count
);
820 * g_variant_type_info_unref:
821 * @info: a #GVariantTypeInfo
823 * Releases a reference held on @info. This may result in @info being
827 g_variant_type_info_unref (GVariantTypeInfo
*info
)
829 g_variant_type_info_check (info
, 0);
831 if (info
->container_class
)
833 ContainerInfo
*container
= (ContainerInfo
*) info
;
835 g_rec_mutex_lock (&g_variant_type_info_lock
);
836 if (g_atomic_int_dec_and_test (&container
->ref_count
))
838 g_hash_table_remove (g_variant_type_info_table
,
839 container
->type_string
);
840 if (g_hash_table_size (g_variant_type_info_table
) == 0)
842 g_hash_table_unref (g_variant_type_info_table
);
843 g_variant_type_info_table
= NULL
;
845 g_rec_mutex_unlock (&g_variant_type_info_lock
);
847 g_free (container
->type_string
);
849 if (info
->container_class
== GV_ARRAY_INFO_CLASS
)
850 array_info_free (info
);
852 else if (info
->container_class
== GV_TUPLE_INFO_CLASS
)
853 tuple_info_free (info
);
856 g_assert_not_reached ();
859 g_rec_mutex_unlock (&g_variant_type_info_lock
);
864 g_variant_type_info_assert_no_infos (void)
866 g_assert (g_variant_type_info_table
== NULL
);