1 /* GObject - GLib Type, Object, Parameter and Signal Library
2 * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General
15 * Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 * MT safe with regards to reference counting.
28 #include "gtype-private.h"
29 #include "gvaluecollector.h"
31 #include "gparamspecs.h"
32 #include "gvaluetypes.h"
33 #include "gobject_trace.h"
34 #include "gconstructor.h"
39 * @short_description: The base object type
40 * @see_also: #GParamSpecObject, g_param_spec_object()
42 * GObject is the fundamental type providing the common attributes and
43 * methods for all object types in GTK+, Pango and other libraries
44 * based on GObject. The GObject class provides methods for object
45 * construction and destruction, property access methods, and signal
46 * support. Signals are described in detail [here][gobject-Signals].
48 * For a tutorial on implementing a new GObject class, see [How to define and
49 * implement a new GObject][howto-gobject]. For a list of naming conventions for
50 * GObjects and their methods, see the [GType conventions][gtype-conventions].
51 * For the high-level concepts behind GObject, read [Instantiable classed types:
52 * Objects][gtype-instantiable-classed].
54 * ## Floating references # {#floating-ref}
56 * GInitiallyUnowned is derived from GObject. The only difference between
57 * the two is that the initial reference of a GInitiallyUnowned is flagged
58 * as a "floating" reference. This means that it is not specifically
59 * claimed to be "owned" by any code portion. The main motivation for
60 * providing floating references is C convenience. In particular, it
61 * allows code to be written as:
62 * |[<!-- language="C" -->
63 * container = create_container ();
64 * container_add_child (container, create_child());
66 * If container_add_child() calls g_object_ref_sink() on the passed-in child,
67 * no reference of the newly created child is leaked. Without floating
68 * references, container_add_child() can only g_object_ref() the new child,
69 * so to implement this code without reference leaks, it would have to be
71 * |[<!-- language="C" -->
73 * container = create_container ();
74 * child = create_child ();
75 * container_add_child (container, child);
76 * g_object_unref (child);
78 * The floating reference can be converted into an ordinary reference by
79 * calling g_object_ref_sink(). For already sunken objects (objects that
80 * don't have a floating reference anymore), g_object_ref_sink() is equivalent
81 * to g_object_ref() and returns a new reference.
83 * Since floating references are useful almost exclusively for C convenience,
84 * language bindings that provide automated reference and memory ownership
85 * maintenance (such as smart pointers or garbage collection) should not
86 * expose floating references in their API.
88 * Some object implementations may need to save an objects floating state
89 * across certain code portions (an example is #GtkMenu), to achieve this,
90 * the following sequence can be used:
92 * |[<!-- language="C" -->
93 * // save floating state
94 * gboolean was_floating = g_object_is_floating (object);
95 * g_object_ref_sink (object);
96 * // protected code portion
100 * // restore floating state
102 * g_object_force_floating (object);
104 * g_object_unref (object); // release previously acquired reference
110 #define PARAM_SPEC_PARAM_ID(pspec) ((pspec)->param_id)
111 #define PARAM_SPEC_SET_PARAM_ID(pspec, id) ((pspec)->param_id = (id))
113 #define OBJECT_HAS_TOGGLE_REF_FLAG 0x1
114 #define OBJECT_HAS_TOGGLE_REF(object) \
115 ((g_datalist_get_flags (&(object)->qdata) & OBJECT_HAS_TOGGLE_REF_FLAG) != 0)
116 #define OBJECT_FLOATING_FLAG 0x2
118 #define CLASS_HAS_PROPS_FLAG 0x1
119 #define CLASS_HAS_PROPS(class) \
120 ((class)->flags & CLASS_HAS_PROPS_FLAG)
121 #define CLASS_HAS_CUSTOM_CONSTRUCTOR(class) \
122 ((class)->constructor != g_object_constructor)
123 #define CLASS_HAS_CUSTOM_CONSTRUCTED(class) \
124 ((class)->constructed != g_object_constructed)
126 #define CLASS_HAS_DERIVED_CLASS_FLAG 0x2
127 #define CLASS_HAS_DERIVED_CLASS(class) \
128 ((class)->flags & CLASS_HAS_DERIVED_CLASS_FLAG)
130 /* --- signals --- */
137 /* --- properties --- */
143 /* --- prototypes --- */
144 static void g_object_base_class_init (GObjectClass
*class);
145 static void g_object_base_class_finalize (GObjectClass
*class);
146 static void g_object_do_class_init (GObjectClass
*class);
147 static void g_object_init (GObject
*object
,
148 GObjectClass
*class);
149 static GObject
* g_object_constructor (GType type
,
150 guint n_construct_properties
,
151 GObjectConstructParam
*construct_params
);
152 static void g_object_constructed (GObject
*object
);
153 static void g_object_real_dispose (GObject
*object
);
154 static void g_object_finalize (GObject
*object
);
155 static void g_object_do_set_property (GObject
*object
,
159 static void g_object_do_get_property (GObject
*object
,
163 static void g_value_object_init (GValue
*value
);
164 static void g_value_object_free_value (GValue
*value
);
165 static void g_value_object_copy_value (const GValue
*src_value
,
167 static void g_value_object_transform_value (const GValue
*src_value
,
169 static gpointer
g_value_object_peek_pointer (const GValue
*value
);
170 static gchar
* g_value_object_collect_value (GValue
*value
,
171 guint n_collect_values
,
172 GTypeCValue
*collect_values
,
173 guint collect_flags
);
174 static gchar
* g_value_object_lcopy_value (const GValue
*value
,
175 guint n_collect_values
,
176 GTypeCValue
*collect_values
,
177 guint collect_flags
);
178 static void g_object_dispatch_properties_changed (GObject
*object
,
180 GParamSpec
**pspecs
);
181 static guint
object_floating_flag_handler (GObject
*object
,
184 static void object_interface_check_properties (gpointer check_data
,
187 /* --- typedefs --- */
188 typedef struct _GObjectNotifyQueue GObjectNotifyQueue
;
190 struct _GObjectNotifyQueue
194 guint16 freeze_count
;
197 /* --- variables --- */
198 G_LOCK_DEFINE_STATIC (closure_array_mutex
);
199 G_LOCK_DEFINE_STATIC (weak_refs_mutex
);
200 G_LOCK_DEFINE_STATIC (toggle_refs_mutex
);
201 static GQuark quark_closure_array
= 0;
202 static GQuark quark_weak_refs
= 0;
203 static GQuark quark_toggle_refs
= 0;
204 static GQuark quark_notify_queue
;
205 static GQuark quark_in_construction
;
206 static GParamSpecPool
*pspec_pool
= NULL
;
207 static gulong gobject_signals
[LAST_SIGNAL
] = { 0, };
208 static guint (*floating_flag_handler
) (GObject
*, gint
) = object_floating_flag_handler
;
209 /* qdata pointing to GSList<GWeakRef *>, protected by weak_locations_lock */
210 static GQuark quark_weak_locations
= 0;
211 static GRWLock weak_locations_lock
;
213 G_LOCK_DEFINE_STATIC(notify_lock
);
215 /* --- functions --- */
217 g_object_notify_queue_free (gpointer data
)
219 GObjectNotifyQueue
*nqueue
= data
;
221 g_slist_free (nqueue
->pspecs
);
222 g_slice_free (GObjectNotifyQueue
, nqueue
);
225 static GObjectNotifyQueue
*
226 g_object_notify_queue_freeze (GObject
*object
,
227 gboolean conditional
)
229 GObjectNotifyQueue
*nqueue
;
232 nqueue
= g_datalist_id_get_data (&object
->qdata
, quark_notify_queue
);
237 G_UNLOCK(notify_lock
);
241 nqueue
= g_slice_new0 (GObjectNotifyQueue
);
242 g_datalist_id_set_data_full (&object
->qdata
, quark_notify_queue
,
243 nqueue
, g_object_notify_queue_free
);
246 if (nqueue
->freeze_count
>= 65535)
247 g_critical("Free queue for %s (%p) is larger than 65535,"
248 " called g_object_freeze_notify() too often."
249 " Forgot to call g_object_thaw_notify() or infinite loop",
250 G_OBJECT_TYPE_NAME (object
), object
);
252 nqueue
->freeze_count
++;
253 G_UNLOCK(notify_lock
);
259 g_object_notify_queue_thaw (GObject
*object
,
260 GObjectNotifyQueue
*nqueue
)
262 GParamSpec
*pspecs_mem
[16], **pspecs
, **free_me
= NULL
;
266 g_return_if_fail (nqueue
->freeze_count
> 0);
267 g_return_if_fail (g_atomic_int_get(&object
->ref_count
) > 0);
271 /* Just make sure we never get into some nasty race condition */
272 if (G_UNLIKELY(nqueue
->freeze_count
== 0)) {
273 G_UNLOCK(notify_lock
);
274 g_warning ("%s: property-changed notification for %s(%p) is not frozen",
275 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), object
);
279 nqueue
->freeze_count
--;
280 if (nqueue
->freeze_count
) {
281 G_UNLOCK(notify_lock
);
285 pspecs
= nqueue
->n_pspecs
> 16 ? free_me
= g_new (GParamSpec
*, nqueue
->n_pspecs
) : pspecs_mem
;
287 for (slist
= nqueue
->pspecs
; slist
; slist
= slist
->next
)
289 pspecs
[n_pspecs
++] = slist
->data
;
291 g_datalist_id_set_data (&object
->qdata
, quark_notify_queue
, NULL
);
293 G_UNLOCK(notify_lock
);
296 G_OBJECT_GET_CLASS (object
)->dispatch_properties_changed (object
, n_pspecs
, pspecs
);
301 g_object_notify_queue_add (GObject
*object
,
302 GObjectNotifyQueue
*nqueue
,
307 g_assert (nqueue
->n_pspecs
< 65535);
309 if (g_slist_find (nqueue
->pspecs
, pspec
) == NULL
)
311 nqueue
->pspecs
= g_slist_prepend (nqueue
->pspecs
, pspec
);
315 G_UNLOCK(notify_lock
);
318 #ifdef G_ENABLE_DEBUG
319 G_LOCK_DEFINE_STATIC (debug_objects
);
320 static guint debug_objects_count
= 0;
321 static GHashTable
*debug_objects_ht
= NULL
;
324 debug_objects_foreach (gpointer key
,
328 GObject
*object
= value
;
330 g_message ("[%p] stale %s\tref_count=%u",
332 G_OBJECT_TYPE_NAME (object
),
336 #ifdef G_HAS_CONSTRUCTORS
337 #ifdef G_DEFINE_DESTRUCTOR_NEEDS_PRAGMA
338 #pragma G_DEFINE_DESTRUCTOR_PRAGMA_ARGS(debug_objects_atexit)
340 G_DEFINE_DESTRUCTOR(debug_objects_atexit
)
341 #endif /* G_HAS_CONSTRUCTORS */
344 debug_objects_atexit (void)
346 GOBJECT_IF_DEBUG (OBJECTS
,
348 G_LOCK (debug_objects
);
349 g_message ("stale GObjects: %u", debug_objects_count
);
350 g_hash_table_foreach (debug_objects_ht
, debug_objects_foreach
, NULL
);
351 G_UNLOCK (debug_objects
);
354 #endif /* G_ENABLE_DEBUG */
357 _g_object_type_init (void)
359 static gboolean initialized
= FALSE
;
360 static const GTypeFundamentalInfo finfo
= {
361 G_TYPE_FLAG_CLASSED
| G_TYPE_FLAG_INSTANTIATABLE
| G_TYPE_FLAG_DERIVABLE
| G_TYPE_FLAG_DEEP_DERIVABLE
,
364 sizeof (GObjectClass
),
365 (GBaseInitFunc
) g_object_base_class_init
,
366 (GBaseFinalizeFunc
) g_object_base_class_finalize
,
367 (GClassInitFunc
) g_object_do_class_init
,
368 NULL
/* class_destroy */,
369 NULL
/* class_data */,
372 (GInstanceInitFunc
) g_object_init
,
373 NULL
, /* value_table */
375 static const GTypeValueTable value_table
= {
376 g_value_object_init
, /* value_init */
377 g_value_object_free_value
, /* value_free */
378 g_value_object_copy_value
, /* value_copy */
379 g_value_object_peek_pointer
, /* value_peek_pointer */
380 "p", /* collect_format */
381 g_value_object_collect_value
, /* collect_value */
382 "p", /* lcopy_format */
383 g_value_object_lcopy_value
, /* lcopy_value */
387 g_return_if_fail (initialized
== FALSE
);
392 info
.value_table
= &value_table
;
393 type
= g_type_register_fundamental (G_TYPE_OBJECT
, g_intern_static_string ("GObject"), &info
, &finfo
, 0);
394 g_assert (type
== G_TYPE_OBJECT
);
395 g_value_register_transform_func (G_TYPE_OBJECT
, G_TYPE_OBJECT
, g_value_object_transform_value
);
398 /* We cannot use GOBJECT_IF_DEBUG here because of the G_HAS_CONSTRUCTORS
399 * conditional in between, as the C spec leaves conditionals inside macro
400 * expansions as undefined behavior. Only GCC and Clang are known to work
401 * but compilation breaks on MSVC.
403 * See: https://bugzilla.gnome.org/show_bug.cgi?id=769504
405 if (_g_type_debug_flags
& G_TYPE_DEBUG_OBJECTS
) \
407 debug_objects_ht
= g_hash_table_new (g_direct_hash
, NULL
);
408 # ifndef G_HAS_CONSTRUCTORS
409 g_atexit (debug_objects_atexit
);
410 # endif /* G_HAS_CONSTRUCTORS */
412 #endif /* G_ENABLE_DEBUG */
416 g_object_base_class_init (GObjectClass
*class)
418 GObjectClass
*pclass
= g_type_class_peek_parent (class);
420 /* Don't inherit HAS_DERIVED_CLASS flag from parent class */
421 class->flags
&= ~CLASS_HAS_DERIVED_CLASS_FLAG
;
424 pclass
->flags
|= CLASS_HAS_DERIVED_CLASS_FLAG
;
426 /* reset instance specific fields and methods that don't get inherited */
427 class->construct_properties
= pclass
? g_slist_copy (pclass
->construct_properties
) : NULL
;
428 class->get_property
= NULL
;
429 class->set_property
= NULL
;
433 g_object_base_class_finalize (GObjectClass
*class)
437 _g_signals_destroy (G_OBJECT_CLASS_TYPE (class));
439 g_slist_free (class->construct_properties
);
440 class->construct_properties
= NULL
;
441 list
= g_param_spec_pool_list_owned (pspec_pool
, G_OBJECT_CLASS_TYPE (class));
442 for (node
= list
; node
; node
= node
->next
)
444 GParamSpec
*pspec
= node
->data
;
446 g_param_spec_pool_remove (pspec_pool
, pspec
);
447 PARAM_SPEC_SET_PARAM_ID (pspec
, 0);
448 g_param_spec_unref (pspec
);
454 g_object_do_class_init (GObjectClass
*class)
456 /* read the comment about typedef struct CArray; on why not to change this quark */
457 quark_closure_array
= g_quark_from_static_string ("GObject-closure-array");
459 quark_weak_refs
= g_quark_from_static_string ("GObject-weak-references");
460 quark_weak_locations
= g_quark_from_static_string ("GObject-weak-locations");
461 quark_toggle_refs
= g_quark_from_static_string ("GObject-toggle-references");
462 quark_notify_queue
= g_quark_from_static_string ("GObject-notify-queue");
463 quark_in_construction
= g_quark_from_static_string ("GObject-in-construction");
464 pspec_pool
= g_param_spec_pool_new (TRUE
);
466 class->constructor
= g_object_constructor
;
467 class->constructed
= g_object_constructed
;
468 class->set_property
= g_object_do_set_property
;
469 class->get_property
= g_object_do_get_property
;
470 class->dispose
= g_object_real_dispose
;
471 class->finalize
= g_object_finalize
;
472 class->dispatch_properties_changed
= g_object_dispatch_properties_changed
;
473 class->notify
= NULL
;
477 * @gobject: the object which received the signal.
478 * @pspec: the #GParamSpec of the property which changed.
480 * The notify signal is emitted on an object when one of its
481 * properties has been changed. Note that getting this signal
482 * doesn't guarantee that the value of the property has actually
483 * changed, it may also be emitted when the setter for the property
484 * is called to reinstate the previous value.
486 * This signal is typically used to obtain change notification for a
487 * single property, by specifying the property name as a detail in the
488 * g_signal_connect() call, like this:
489 * |[<!-- language="C" -->
490 * g_signal_connect (text_view->buffer, "notify::paste-target-list",
491 * G_CALLBACK (gtk_text_view_target_list_notify),
494 * It is important to note that you must use
495 * [canonical][canonical-parameter-name] parameter names as
496 * detail strings for the notify signal.
498 gobject_signals
[NOTIFY
] =
499 g_signal_new (g_intern_static_string ("notify"),
500 G_TYPE_FROM_CLASS (class),
501 G_SIGNAL_RUN_FIRST
| G_SIGNAL_NO_RECURSE
| G_SIGNAL_DETAILED
| G_SIGNAL_NO_HOOKS
| G_SIGNAL_ACTION
,
502 G_STRUCT_OFFSET (GObjectClass
, notify
),
504 g_cclosure_marshal_VOID__PARAM
,
508 /* Install a check function that we'll use to verify that classes that
509 * implement an interface implement all properties for that interface
511 g_type_add_interface_check (NULL
, object_interface_check_properties
);
514 static inline gboolean
515 install_property_internal (GType g_type
,
519 if (g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, g_type
, FALSE
))
521 g_warning ("When installing property: type '%s' already has a property named '%s'",
522 g_type_name (g_type
),
527 g_param_spec_ref_sink (pspec
);
528 PARAM_SPEC_SET_PARAM_ID (pspec
, property_id
);
529 g_param_spec_pool_insert (pspec_pool
, pspec
, g_type
);
534 validate_pspec_to_install (GParamSpec
*pspec
)
536 g_return_val_if_fail (G_IS_PARAM_SPEC (pspec
), FALSE
);
537 g_return_val_if_fail (PARAM_SPEC_PARAM_ID (pspec
) == 0, FALSE
); /* paranoid */
539 g_return_val_if_fail (pspec
->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
), FALSE
);
541 if (pspec
->flags
& G_PARAM_CONSTRUCT
)
542 g_return_val_if_fail ((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) == 0, FALSE
);
544 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
545 g_return_val_if_fail (pspec
->flags
& G_PARAM_WRITABLE
, FALSE
);
551 validate_and_install_class_property (GObjectClass
*class,
557 if (!validate_pspec_to_install (pspec
))
560 if (pspec
->flags
& G_PARAM_WRITABLE
)
561 g_return_val_if_fail (class->set_property
!= NULL
, FALSE
);
562 if (pspec
->flags
& G_PARAM_READABLE
)
563 g_return_val_if_fail (class->get_property
!= NULL
, FALSE
);
565 class->flags
|= CLASS_HAS_PROPS_FLAG
;
566 if (install_property_internal (oclass_type
, property_id
, pspec
))
568 if (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
569 class->construct_properties
= g_slist_append (class->construct_properties
, pspec
);
571 /* for property overrides of construct properties, we have to get rid
572 * of the overidden inherited construct property
574 pspec
= g_param_spec_pool_lookup (pspec_pool
, pspec
->name
, parent_type
, TRUE
);
575 if (pspec
&& pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
))
576 class->construct_properties
= g_slist_remove (class->construct_properties
, pspec
);
585 * g_object_class_install_property:
586 * @oclass: a #GObjectClass
587 * @property_id: the id for the new property
588 * @pspec: the #GParamSpec for the new property
590 * Installs a new property.
592 * All properties should be installed during the class initializer. It
593 * is possible to install properties after that, but doing so is not
594 * recommend, and specifically, is not guaranteed to be thread-safe vs.
595 * use of properties on the same type on other threads.
597 * Note that it is possible to redefine a property in a derived class,
598 * by installing a property with the same name. This can be useful at times,
599 * e.g. to change the range of allowed values or the default value.
602 g_object_class_install_property (GObjectClass
*class,
606 GType oclass_type
, parent_type
;
608 g_return_if_fail (G_IS_OBJECT_CLASS (class));
609 g_return_if_fail (property_id
> 0);
611 oclass_type
= G_OBJECT_CLASS_TYPE (class);
612 parent_type
= g_type_parent (oclass_type
);
614 if (CLASS_HAS_DERIVED_CLASS (class))
615 g_error ("Attempt to add property %s::%s to class after it was derived", G_OBJECT_CLASS_NAME (class), pspec
->name
);
617 (void) validate_and_install_class_property (class,
625 * g_object_class_install_properties:
626 * @oclass: a #GObjectClass
627 * @n_pspecs: the length of the #GParamSpecs array
628 * @pspecs: (array length=n_pspecs): the #GParamSpecs array
629 * defining the new properties
631 * Installs new properties from an array of #GParamSpecs.
633 * All properties should be installed during the class initializer. It
634 * is possible to install properties after that, but doing so is not
635 * recommend, and specifically, is not guaranteed to be thread-safe vs.
636 * use of properties on the same type on other threads.
638 * The property id of each property is the index of each #GParamSpec in
641 * The property id of 0 is treated specially by #GObject and it should not
642 * be used to store a #GParamSpec.
644 * This function should be used if you plan to use a static array of
645 * #GParamSpecs and g_object_notify_by_pspec(). For instance, this
646 * class initialization:
648 * |[<!-- language="C" -->
650 * PROP_0, PROP_FOO, PROP_BAR, N_PROPERTIES
653 * static GParamSpec *obj_properties[N_PROPERTIES] = { NULL, };
656 * my_object_class_init (MyObjectClass *klass)
658 * GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
660 * obj_properties[PROP_FOO] =
661 * g_param_spec_int ("foo", "Foo", "Foo",
664 * G_PARAM_READWRITE);
666 * obj_properties[PROP_BAR] =
667 * g_param_spec_string ("bar", "Bar", "Bar",
669 * G_PARAM_READWRITE);
671 * gobject_class->set_property = my_object_set_property;
672 * gobject_class->get_property = my_object_get_property;
673 * g_object_class_install_properties (gobject_class,
679 * allows calling g_object_notify_by_pspec() to notify of property changes:
681 * |[<!-- language="C" -->
683 * my_object_set_foo (MyObject *self, gint foo)
685 * if (self->foo != foo)
688 * g_object_notify_by_pspec (G_OBJECT (self), obj_properties[PROP_FOO]);
696 g_object_class_install_properties (GObjectClass
*oclass
,
700 GType oclass_type
, parent_type
;
703 g_return_if_fail (G_IS_OBJECT_CLASS (oclass
));
704 g_return_if_fail (n_pspecs
> 1);
705 g_return_if_fail (pspecs
[0] == NULL
);
707 if (CLASS_HAS_DERIVED_CLASS (oclass
))
708 g_error ("Attempt to add properties to %s after it was derived",
709 G_OBJECT_CLASS_NAME (oclass
));
711 oclass_type
= G_OBJECT_CLASS_TYPE (oclass
);
712 parent_type
= g_type_parent (oclass_type
);
714 /* we skip the first element of the array as it would have a 0 prop_id */
715 for (i
= 1; i
< n_pspecs
; i
++)
717 GParamSpec
*pspec
= pspecs
[i
];
719 if (!validate_and_install_class_property (oclass
,
731 * g_object_interface_install_property:
732 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
733 * interface, or the default
734 * vtable for the interface.
735 * @pspec: the #GParamSpec for the new property
737 * Add a property to an interface; this is only useful for interfaces
738 * that are added to GObject-derived types. Adding a property to an
739 * interface forces all objects classes with that interface to have a
740 * compatible property. The compatible property could be a newly
741 * created #GParamSpec, but normally
742 * g_object_class_override_property() will be used so that the object
743 * class only needs to provide an implementation and inherits the
744 * property description, default value, bounds, and so forth from the
745 * interface property.
747 * This function is meant to be called from the interface's default
748 * vtable initialization function (the @class_init member of
749 * #GTypeInfo.) It must not be called after after @class_init has
750 * been called for any object types implementing this interface.
755 g_object_interface_install_property (gpointer g_iface
,
758 GTypeInterface
*iface_class
= g_iface
;
760 g_return_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
));
761 g_return_if_fail (!G_IS_PARAM_SPEC_OVERRIDE (pspec
)); /* paranoid */
763 if (!validate_pspec_to_install (pspec
))
766 (void) install_property_internal (iface_class
->g_type
, 0, pspec
);
770 * g_object_class_find_property:
771 * @oclass: a #GObjectClass
772 * @property_name: the name of the property to look up
774 * Looks up the #GParamSpec for a property of a class.
776 * Returns: (transfer none): the #GParamSpec for the property, or
777 * %NULL if the class doesn't have a property of that name
780 g_object_class_find_property (GObjectClass
*class,
781 const gchar
*property_name
)
784 GParamSpec
*redirect
;
786 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL
);
787 g_return_val_if_fail (property_name
!= NULL
, NULL
);
789 pspec
= g_param_spec_pool_lookup (pspec_pool
,
791 G_OBJECT_CLASS_TYPE (class),
795 redirect
= g_param_spec_get_redirect_target (pspec
);
806 * g_object_interface_find_property:
807 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
808 * interface, or the default vtable for the interface
809 * @property_name: name of a property to lookup.
811 * Find the #GParamSpec with the given name for an
812 * interface. Generally, the interface vtable passed in as @g_iface
813 * will be the default vtable from g_type_default_interface_ref(), or,
814 * if you know the interface has already been loaded,
815 * g_type_default_interface_peek().
819 * Returns: (transfer none): the #GParamSpec for the property of the
820 * interface with the name @property_name, or %NULL if no
821 * such property exists.
824 g_object_interface_find_property (gpointer g_iface
,
825 const gchar
*property_name
)
827 GTypeInterface
*iface_class
= g_iface
;
829 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
), NULL
);
830 g_return_val_if_fail (property_name
!= NULL
, NULL
);
832 return g_param_spec_pool_lookup (pspec_pool
,
839 * g_object_class_override_property:
840 * @oclass: a #GObjectClass
841 * @property_id: the new property ID
842 * @name: the name of a property registered in a parent class or
843 * in an interface of this class.
845 * Registers @property_id as referring to a property with the name
846 * @name in a parent class or in an interface implemented by @oclass.
847 * This allows this class to "override" a property implementation in
848 * a parent class or to provide the implementation of a property from
851 * Internally, overriding is implemented by creating a property of type
852 * #GParamSpecOverride; generally operations that query the properties of
853 * the object class, such as g_object_class_find_property() or
854 * g_object_class_list_properties() will return the overridden
855 * property. However, in one case, the @construct_properties argument of
856 * the @constructor virtual function, the #GParamSpecOverride is passed
857 * instead, so that the @param_id field of the #GParamSpec will be
858 * correct. For virtually all uses, this makes no difference. If you
859 * need to get the overridden property, you can call
860 * g_param_spec_get_redirect_target().
865 g_object_class_override_property (GObjectClass
*oclass
,
869 GParamSpec
*overridden
= NULL
;
873 g_return_if_fail (G_IS_OBJECT_CLASS (oclass
));
874 g_return_if_fail (property_id
> 0);
875 g_return_if_fail (name
!= NULL
);
877 /* Find the overridden property; first check parent types
879 parent_type
= g_type_parent (G_OBJECT_CLASS_TYPE (oclass
));
880 if (parent_type
!= G_TYPE_NONE
)
881 overridden
= g_param_spec_pool_lookup (pspec_pool
,
890 /* Now check interfaces
892 ifaces
= g_type_interfaces (G_OBJECT_CLASS_TYPE (oclass
), &n_ifaces
);
893 while (n_ifaces
-- && !overridden
)
895 overridden
= g_param_spec_pool_lookup (pspec_pool
,
906 g_warning ("%s: Can't find property to override for '%s::%s'",
907 G_STRFUNC
, G_OBJECT_CLASS_NAME (oclass
), name
);
911 new = g_param_spec_override (name
, overridden
);
912 g_object_class_install_property (oclass
, property_id
, new);
916 * g_object_class_list_properties:
917 * @oclass: a #GObjectClass
918 * @n_properties: (out): return location for the length of the returned array
920 * Get an array of #GParamSpec* for all properties of a class.
922 * Returns: (array length=n_properties) (transfer container): an array of
923 * #GParamSpec* which should be freed after use
925 GParamSpec
** /* free result */
926 g_object_class_list_properties (GObjectClass
*class,
927 guint
*n_properties_p
)
932 g_return_val_if_fail (G_IS_OBJECT_CLASS (class), NULL
);
934 pspecs
= g_param_spec_pool_list (pspec_pool
,
935 G_OBJECT_CLASS_TYPE (class),
944 * g_object_interface_list_properties:
945 * @g_iface: (type GObject.TypeInterface): any interface vtable for the
946 * interface, or the default vtable for the interface
947 * @n_properties_p: (out): location to store number of properties returned.
949 * Lists the properties of an interface.Generally, the interface
950 * vtable passed in as @g_iface will be the default vtable from
951 * g_type_default_interface_ref(), or, if you know the interface has
952 * already been loaded, g_type_default_interface_peek().
956 * Returns: (array length=n_properties_p) (transfer container): a
957 * pointer to an array of pointers to #GParamSpec
958 * structures. The paramspecs are owned by GLib, but the
959 * array should be freed with g_free() when you are done with
963 g_object_interface_list_properties (gpointer g_iface
,
964 guint
*n_properties_p
)
966 GTypeInterface
*iface_class
= g_iface
;
970 g_return_val_if_fail (G_TYPE_IS_INTERFACE (iface_class
->g_type
), NULL
);
972 pspecs
= g_param_spec_pool_list (pspec_pool
,
981 static inline gboolean
982 object_in_construction (GObject
*object
)
984 return g_datalist_id_get_data (&object
->qdata
, quark_in_construction
) != NULL
;
988 g_object_init (GObject
*object
,
991 object
->ref_count
= 1;
992 object
->qdata
= NULL
;
994 if (CLASS_HAS_PROPS (class))
996 /* freeze object's notification queue, g_object_newv() preserves pairedness */
997 g_object_notify_queue_freeze (object
, FALSE
);
1000 if (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1002 /* mark object in-construction for notify_queue_thaw() and to allow construct-only properties */
1003 g_datalist_id_set_data (&object
->qdata
, quark_in_construction
, object
);
1006 GOBJECT_IF_DEBUG (OBJECTS
,
1008 G_LOCK (debug_objects
);
1009 debug_objects_count
++;
1010 g_hash_table_add (debug_objects_ht
, object
);
1011 G_UNLOCK (debug_objects
);
1016 g_object_do_set_property (GObject
*object
,
1018 const GValue
*value
,
1021 switch (property_id
)
1024 G_OBJECT_WARN_INVALID_PROPERTY_ID (object
, property_id
, pspec
);
1030 g_object_do_get_property (GObject
*object
,
1035 switch (property_id
)
1038 G_OBJECT_WARN_INVALID_PROPERTY_ID (object
, property_id
, pspec
);
1044 g_object_real_dispose (GObject
*object
)
1046 g_signal_handlers_destroy (object
);
1047 g_datalist_id_set_data (&object
->qdata
, quark_closure_array
, NULL
);
1048 g_datalist_id_set_data (&object
->qdata
, quark_weak_refs
, NULL
);
1052 g_object_finalize (GObject
*object
)
1054 if (object_in_construction (object
))
1056 g_critical ("object %s %p finalized while still in-construction",
1057 G_OBJECT_TYPE_NAME (object
), object
);
1060 g_datalist_clear (&object
->qdata
);
1062 GOBJECT_IF_DEBUG (OBJECTS
,
1064 G_LOCK (debug_objects
);
1065 g_assert (g_hash_table_contains (debug_objects_ht
, object
));
1066 g_hash_table_remove (debug_objects_ht
, object
);
1067 debug_objects_count
--;
1068 G_UNLOCK (debug_objects
);
1073 g_object_dispatch_properties_changed (GObject
*object
,
1075 GParamSpec
**pspecs
)
1079 for (i
= 0; i
< n_pspecs
; i
++)
1080 g_signal_emit (object
, gobject_signals
[NOTIFY
], g_param_spec_get_name_quark (pspecs
[i
]), pspecs
[i
]);
1084 * g_object_run_dispose:
1085 * @object: a #GObject
1087 * Releases all references to other objects. This can be used to break
1090 * This function should only be called from object system implementations.
1093 g_object_run_dispose (GObject
*object
)
1095 g_return_if_fail (G_IS_OBJECT (object
));
1096 g_return_if_fail (object
->ref_count
> 0);
1098 g_object_ref (object
);
1099 TRACE (GOBJECT_OBJECT_DISPOSE(object
,G_TYPE_FROM_INSTANCE(object
), 0));
1100 G_OBJECT_GET_CLASS (object
)->dispose (object
);
1101 TRACE (GOBJECT_OBJECT_DISPOSE_END(object
,G_TYPE_FROM_INSTANCE(object
), 0));
1102 g_object_unref (object
);
1106 * g_object_freeze_notify:
1107 * @object: a #GObject
1109 * Increases the freeze count on @object. If the freeze count is
1110 * non-zero, the emission of "notify" signals on @object is
1111 * stopped. The signals are queued until the freeze count is decreased
1112 * to zero. Duplicate notifications are squashed so that at most one
1113 * #GObject::notify signal is emitted for each property modified while the
1116 * This is necessary for accessors that modify multiple properties to prevent
1117 * premature notification while the object is still being modified.
1120 g_object_freeze_notify (GObject
*object
)
1122 g_return_if_fail (G_IS_OBJECT (object
));
1124 if (g_atomic_int_get (&object
->ref_count
) == 0)
1127 g_object_ref (object
);
1128 g_object_notify_queue_freeze (object
, FALSE
);
1129 g_object_unref (object
);
1133 get_notify_pspec (GParamSpec
*pspec
)
1135 GParamSpec
*redirected
;
1137 /* we don't notify on non-READABLE parameters */
1138 if (~pspec
->flags
& G_PARAM_READABLE
)
1141 /* if the paramspec is redirected, notify on the target */
1142 redirected
= g_param_spec_get_redirect_target (pspec
);
1143 if (redirected
!= NULL
)
1146 /* else, notify normally */
1151 g_object_notify_by_spec_internal (GObject
*object
,
1154 GParamSpec
*notify_pspec
;
1156 notify_pspec
= get_notify_pspec (pspec
);
1158 if (notify_pspec
!= NULL
)
1160 GObjectNotifyQueue
*nqueue
;
1162 /* conditional freeze: only increase freeze count if already frozen */
1163 nqueue
= g_object_notify_queue_freeze (object
, TRUE
);
1167 /* we're frozen, so add to the queue and release our freeze */
1168 g_object_notify_queue_add (object
, nqueue
, notify_pspec
);
1169 g_object_notify_queue_thaw (object
, nqueue
);
1172 /* not frozen, so just dispatch the notification directly */
1173 G_OBJECT_GET_CLASS (object
)
1174 ->dispatch_properties_changed (object
, 1, ¬ify_pspec
);
1180 * @object: a #GObject
1181 * @property_name: the name of a property installed on the class of @object.
1183 * Emits a "notify" signal for the property @property_name on @object.
1185 * When possible, eg. when signaling a property change from within the class
1186 * that registered the property, you should use g_object_notify_by_pspec()
1189 * Note that emission of the notify signal may be blocked with
1190 * g_object_freeze_notify(). In this case, the signal emissions are queued
1191 * and will be emitted (in reverse order) when g_object_thaw_notify() is
1195 g_object_notify (GObject
*object
,
1196 const gchar
*property_name
)
1200 g_return_if_fail (G_IS_OBJECT (object
));
1201 g_return_if_fail (property_name
!= NULL
);
1202 if (g_atomic_int_get (&object
->ref_count
) == 0)
1205 g_object_ref (object
);
1206 /* We don't need to get the redirect target
1207 * (by, e.g. calling g_object_class_find_property())
1208 * because g_object_notify_queue_add() does that
1210 pspec
= g_param_spec_pool_lookup (pspec_pool
,
1212 G_OBJECT_TYPE (object
),
1216 g_warning ("%s: object class '%s' has no property named '%s'",
1218 G_OBJECT_TYPE_NAME (object
),
1221 g_object_notify_by_spec_internal (object
, pspec
);
1222 g_object_unref (object
);
1226 * g_object_notify_by_pspec:
1227 * @object: a #GObject
1228 * @pspec: the #GParamSpec of a property installed on the class of @object.
1230 * Emits a "notify" signal for the property specified by @pspec on @object.
1232 * This function omits the property name lookup, hence it is faster than
1233 * g_object_notify().
1235 * One way to avoid using g_object_notify() from within the
1236 * class that registered the properties, and using g_object_notify_by_pspec()
1237 * instead, is to store the GParamSpec used with
1238 * g_object_class_install_property() inside a static array, e.g.:
1240 *|[<!-- language="C" -->
1248 * static GParamSpec *properties[PROP_LAST];
1251 * my_object_class_init (MyObjectClass *klass)
1253 * properties[PROP_FOO] = g_param_spec_int ("foo", "Foo", "The foo",
1256 * G_PARAM_READWRITE);
1257 * g_object_class_install_property (gobject_class,
1259 * properties[PROP_FOO]);
1263 * and then notify a change on the "foo" property with:
1265 * |[<!-- language="C" -->
1266 * g_object_notify_by_pspec (self, properties[PROP_FOO]);
1272 g_object_notify_by_pspec (GObject
*object
,
1276 g_return_if_fail (G_IS_OBJECT (object
));
1277 g_return_if_fail (G_IS_PARAM_SPEC (pspec
));
1279 if (g_atomic_int_get (&object
->ref_count
) == 0)
1282 g_object_ref (object
);
1283 g_object_notify_by_spec_internal (object
, pspec
);
1284 g_object_unref (object
);
1288 * g_object_thaw_notify:
1289 * @object: a #GObject
1291 * Reverts the effect of a previous call to
1292 * g_object_freeze_notify(). The freeze count is decreased on @object
1293 * and when it reaches zero, queued "notify" signals are emitted.
1295 * Duplicate notifications for each property are squashed so that at most one
1296 * #GObject::notify signal is emitted for each property, in the reverse order
1297 * in which they have been queued.
1299 * It is an error to call this function when the freeze count is zero.
1302 g_object_thaw_notify (GObject
*object
)
1304 GObjectNotifyQueue
*nqueue
;
1306 g_return_if_fail (G_IS_OBJECT (object
));
1307 if (g_atomic_int_get (&object
->ref_count
) == 0)
1310 g_object_ref (object
);
1312 /* FIXME: Freezing is the only way to get at the notify queue.
1313 * So we freeze once and then thaw twice.
1315 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
1316 g_object_notify_queue_thaw (object
, nqueue
);
1317 g_object_notify_queue_thaw (object
, nqueue
);
1319 g_object_unref (object
);
1323 consider_issuing_property_deprecation_warning (const GParamSpec
*pspec
)
1325 static GHashTable
*already_warned_table
;
1326 static const gchar
*enable_diagnostic
;
1327 static GMutex already_warned_lock
;
1330 if (!(pspec
->flags
& G_PARAM_DEPRECATED
))
1333 if (g_once_init_enter (&enable_diagnostic
))
1335 const gchar
*value
= g_getenv ("G_ENABLE_DIAGNOSTIC");
1340 g_once_init_leave (&enable_diagnostic
, value
);
1343 if (enable_diagnostic
[0] == '0')
1346 /* We hash only on property names: this means that we could end up in
1347 * a situation where we fail to emit a warning about a pair of
1348 * same-named deprecated properties used on two separate types.
1349 * That's pretty unlikely to occur, and even if it does, you'll still
1350 * have seen the warning for the first one...
1352 * Doing it this way lets us hash directly on the (interned) property
1355 g_mutex_lock (&already_warned_lock
);
1357 if (already_warned_table
== NULL
)
1358 already_warned_table
= g_hash_table_new (NULL
, NULL
);
1360 already
= g_hash_table_contains (already_warned_table
, (gpointer
) pspec
->name
);
1362 g_hash_table_add (already_warned_table
, (gpointer
) pspec
->name
);
1364 g_mutex_unlock (&already_warned_lock
);
1367 g_warning ("The property %s:%s is deprecated and shouldn't be used "
1368 "anymore. It will be removed in a future version.",
1369 g_type_name (pspec
->owner_type
), pspec
->name
);
1373 object_get_property (GObject
*object
,
1377 GObjectClass
*class = g_type_class_peek (pspec
->owner_type
);
1378 guint param_id
= PARAM_SPEC_PARAM_ID (pspec
);
1379 GParamSpec
*redirect
;
1383 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1384 g_type_name (pspec
->owner_type
), pspec
->name
, g_type_name (pspec
->owner_type
));
1388 redirect
= g_param_spec_get_redirect_target (pspec
);
1392 consider_issuing_property_deprecation_warning (pspec
);
1394 class->get_property (object
, param_id
, value
, pspec
);
1398 object_set_property (GObject
*object
,
1400 const GValue
*value
,
1401 GObjectNotifyQueue
*nqueue
)
1403 GValue tmp_value
= G_VALUE_INIT
;
1404 GObjectClass
*class = g_type_class_peek (pspec
->owner_type
);
1405 guint param_id
= PARAM_SPEC_PARAM_ID (pspec
);
1406 GParamSpec
*redirect
;
1410 g_warning ("'%s::%s' is not a valid property name; '%s' is not a GObject subtype",
1411 g_type_name (pspec
->owner_type
), pspec
->name
, g_type_name (pspec
->owner_type
));
1415 redirect
= g_param_spec_get_redirect_target (pspec
);
1419 /* provide a copy to work from, convert (if necessary) and validate */
1420 g_value_init (&tmp_value
, pspec
->value_type
);
1421 if (!g_value_transform (value
, &tmp_value
))
1422 g_warning ("unable to set property '%s' of type '%s' from value of type '%s'",
1424 g_type_name (pspec
->value_type
),
1425 G_VALUE_TYPE_NAME (value
));
1426 else if (g_param_value_validate (pspec
, &tmp_value
) && !(pspec
->flags
& G_PARAM_LAX_VALIDATION
))
1428 gchar
*contents
= g_strdup_value_contents (value
);
1430 g_warning ("value \"%s\" of type '%s' is invalid or out of range for property '%s' of type '%s'",
1432 G_VALUE_TYPE_NAME (value
),
1434 g_type_name (pspec
->value_type
));
1439 class->set_property (object
, param_id
, &tmp_value
, pspec
);
1441 if (~pspec
->flags
& G_PARAM_EXPLICIT_NOTIFY
)
1443 GParamSpec
*notify_pspec
;
1445 notify_pspec
= get_notify_pspec (pspec
);
1447 if (notify_pspec
!= NULL
)
1448 g_object_notify_queue_add (object
, nqueue
, notify_pspec
);
1451 g_value_unset (&tmp_value
);
1455 object_interface_check_properties (gpointer check_data
,
1458 GTypeInterface
*iface_class
= g_iface
;
1459 GObjectClass
*class;
1460 GType iface_type
= iface_class
->g_type
;
1461 GParamSpec
**pspecs
;
1464 class = g_type_class_ref (iface_class
->g_instance_type
);
1469 if (!G_IS_OBJECT_CLASS (class))
1472 pspecs
= g_param_spec_pool_list (pspec_pool
, iface_type
, &n
);
1476 GParamSpec
*class_pspec
= g_param_spec_pool_lookup (pspec_pool
,
1478 G_OBJECT_CLASS_TYPE (class),
1483 g_critical ("Object class %s doesn't implement property "
1484 "'%s' from interface '%s'",
1485 g_type_name (G_OBJECT_CLASS_TYPE (class)),
1487 g_type_name (iface_type
));
1492 /* We do a number of checks on the properties of an interface to
1493 * make sure that all classes implementing the interface are
1494 * overriding the properties in a sane way.
1496 * We do the checks in order of importance so that we can give
1497 * more useful error messages first.
1499 * First, we check that the implementation doesn't remove the
1500 * basic functionality (readability, writability) advertised by
1501 * the interface. Next, we check that it doesn't introduce
1502 * additional restrictions (such as construct-only). Finally, we
1503 * make sure the types are compatible.
1506 #define SUBSET(a,b,mask) (((a) & ~(b) & (mask)) == 0)
1507 /* If the property on the interface is readable then the
1508 * implementation must be readable. If the interface is writable
1509 * then the implementation must be writable.
1511 if (!SUBSET (pspecs
[n
]->flags
, class_pspec
->flags
, G_PARAM_READABLE
| G_PARAM_WRITABLE
))
1513 g_critical ("Flags for property '%s' on class '%s' remove functionality compared with the "
1514 "property on interface '%s'\n", pspecs
[n
]->name
,
1515 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type
));
1519 /* If the property on the interface is writable then we need to
1520 * make sure the implementation doesn't introduce new restrictions
1521 * on that writability (ie: construct-only).
1523 * If the interface was not writable to begin with then we don't
1524 * really have any problems here because "writable at construct
1525 * time only" is still more permissive than "read only".
1527 if (pspecs
[n
]->flags
& G_PARAM_WRITABLE
)
1529 if (!SUBSET (class_pspec
->flags
, pspecs
[n
]->flags
, G_PARAM_CONSTRUCT_ONLY
))
1531 g_critical ("Flags for property '%s' on class '%s' introduce additional restrictions on "
1532 "writability compared with the property on interface '%s'\n", pspecs
[n
]->name
,
1533 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (iface_type
));
1539 /* If the property on the interface is readable then we are
1540 * effectively advertising that reading the property will return a
1541 * value of a specific type. All implementations of the interface
1542 * need to return items of this type -- but may be more
1543 * restrictive. For example, it is legal to have:
1545 * GtkWidget *get_item();
1547 * that is implemented by a function that always returns a
1548 * GtkEntry. In short: readability implies that the
1549 * implementation value type must be equal or more restrictive.
1551 * Similarly, if the property on the interface is writable then
1552 * must be able to accept the property being set to any value of
1553 * that type, including subclasses. In this case, we may also be
1554 * less restrictive. For example, it is legal to have:
1556 * set_item (GtkEntry *);
1558 * that is implemented by a function that will actually work with
1559 * any GtkWidget. In short: writability implies that the
1560 * implementation value type must be equal or less restrictive.
1562 * In the case that the property is both readable and writable
1563 * then the only way that both of the above can be satisfied is
1564 * with a type that is exactly equal.
1566 switch (pspecs
[n
]->flags
& (G_PARAM_READABLE
| G_PARAM_WRITABLE
))
1568 case G_PARAM_READABLE
| G_PARAM_WRITABLE
:
1569 /* class pspec value type must have exact equality with interface */
1570 if (pspecs
[n
]->value_type
!= class_pspec
->value_type
)
1571 g_critical ("Read/writable property '%s' on class '%s' has type '%s' which is not exactly equal to the "
1572 "type '%s' of the property on the interface '%s'\n", pspecs
[n
]->name
,
1573 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1574 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1577 case G_PARAM_READABLE
:
1578 /* class pspec value type equal or more restrictive than interface */
1579 if (!g_type_is_a (class_pspec
->value_type
, pspecs
[n
]->value_type
))
1580 g_critical ("Read-only property '%s' on class '%s' has type '%s' which is not equal to or more "
1581 "restrictive than the type '%s' of the property on the interface '%s'\n", pspecs
[n
]->name
,
1582 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1583 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1586 case G_PARAM_WRITABLE
:
1587 /* class pspec value type equal or less restrictive than interface */
1588 if (!g_type_is_a (pspecs
[n
]->value_type
, class_pspec
->value_type
))
1589 g_critical ("Write-only property '%s' on class '%s' has type '%s' which is not equal to or less "
1590 "restrictive than the type '%s' of the property on the interface '%s' \n", pspecs
[n
]->name
,
1591 g_type_name (G_OBJECT_CLASS_TYPE (class)), g_type_name (G_PARAM_SPEC_VALUE_TYPE (class_pspec
)),
1592 g_type_name (G_PARAM_SPEC_VALUE_TYPE (pspecs
[n
])), g_type_name (iface_type
));
1596 g_assert_not_reached ();
1603 g_type_class_unref (class);
1607 g_object_get_type (void)
1609 return G_TYPE_OBJECT
;
1613 * g_object_new: (skip)
1614 * @object_type: the type id of the #GObject subtype to instantiate
1615 * @first_property_name: the name of the first property
1616 * @...: the value of the first property, followed optionally by more
1617 * name/value pairs, followed by %NULL
1619 * Creates a new instance of a #GObject subtype and sets its properties.
1621 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1622 * which are not explicitly specified are set to their default values.
1624 * Returns: (transfer full) (type GObject.Object): a new instance of
1628 g_object_new (GType object_type
,
1629 const gchar
*first_property_name
,
1635 /* short circuit for calls supplying no properties */
1636 if (!first_property_name
)
1637 return g_object_new_with_properties (object_type
, 0, NULL
, NULL
);
1639 va_start (var_args
, first_property_name
);
1640 object
= g_object_new_valist (object_type
, first_property_name
, var_args
);
1647 g_object_new_with_custom_constructor (GObjectClass
*class,
1648 GObjectConstructParam
*params
,
1651 GObjectNotifyQueue
*nqueue
= NULL
;
1652 gboolean newly_constructed
;
1653 GObjectConstructParam
*cparams
;
1661 /* If we have ->constructed() then we have to do a lot more work.
1662 * It's possible that this is a singleton and it's also possible
1663 * that the user's constructor() will attempt to modify the values
1664 * that we pass in, so we'll need to allocate copies of them.
1665 * It's also possible that the user may attempt to call
1666 * g_object_set() from inside of their constructor, so we need to
1667 * add ourselves to a list of objects for which that is allowed
1668 * while their constructor() is running.
1671 /* Create the array of GObjectConstructParams for constructor() */
1672 n_cparams
= g_slist_length (class->construct_properties
);
1673 cparams
= g_new (GObjectConstructParam
, n_cparams
);
1674 cvalues
= g_new0 (GValue
, n_cparams
);
1678 /* As above, we may find the value in the passed-in params list.
1680 * If we have the value passed in then we can use the GValue from
1681 * it directly because it is safe to modify. If we use the
1682 * default value from the class, we had better not pass that in
1683 * and risk it being modified, so we create a new one.
1685 for (node
= class->construct_properties
; node
; node
= node
->next
)
1692 value
= NULL
; /* to silence gcc... */
1694 for (j
= 0; j
< n_params
; j
++)
1695 if (params
[j
].pspec
== pspec
)
1697 consider_issuing_property_deprecation_warning (pspec
);
1698 value
= params
[j
].value
;
1704 value
= &cvalues
[cvals_used
++];
1705 g_value_init (value
, pspec
->value_type
);
1706 g_param_value_set_default (pspec
, value
);
1709 cparams
[i
].pspec
= pspec
;
1710 cparams
[i
].value
= value
;
1714 /* construct object from construction parameters */
1715 object
= class->constructor (class->g_type_class
.g_type
, n_cparams
, cparams
);
1716 /* free construction values */
1718 while (cvals_used
--)
1719 g_value_unset (&cvalues
[cvals_used
]);
1722 /* There is code in the wild that relies on being able to return NULL
1723 * from its custom constructor. This was never a supported operation,
1724 * but since the code is already out there...
1728 g_critical ("Custom constructor for class %s returned NULL (which is invalid). "
1729 "Please use GInitable instead.", G_OBJECT_CLASS_NAME (class));
1733 /* g_object_init() will have marked the object as being in-construction.
1734 * Check if the returned object still is so marked, or if this is an
1735 * already-existing singleton (in which case we should not do 'constructed').
1737 newly_constructed
= object_in_construction (object
);
1738 if (newly_constructed
)
1739 g_datalist_id_set_data (&object
->qdata
, quark_in_construction
, NULL
);
1741 if (CLASS_HAS_PROPS (class))
1743 /* If this object was newly_constructed then g_object_init()
1744 * froze the queue. We need to freeze it here in order to get
1745 * the handle so that we can thaw it below (otherwise it will
1746 * be frozen forever).
1748 * We also want to do a freeze if we have any params to set,
1749 * even on a non-newly_constructed object.
1751 * It's possible that we have the case of non-newly created
1752 * singleton and all of the passed-in params were construct
1753 * properties so n_params > 0 but we will actually set no
1754 * properties. This is a pretty lame case to optimise, so
1755 * just ignore it and freeze anyway.
1757 if (newly_constructed
|| n_params
)
1758 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
1760 /* Remember: if it was newly_constructed then g_object_init()
1761 * already did a freeze, so we now have two. Release one.
1763 if (newly_constructed
)
1764 g_object_notify_queue_thaw (object
, nqueue
);
1767 /* run 'constructed' handler if there is a custom one */
1768 if (newly_constructed
&& CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1769 class->constructed (object
);
1771 /* set remaining properties */
1772 for (i
= 0; i
< n_params
; i
++)
1773 if (!(params
[i
].pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1775 consider_issuing_property_deprecation_warning (params
[i
].pspec
);
1776 object_set_property (object
, params
[i
].pspec
, params
[i
].value
, nqueue
);
1779 /* If nqueue is non-NULL then we are frozen. Thaw it. */
1781 g_object_notify_queue_thaw (object
, nqueue
);
1787 g_object_new_internal (GObjectClass
*class,
1788 GObjectConstructParam
*params
,
1791 GObjectNotifyQueue
*nqueue
= NULL
;
1794 if G_UNLIKELY (CLASS_HAS_CUSTOM_CONSTRUCTOR (class))
1795 return g_object_new_with_custom_constructor (class, params
, n_params
);
1797 object
= (GObject
*) g_type_create_instance (class->g_type_class
.g_type
);
1799 if (CLASS_HAS_PROPS (class))
1803 /* This will have been setup in g_object_init() */
1804 nqueue
= g_datalist_id_get_data (&object
->qdata
, quark_notify_queue
);
1805 g_assert (nqueue
!= NULL
);
1807 /* We will set exactly n_construct_properties construct
1808 * properties, but they may come from either the class default
1809 * values or the passed-in parameter list.
1811 for (node
= class->construct_properties
; node
; node
= node
->next
)
1813 const GValue
*value
;
1818 value
= NULL
; /* to silence gcc... */
1820 for (j
= 0; j
< n_params
; j
++)
1821 if (params
[j
].pspec
== pspec
)
1823 consider_issuing_property_deprecation_warning (pspec
);
1824 value
= params
[j
].value
;
1829 value
= g_param_spec_get_default_value (pspec
);
1831 object_set_property (object
, pspec
, value
, nqueue
);
1835 /* run 'constructed' handler if there is a custom one */
1836 if (CLASS_HAS_CUSTOM_CONSTRUCTED (class))
1837 class->constructed (object
);
1843 /* Set remaining properties. The construct properties will
1844 * already have been taken, so set only the non-construct
1847 for (i
= 0; i
< n_params
; i
++)
1848 if (!(params
[i
].pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1850 consider_issuing_property_deprecation_warning (params
[i
].pspec
);
1851 object_set_property (object
, params
[i
].pspec
, params
[i
].value
, nqueue
);
1854 g_object_notify_queue_thaw (object
, nqueue
);
1861 static inline gboolean
1862 g_object_new_is_valid_property (GType object_type
,
1865 GObjectConstructParam
*params
,
1869 if (G_UNLIKELY (pspec
== NULL
))
1871 g_critical ("%s: object class '%s' has no property named '%s'",
1872 G_STRFUNC
, g_type_name (object_type
), name
);
1876 if (G_UNLIKELY (~pspec
->flags
& G_PARAM_WRITABLE
))
1878 g_critical ("%s: property '%s' of object class '%s' is not writable",
1879 G_STRFUNC
, pspec
->name
, g_type_name (object_type
));
1883 if (G_UNLIKELY (pspec
->flags
& (G_PARAM_CONSTRUCT
| G_PARAM_CONSTRUCT_ONLY
)))
1885 for (i
= 0; i
< n_params
; i
++)
1886 if (params
[i
].pspec
== pspec
)
1888 if (G_UNLIKELY (i
!= n_params
))
1890 g_critical ("%s: property '%s' for type '%s' cannot be set twice",
1891 G_STRFUNC
, name
, g_type_name (object_type
));
1900 * g_object_new_with_properties: (rename-to g_object_new)
1901 * @object_type: the object type to instantiate
1902 * @n_properties: the number of properties
1903 * @names: (array length=n_properties): the names of each property to be set
1904 * @values: (array length=n_properties): the values of each property to be set
1906 * Creates a new instance of a #GObject subtype and sets its properties using
1907 * the provided arrays. Both arrays must have exactly @n_properties elements,
1908 * and the names and values correspond by index.
1910 * Construction parameters (see %G_PARAM_CONSTRUCT, %G_PARAM_CONSTRUCT_ONLY)
1911 * which are not explicitly specified are set to their default values.
1913 * Returns: (type GObject.Object) (transfer full): a new instance of
1919 g_object_new_with_properties (GType object_type
,
1921 const char *names
[],
1922 const GValue values
[])
1924 GObjectClass
*class, *unref_class
= NULL
;
1927 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
1929 /* Try to avoid thrashing the ref_count if we don't need to (since
1930 * it's a locked operation).
1932 class = g_type_class_peek_static (object_type
);
1935 class = unref_class
= g_type_class_ref (object_type
);
1937 if (n_properties
> 0)
1940 GObjectConstructParam
*params
;
1942 params
= g_newa (GObjectConstructParam
, n_properties
);
1943 for (i
= 0; i
< n_properties
; i
++)
1946 pspec
= g_param_spec_pool_lookup (pspec_pool
, names
[i
], object_type
, TRUE
);
1947 if (!g_object_new_is_valid_property (object_type
, pspec
, names
[i
], params
, count
))
1949 params
[count
].pspec
= pspec
;
1952 params
[count
].value
= g_newa (GValue
, 1);
1953 memset (params
[count
].value
, 0, sizeof (GValue
));
1954 g_value_init (params
[count
].value
, G_VALUE_TYPE (&values
[i
]));
1956 g_value_copy (&values
[i
], params
[count
].value
);
1959 object
= g_object_new_internal (class, params
, count
);
1962 g_value_unset (params
[count
].value
);
1965 object
= g_object_new_internal (class, NULL
, 0);
1967 if (unref_class
!= NULL
)
1968 g_type_class_unref (unref_class
);
1975 * @object_type: the type id of the #GObject subtype to instantiate
1976 * @n_parameters: the length of the @parameters array
1977 * @parameters: (array length=n_parameters): an array of #GParameter
1979 * Creates a new instance of a #GObject subtype and sets its properties.
1981 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
1982 * which are not explicitly specified are set to their default values.
1984 * Returns: (type GObject.Object) (transfer full): a new instance of
1987 * Deprecated: 2.54: Use g_object_new_with_properties() instead.
1988 * deprecated. See #GParameter for more information.
1991 g_object_newv (GType object_type
,
1993 GParameter
*parameters
)
1995 GObjectClass
*class, *unref_class
= NULL
;
1998 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
1999 g_return_val_if_fail (n_parameters
== 0 || parameters
!= NULL
, NULL
);
2001 /* Try to avoid thrashing the ref_count if we don't need to (since
2002 * it's a locked operation).
2004 class = g_type_class_peek_static (object_type
);
2007 class = unref_class
= g_type_class_ref (object_type
);
2011 GObjectConstructParam
*cparams
;
2014 cparams
= g_newa (GObjectConstructParam
, n_parameters
);
2017 for (i
= 0; i
< n_parameters
; i
++)
2021 pspec
= g_param_spec_pool_lookup (pspec_pool
, parameters
[i
].name
, object_type
, TRUE
);
2022 if (!g_object_new_is_valid_property (object_type
, pspec
, parameters
[i
].name
, cparams
, j
))
2025 cparams
[j
].pspec
= pspec
;
2026 cparams
[j
].value
= ¶meters
[i
].value
;
2030 object
= g_object_new_internal (class, cparams
, j
);
2033 /* Fast case: no properties passed in. */
2034 object
= g_object_new_internal (class, NULL
, 0);
2037 g_type_class_unref (unref_class
);
2043 * g_object_new_valist: (skip)
2044 * @object_type: the type id of the #GObject subtype to instantiate
2045 * @first_property_name: the name of the first property
2046 * @var_args: the value of the first property, followed optionally by more
2047 * name/value pairs, followed by %NULL
2049 * Creates a new instance of a #GObject subtype and sets its properties.
2051 * Construction parameters (see #G_PARAM_CONSTRUCT, #G_PARAM_CONSTRUCT_ONLY)
2052 * which are not explicitly specified are set to their default values.
2054 * Returns: a new instance of @object_type
2057 g_object_new_valist (GType object_type
,
2058 const gchar
*first_property_name
,
2061 GObjectClass
*class, *unref_class
= NULL
;
2064 g_return_val_if_fail (G_TYPE_IS_OBJECT (object_type
), NULL
);
2066 /* Try to avoid thrashing the ref_count if we don't need to (since
2067 * it's a locked operation).
2069 class = g_type_class_peek_static (object_type
);
2072 class = unref_class
= g_type_class_ref (object_type
);
2074 if (first_property_name
)
2076 GObjectConstructParam stack_params
[16];
2077 GObjectConstructParam
*params
;
2081 name
= first_property_name
;
2082 params
= stack_params
;
2086 gchar
*error
= NULL
;
2089 pspec
= g_param_spec_pool_lookup (pspec_pool
, name
, object_type
, TRUE
);
2091 if (!g_object_new_is_valid_property (object_type
, pspec
, name
, params
, n_params
))
2096 params
= g_new (GObjectConstructParam
, n_params
+ 1);
2097 memcpy (params
, stack_params
, sizeof stack_params
);
2099 else if (n_params
> 16)
2100 params
= g_renew (GObjectConstructParam
, params
, n_params
+ 1);
2102 params
[n_params
].pspec
= pspec
;
2103 params
[n_params
].value
= g_newa (GValue
, 1);
2104 memset (params
[n_params
].value
, 0, sizeof (GValue
));
2106 G_VALUE_COLLECT_INIT (params
[n_params
].value
, pspec
->value_type
, var_args
, 0, &error
);
2110 g_critical ("%s: %s", G_STRFUNC
, error
);
2111 g_value_unset (params
[n_params
].value
);
2118 while ((name
= va_arg (var_args
, const gchar
*)));
2120 object
= g_object_new_internal (class, params
, n_params
);
2123 g_value_unset (params
[n_params
].value
);
2125 if (params
!= stack_params
)
2129 /* Fast case: no properties passed in. */
2130 object
= g_object_new_internal (class, NULL
, 0);
2133 g_type_class_unref (unref_class
);
2139 g_object_constructor (GType type
,
2140 guint n_construct_properties
,
2141 GObjectConstructParam
*construct_params
)
2146 object
= (GObject
*) g_type_create_instance (type
);
2148 /* set construction parameters */
2149 if (n_construct_properties
)
2151 GObjectNotifyQueue
*nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2153 /* set construct properties */
2154 while (n_construct_properties
--)
2156 GValue
*value
= construct_params
->value
;
2157 GParamSpec
*pspec
= construct_params
->pspec
;
2160 object_set_property (object
, pspec
, value
, nqueue
);
2162 g_object_notify_queue_thaw (object
, nqueue
);
2163 /* the notification queue is still frozen from g_object_init(), so
2164 * we don't need to handle it here, g_object_newv() takes
2173 g_object_constructed (GObject
*object
)
2175 /* empty default impl to allow unconditional upchaining */
2178 static inline gboolean
2179 g_object_set_is_valid_property (GObject
*object
,
2181 const char *property_name
)
2183 if (G_UNLIKELY (pspec
== NULL
))
2185 g_warning ("%s: object class '%s' has no property named '%s'",
2186 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), property_name
);
2189 if (G_UNLIKELY (!(pspec
->flags
& G_PARAM_WRITABLE
)))
2191 g_warning ("%s: property '%s' of object class '%s' is not writable",
2192 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2195 if (G_UNLIKELY (((pspec
->flags
& G_PARAM_CONSTRUCT_ONLY
) && !object_in_construction (object
))))
2197 g_warning ("%s: construct property \"%s\" for object '%s' can't be set after construction",
2198 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2205 * g_object_setv: (skip)
2206 * @object: a #GObject
2207 * @n_properties: the number of properties
2208 * @names: (array length=n_properties): the names of each property to be set
2209 * @values: (array length=n_properties): the values of each property to be set
2211 * Sets @n_properties properties for an @object.
2212 * Properties to be set will be taken from @values. All properties must be
2213 * valid. Warnings will be emitted and undefined behaviour may result if invalid
2214 * properties are passed in.
2219 g_object_setv (GObject
*object
,
2221 const gchar
*names
[],
2222 const GValue values
[])
2225 GObjectNotifyQueue
*nqueue
;
2229 g_return_if_fail (G_IS_OBJECT (object
));
2231 if (n_properties
== 0)
2234 g_object_ref (object
);
2235 obj_type
= G_OBJECT_TYPE (object
);
2236 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2237 for (i
= 0; i
< n_properties
; i
++)
2239 pspec
= g_param_spec_pool_lookup (pspec_pool
, names
[i
], obj_type
, TRUE
);
2241 if (!g_object_set_is_valid_property (object
, pspec
, names
[i
]))
2244 consider_issuing_property_deprecation_warning (pspec
);
2245 object_set_property (object
, pspec
, &values
[i
], nqueue
);
2248 g_object_notify_queue_thaw (object
, nqueue
);
2249 g_object_unref (object
);
2253 * g_object_set_valist: (skip)
2254 * @object: a #GObject
2255 * @first_property_name: name of the first property to set
2256 * @var_args: value for the first property, followed optionally by more
2257 * name/value pairs, followed by %NULL
2259 * Sets properties on an object.
2262 g_object_set_valist (GObject
*object
,
2263 const gchar
*first_property_name
,
2266 GObjectNotifyQueue
*nqueue
;
2269 g_return_if_fail (G_IS_OBJECT (object
));
2271 g_object_ref (object
);
2272 nqueue
= g_object_notify_queue_freeze (object
, FALSE
);
2274 name
= first_property_name
;
2277 GValue value
= G_VALUE_INIT
;
2279 gchar
*error
= NULL
;
2281 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2283 G_OBJECT_TYPE (object
),
2286 if (!g_object_set_is_valid_property (object
, pspec
, name
))
2289 G_VALUE_COLLECT_INIT (&value
, pspec
->value_type
, var_args
,
2293 g_warning ("%s: %s", G_STRFUNC
, error
);
2295 g_value_unset (&value
);
2299 consider_issuing_property_deprecation_warning (pspec
);
2300 object_set_property (object
, pspec
, &value
, nqueue
);
2301 g_value_unset (&value
);
2303 name
= va_arg (var_args
, gchar
*);
2306 g_object_notify_queue_thaw (object
, nqueue
);
2307 g_object_unref (object
);
2310 static inline gboolean
2311 g_object_get_is_valid_property (GObject
*object
,
2313 const char *property_name
)
2315 if (G_UNLIKELY (pspec
== NULL
))
2317 g_warning ("%s: object class '%s' has no property named '%s'",
2318 G_STRFUNC
, G_OBJECT_TYPE_NAME (object
), property_name
);
2321 if (G_UNLIKELY (!(pspec
->flags
& G_PARAM_READABLE
)))
2323 g_warning ("%s: property '%s' of object class '%s' is not readable",
2324 G_STRFUNC
, pspec
->name
, G_OBJECT_TYPE_NAME (object
));
2332 * @object: a #GObject
2333 * @n_properties: the number of properties
2334 * @names: (array length=n_properties): the names of each property to get
2335 * @values: (array length=n_properties): the values of each property to get
2337 * Gets @n_properties properties for an @object.
2338 * Obtained properties will be set to @values. All properties must be valid.
2339 * Warnings will be emitted and undefined behaviour may result if invalid
2340 * properties are passed in.
2345 g_object_getv (GObject
*object
,
2347 const gchar
*names
[],
2354 g_return_if_fail (G_IS_OBJECT (object
));
2356 if (n_properties
== 0)
2359 g_object_ref (object
);
2361 obj_type
= G_OBJECT_TYPE (object
);
2362 for (i
= 0; i
< n_properties
; i
++)
2364 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2368 if (!g_object_get_is_valid_property (object
, pspec
, names
[i
]))
2371 memset (&values
[i
], 0, sizeof (GValue
));
2372 g_value_init (&values
[i
], pspec
->value_type
);
2373 object_get_property (object
, pspec
, &values
[i
]);
2375 g_object_unref (object
);
2379 * g_object_get_valist: (skip)
2380 * @object: a #GObject
2381 * @first_property_name: name of the first property to get
2382 * @var_args: return location for the first property, followed optionally by more
2383 * name/return location pairs, followed by %NULL
2385 * Gets properties of an object.
2387 * In general, a copy is made of the property contents and the caller
2388 * is responsible for freeing the memory in the appropriate manner for
2389 * the type, for instance by calling g_free() or g_object_unref().
2391 * See g_object_get().
2394 g_object_get_valist (GObject
*object
,
2395 const gchar
*first_property_name
,
2400 g_return_if_fail (G_IS_OBJECT (object
));
2402 g_object_ref (object
);
2404 name
= first_property_name
;
2408 GValue value
= G_VALUE_INIT
;
2412 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2414 G_OBJECT_TYPE (object
),
2417 if (!g_object_get_is_valid_property (object
, pspec
, name
))
2420 g_value_init (&value
, pspec
->value_type
);
2422 object_get_property (object
, pspec
, &value
);
2424 G_VALUE_LCOPY (&value
, var_args
, 0, &error
);
2427 g_warning ("%s: %s", G_STRFUNC
, error
);
2429 g_value_unset (&value
);
2433 g_value_unset (&value
);
2435 name
= va_arg (var_args
, gchar
*);
2438 g_object_unref (object
);
2442 * g_object_set: (skip)
2443 * @object: (type GObject.Object): a #GObject
2444 * @first_property_name: name of the first property to set
2445 * @...: value for the first property, followed optionally by more
2446 * name/value pairs, followed by %NULL
2448 * Sets properties on an object.
2450 * Note that the "notify" signals are queued and only emitted (in
2451 * reverse order) after all properties have been set. See
2452 * g_object_freeze_notify().
2455 g_object_set (gpointer _object
,
2456 const gchar
*first_property_name
,
2459 GObject
*object
= _object
;
2462 g_return_if_fail (G_IS_OBJECT (object
));
2464 va_start (var_args
, first_property_name
);
2465 g_object_set_valist (object
, first_property_name
, var_args
);
2470 * g_object_get: (skip)
2471 * @object: (type GObject.Object): a #GObject
2472 * @first_property_name: name of the first property to get
2473 * @...: return location for the first property, followed optionally by more
2474 * name/return location pairs, followed by %NULL
2476 * Gets properties of an object.
2478 * In general, a copy is made of the property contents and the caller
2479 * is responsible for freeing the memory in the appropriate manner for
2480 * the type, for instance by calling g_free() or g_object_unref().
2482 * Here is an example of using g_object_get() to get the contents
2483 * of three properties: an integer, a string and an object:
2484 * |[<!-- language="C" -->
2489 * g_object_get (my_object,
2490 * "int-property", &intval,
2491 * "str-property", &strval,
2492 * "obj-property", &objval,
2495 * // Do something with intval, strval, objval
2498 * g_object_unref (objval);
2502 g_object_get (gpointer _object
,
2503 const gchar
*first_property_name
,
2506 GObject
*object
= _object
;
2509 g_return_if_fail (G_IS_OBJECT (object
));
2511 va_start (var_args
, first_property_name
);
2512 g_object_get_valist (object
, first_property_name
, var_args
);
2517 * g_object_set_property:
2518 * @object: a #GObject
2519 * @property_name: the name of the property to set
2522 * Sets a property on an object.
2525 g_object_set_property (GObject
*object
,
2526 const gchar
*property_name
,
2527 const GValue
*value
)
2529 g_object_setv (object
, 1, &property_name
, value
);
2533 * g_object_get_property:
2534 * @object: a #GObject
2535 * @property_name: the name of the property to get
2536 * @value: return location for the property value
2538 * Gets a property of an object. @value must have been initialized to the
2539 * expected type of the property (or a type to which the expected type can be
2540 * transformed) using g_value_init().
2542 * In general, a copy is made of the property contents and the caller is
2543 * responsible for freeing the memory by calling g_value_unset().
2545 * Note that g_object_get_property() is really intended for language
2546 * bindings, g_object_get() is much more convenient for C programming.
2549 g_object_get_property (GObject
*object
,
2550 const gchar
*property_name
,
2555 g_return_if_fail (G_IS_OBJECT (object
));
2556 g_return_if_fail (property_name
!= NULL
);
2557 g_return_if_fail (G_IS_VALUE (value
));
2559 g_object_ref (object
);
2561 pspec
= g_param_spec_pool_lookup (pspec_pool
,
2563 G_OBJECT_TYPE (object
),
2566 if (g_object_get_is_valid_property (object
, pspec
, property_name
))
2568 GValue
*prop_value
, tmp_value
= G_VALUE_INIT
;
2570 /* auto-conversion of the callers value type
2572 if (G_VALUE_TYPE (value
) == pspec
->value_type
)
2574 g_value_reset (value
);
2577 else if (!g_value_type_transformable (pspec
->value_type
, G_VALUE_TYPE (value
)))
2579 g_warning ("%s: can't retrieve property '%s' of type '%s' as value of type '%s'",
2580 G_STRFUNC
, pspec
->name
,
2581 g_type_name (pspec
->value_type
),
2582 G_VALUE_TYPE_NAME (value
));
2583 g_object_unref (object
);
2588 g_value_init (&tmp_value
, pspec
->value_type
);
2589 prop_value
= &tmp_value
;
2591 object_get_property (object
, pspec
, prop_value
);
2592 if (prop_value
!= value
)
2594 g_value_transform (prop_value
, value
);
2595 g_value_unset (&tmp_value
);
2599 g_object_unref (object
);
2603 * g_object_connect: (skip)
2604 * @object: (type GObject.Object): a #GObject
2605 * @signal_spec: the spec for the first signal
2606 * @...: #GCallback for the first signal, followed by data for the
2607 * first signal, followed optionally by more signal
2608 * spec/callback/data triples, followed by %NULL
2610 * A convenience function to connect multiple signals at once.
2612 * The signal specs expected by this function have the form
2613 * "modifier::signal_name", where modifier can be one of the following:
2614 * * - signal: equivalent to g_signal_connect_data (..., NULL, 0)
2615 * - object-signal, object_signal: equivalent to g_signal_connect_object (..., 0)
2616 * - swapped-signal, swapped_signal: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED)
2617 * - swapped_object_signal, swapped-object-signal: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED)
2618 * - signal_after, signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_AFTER)
2619 * - object_signal_after, object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_AFTER)
2620 * - swapped_signal_after, swapped-signal-after: equivalent to g_signal_connect_data (..., NULL, G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2621 * - swapped_object_signal_after, swapped-object-signal-after: equivalent to g_signal_connect_object (..., G_CONNECT_SWAPPED | G_CONNECT_AFTER)
2623 * |[<!-- language="C" -->
2624 * menu->toplevel = g_object_connect (g_object_new (GTK_TYPE_WINDOW,
2625 * "type", GTK_WINDOW_POPUP,
2628 * "signal::event", gtk_menu_window_event, menu,
2629 * "signal::size_request", gtk_menu_window_size_request, menu,
2630 * "signal::destroy", gtk_widget_destroyed, &menu->toplevel,
2634 * Returns: (transfer none) (type GObject.Object): @object
2637 g_object_connect (gpointer _object
,
2638 const gchar
*signal_spec
,
2641 GObject
*object
= _object
;
2644 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
2645 g_return_val_if_fail (object
->ref_count
> 0, object
);
2647 va_start (var_args
, signal_spec
);
2650 GCallback callback
= va_arg (var_args
, GCallback
);
2651 gpointer data
= va_arg (var_args
, gpointer
);
2653 if (strncmp (signal_spec
, "signal::", 8) == 0)
2654 g_signal_connect_data (object
, signal_spec
+ 8,
2655 callback
, data
, NULL
,
2657 else if (strncmp (signal_spec
, "object_signal::", 15) == 0 ||
2658 strncmp (signal_spec
, "object-signal::", 15) == 0)
2659 g_signal_connect_object (object
, signal_spec
+ 15,
2662 else if (strncmp (signal_spec
, "swapped_signal::", 16) == 0 ||
2663 strncmp (signal_spec
, "swapped-signal::", 16) == 0)
2664 g_signal_connect_data (object
, signal_spec
+ 16,
2665 callback
, data
, NULL
,
2667 else if (strncmp (signal_spec
, "swapped_object_signal::", 23) == 0 ||
2668 strncmp (signal_spec
, "swapped-object-signal::", 23) == 0)
2669 g_signal_connect_object (object
, signal_spec
+ 23,
2672 else if (strncmp (signal_spec
, "signal_after::", 14) == 0 ||
2673 strncmp (signal_spec
, "signal-after::", 14) == 0)
2674 g_signal_connect_data (object
, signal_spec
+ 14,
2675 callback
, data
, NULL
,
2677 else if (strncmp (signal_spec
, "object_signal_after::", 21) == 0 ||
2678 strncmp (signal_spec
, "object-signal-after::", 21) == 0)
2679 g_signal_connect_object (object
, signal_spec
+ 21,
2682 else if (strncmp (signal_spec
, "swapped_signal_after::", 22) == 0 ||
2683 strncmp (signal_spec
, "swapped-signal-after::", 22) == 0)
2684 g_signal_connect_data (object
, signal_spec
+ 22,
2685 callback
, data
, NULL
,
2686 G_CONNECT_SWAPPED
| G_CONNECT_AFTER
);
2687 else if (strncmp (signal_spec
, "swapped_object_signal_after::", 29) == 0 ||
2688 strncmp (signal_spec
, "swapped-object-signal-after::", 29) == 0)
2689 g_signal_connect_object (object
, signal_spec
+ 29,
2691 G_CONNECT_SWAPPED
| G_CONNECT_AFTER
);
2694 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC
, signal_spec
);
2697 signal_spec
= va_arg (var_args
, gchar
*);
2705 * g_object_disconnect: (skip)
2706 * @object: (type GObject.Object): a #GObject
2707 * @signal_spec: the spec for the first signal
2708 * @...: #GCallback for the first signal, followed by data for the first signal,
2709 * followed optionally by more signal spec/callback/data triples,
2712 * A convenience function to disconnect multiple signals at once.
2714 * The signal specs expected by this function have the form
2715 * "any_signal", which means to disconnect any signal with matching
2716 * callback and data, or "any_signal::signal_name", which only
2717 * disconnects the signal named "signal_name".
2720 g_object_disconnect (gpointer _object
,
2721 const gchar
*signal_spec
,
2724 GObject
*object
= _object
;
2727 g_return_if_fail (G_IS_OBJECT (object
));
2728 g_return_if_fail (object
->ref_count
> 0);
2730 va_start (var_args
, signal_spec
);
2733 GCallback callback
= va_arg (var_args
, GCallback
);
2734 gpointer data
= va_arg (var_args
, gpointer
);
2735 guint sid
= 0, detail
= 0, mask
= 0;
2737 if (strncmp (signal_spec
, "any_signal::", 12) == 0 ||
2738 strncmp (signal_spec
, "any-signal::", 12) == 0)
2741 mask
= G_SIGNAL_MATCH_ID
| G_SIGNAL_MATCH_FUNC
| G_SIGNAL_MATCH_DATA
;
2743 else if (strcmp (signal_spec
, "any_signal") == 0 ||
2744 strcmp (signal_spec
, "any-signal") == 0)
2747 mask
= G_SIGNAL_MATCH_FUNC
| G_SIGNAL_MATCH_DATA
;
2751 g_warning ("%s: invalid signal spec \"%s\"", G_STRFUNC
, signal_spec
);
2755 if ((mask
& G_SIGNAL_MATCH_ID
) &&
2756 !g_signal_parse_name (signal_spec
, G_OBJECT_TYPE (object
), &sid
, &detail
, FALSE
))
2757 g_warning ("%s: invalid signal name \"%s\"", G_STRFUNC
, signal_spec
);
2758 else if (!g_signal_handlers_disconnect_matched (object
, mask
| (detail
? G_SIGNAL_MATCH_DETAIL
: 0),
2760 NULL
, (gpointer
)callback
, data
))
2761 g_warning ("%s: signal handler %p(%p) is not connected", G_STRFUNC
, callback
, data
);
2762 signal_spec
= va_arg (var_args
, gchar
*);
2773 } weak_refs
[1]; /* flexible array */
2777 weak_refs_notify (gpointer data
)
2779 WeakRefStack
*wstack
= data
;
2782 for (i
= 0; i
< wstack
->n_weak_refs
; i
++)
2783 wstack
->weak_refs
[i
].notify (wstack
->weak_refs
[i
].data
, wstack
->object
);
2788 * g_object_weak_ref: (skip)
2789 * @object: #GObject to reference weakly
2790 * @notify: callback to invoke before the object is freed
2791 * @data: extra data to pass to notify
2793 * Adds a weak reference callback to an object. Weak references are
2794 * used for notification when an object is finalized. They are called
2795 * "weak references" because they allow you to safely hold a pointer
2796 * to an object without calling g_object_ref() (g_object_ref() adds a
2797 * strong reference, that is, forces the object to stay alive).
2799 * Note that the weak references created by this method are not
2800 * thread-safe: they cannot safely be used in one thread if the
2801 * object's last g_object_unref() might happen in another thread.
2802 * Use #GWeakRef if thread-safety is required.
2805 g_object_weak_ref (GObject
*object
,
2809 WeakRefStack
*wstack
;
2812 g_return_if_fail (G_IS_OBJECT (object
));
2813 g_return_if_fail (notify
!= NULL
);
2814 g_return_if_fail (object
->ref_count
>= 1);
2816 G_LOCK (weak_refs_mutex
);
2817 wstack
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_weak_refs
);
2820 i
= wstack
->n_weak_refs
++;
2821 wstack
= g_realloc (wstack
, sizeof (*wstack
) + sizeof (wstack
->weak_refs
[0]) * i
);
2825 wstack
= g_renew (WeakRefStack
, NULL
, 1);
2826 wstack
->object
= object
;
2827 wstack
->n_weak_refs
= 1;
2830 wstack
->weak_refs
[i
].notify
= notify
;
2831 wstack
->weak_refs
[i
].data
= data
;
2832 g_datalist_id_set_data_full (&object
->qdata
, quark_weak_refs
, wstack
, weak_refs_notify
);
2833 G_UNLOCK (weak_refs_mutex
);
2837 * g_object_weak_unref: (skip)
2838 * @object: #GObject to remove a weak reference from
2839 * @notify: callback to search for
2840 * @data: data to search for
2842 * Removes a weak reference callback to an object.
2845 g_object_weak_unref (GObject
*object
,
2849 WeakRefStack
*wstack
;
2850 gboolean found_one
= FALSE
;
2852 g_return_if_fail (G_IS_OBJECT (object
));
2853 g_return_if_fail (notify
!= NULL
);
2855 G_LOCK (weak_refs_mutex
);
2856 wstack
= g_datalist_id_get_data (&object
->qdata
, quark_weak_refs
);
2861 for (i
= 0; i
< wstack
->n_weak_refs
; i
++)
2862 if (wstack
->weak_refs
[i
].notify
== notify
&&
2863 wstack
->weak_refs
[i
].data
== data
)
2866 wstack
->n_weak_refs
-= 1;
2867 if (i
!= wstack
->n_weak_refs
)
2868 wstack
->weak_refs
[i
] = wstack
->weak_refs
[wstack
->n_weak_refs
];
2873 G_UNLOCK (weak_refs_mutex
);
2875 g_warning ("%s: couldn't find weak ref %p(%p)", G_STRFUNC
, notify
, data
);
2879 * g_object_add_weak_pointer: (skip)
2880 * @object: The object that should be weak referenced.
2881 * @weak_pointer_location: (inout) (not optional): The memory address
2884 * Adds a weak reference from weak_pointer to @object to indicate that
2885 * the pointer located at @weak_pointer_location is only valid during
2886 * the lifetime of @object. When the @object is finalized,
2887 * @weak_pointer will be set to %NULL.
2889 * Note that as with g_object_weak_ref(), the weak references created by
2890 * this method are not thread-safe: they cannot safely be used in one
2891 * thread if the object's last g_object_unref() might happen in another
2892 * thread. Use #GWeakRef if thread-safety is required.
2895 g_object_add_weak_pointer (GObject
*object
,
2896 gpointer
*weak_pointer_location
)
2898 g_return_if_fail (G_IS_OBJECT (object
));
2899 g_return_if_fail (weak_pointer_location
!= NULL
);
2901 g_object_weak_ref (object
,
2902 (GWeakNotify
) g_nullify_pointer
,
2903 weak_pointer_location
);
2907 * g_object_remove_weak_pointer: (skip)
2908 * @object: The object that is weak referenced.
2909 * @weak_pointer_location: (inout) (not optional): The memory address
2912 * Removes a weak reference from @object that was previously added
2913 * using g_object_add_weak_pointer(). The @weak_pointer_location has
2914 * to match the one used with g_object_add_weak_pointer().
2917 g_object_remove_weak_pointer (GObject
*object
,
2918 gpointer
*weak_pointer_location
)
2920 g_return_if_fail (G_IS_OBJECT (object
));
2921 g_return_if_fail (weak_pointer_location
!= NULL
);
2923 g_object_weak_unref (object
,
2924 (GWeakNotify
) g_nullify_pointer
,
2925 weak_pointer_location
);
2929 object_floating_flag_handler (GObject
*object
,
2935 case +1: /* force floating if possible */
2937 oldvalue
= g_atomic_pointer_get (&object
->qdata
);
2938 while (!g_atomic_pointer_compare_and_exchange ((void**) &object
->qdata
, oldvalue
,
2939 (gpointer
) ((gsize
) oldvalue
| OBJECT_FLOATING_FLAG
)));
2940 return (gsize
) oldvalue
& OBJECT_FLOATING_FLAG
;
2941 case -1: /* sink if possible */
2943 oldvalue
= g_atomic_pointer_get (&object
->qdata
);
2944 while (!g_atomic_pointer_compare_and_exchange ((void**) &object
->qdata
, oldvalue
,
2945 (gpointer
) ((gsize
) oldvalue
& ~(gsize
) OBJECT_FLOATING_FLAG
)));
2946 return (gsize
) oldvalue
& OBJECT_FLOATING_FLAG
;
2947 default: /* check floating */
2948 return 0 != ((gsize
) g_atomic_pointer_get (&object
->qdata
) & OBJECT_FLOATING_FLAG
);
2953 * g_object_is_floating:
2954 * @object: (type GObject.Object): a #GObject
2956 * Checks whether @object has a [floating][floating-ref] reference.
2960 * Returns: %TRUE if @object has a floating reference
2963 g_object_is_floating (gpointer _object
)
2965 GObject
*object
= _object
;
2966 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
2967 return floating_flag_handler (object
, 0);
2971 * g_object_ref_sink:
2972 * @object: (type GObject.Object): a #GObject
2974 * Increase the reference count of @object, and possibly remove the
2975 * [floating][floating-ref] reference, if @object has a floating reference.
2977 * In other words, if the object is floating, then this call "assumes
2978 * ownership" of the floating reference, converting it to a normal
2979 * reference by clearing the floating flag while leaving the reference
2980 * count unchanged. If the object is not floating, then this call
2981 * adds a new normal reference increasing the reference count by one.
2983 * Since GLib 2.56, the type of @object will be propagated to the return type
2984 * under the same conditions as for g_object_ref().
2988 * Returns: (type GObject.Object) (transfer none): @object
2991 (g_object_ref_sink
) (gpointer _object
)
2993 GObject
*object
= _object
;
2994 gboolean was_floating
;
2995 g_return_val_if_fail (G_IS_OBJECT (object
), object
);
2996 g_return_val_if_fail (object
->ref_count
>= 1, object
);
2997 g_object_ref (object
);
2998 was_floating
= floating_flag_handler (object
, -1);
3000 g_object_unref (object
);
3005 * g_object_force_floating:
3006 * @object: a #GObject
3008 * This function is intended for #GObject implementations to re-enforce
3009 * a [floating][floating-ref] object reference. Doing this is seldom
3010 * required: all #GInitiallyUnowneds are created with a floating reference
3011 * which usually just needs to be sunken by calling g_object_ref_sink().
3016 g_object_force_floating (GObject
*object
)
3018 g_return_if_fail (G_IS_OBJECT (object
));
3019 g_return_if_fail (object
->ref_count
>= 1);
3021 floating_flag_handler (object
, +1);
3026 guint n_toggle_refs
;
3028 GToggleNotify notify
;
3030 } toggle_refs
[1]; /* flexible array */
3034 toggle_refs_notify (GObject
*object
,
3035 gboolean is_last_ref
)
3037 ToggleRefStack tstack
, *tstackptr
;
3039 G_LOCK (toggle_refs_mutex
);
3040 tstackptr
= g_datalist_id_get_data (&object
->qdata
, quark_toggle_refs
);
3041 tstack
= *tstackptr
;
3042 G_UNLOCK (toggle_refs_mutex
);
3044 /* Reentrancy here is not as tricky as it seems, because a toggle reference
3045 * will only be notified when there is exactly one of them.
3047 g_assert (tstack
.n_toggle_refs
== 1);
3048 tstack
.toggle_refs
[0].notify (tstack
.toggle_refs
[0].data
, tstack
.object
, is_last_ref
);
3052 * g_object_add_toggle_ref: (skip)
3053 * @object: a #GObject
3054 * @notify: a function to call when this reference is the
3055 * last reference to the object, or is no longer
3056 * the last reference.
3057 * @data: data to pass to @notify
3059 * Increases the reference count of the object by one and sets a
3060 * callback to be called when all other references to the object are
3061 * dropped, or when this is already the last reference to the object
3062 * and another reference is established.
3064 * This functionality is intended for binding @object to a proxy
3065 * object managed by another memory manager. This is done with two
3066 * paired references: the strong reference added by
3067 * g_object_add_toggle_ref() and a reverse reference to the proxy
3068 * object which is either a strong reference or weak reference.
3070 * The setup is that when there are no other references to @object,
3071 * only a weak reference is held in the reverse direction from @object
3072 * to the proxy object, but when there are other references held to
3073 * @object, a strong reference is held. The @notify callback is called
3074 * when the reference from @object to the proxy object should be
3075 * "toggled" from strong to weak (@is_last_ref true) or weak to strong
3076 * (@is_last_ref false).
3078 * Since a (normal) reference must be held to the object before
3079 * calling g_object_add_toggle_ref(), the initial state of the reverse
3080 * link is always strong.
3082 * Multiple toggle references may be added to the same gobject,
3083 * however if there are multiple toggle references to an object, none
3084 * of them will ever be notified until all but one are removed. For
3085 * this reason, you should only ever use a toggle reference if there
3086 * is important state in the proxy object.
3091 g_object_add_toggle_ref (GObject
*object
,
3092 GToggleNotify notify
,
3095 ToggleRefStack
*tstack
;
3098 g_return_if_fail (G_IS_OBJECT (object
));
3099 g_return_if_fail (notify
!= NULL
);
3100 g_return_if_fail (object
->ref_count
>= 1);
3102 g_object_ref (object
);
3104 G_LOCK (toggle_refs_mutex
);
3105 tstack
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_toggle_refs
);
3108 i
= tstack
->n_toggle_refs
++;
3109 /* allocate i = tstate->n_toggle_refs - 1 positions beyond the 1 declared
3110 * in tstate->toggle_refs */
3111 tstack
= g_realloc (tstack
, sizeof (*tstack
) + sizeof (tstack
->toggle_refs
[0]) * i
);
3115 tstack
= g_renew (ToggleRefStack
, NULL
, 1);
3116 tstack
->object
= object
;
3117 tstack
->n_toggle_refs
= 1;
3121 /* Set a flag for fast lookup after adding the first toggle reference */
3122 if (tstack
->n_toggle_refs
== 1)
3123 g_datalist_set_flags (&object
->qdata
, OBJECT_HAS_TOGGLE_REF_FLAG
);
3125 tstack
->toggle_refs
[i
].notify
= notify
;
3126 tstack
->toggle_refs
[i
].data
= data
;
3127 g_datalist_id_set_data_full (&object
->qdata
, quark_toggle_refs
, tstack
,
3128 (GDestroyNotify
)g_free
);
3129 G_UNLOCK (toggle_refs_mutex
);
3133 * g_object_remove_toggle_ref: (skip)
3134 * @object: a #GObject
3135 * @notify: a function to call when this reference is the
3136 * last reference to the object, or is no longer
3137 * the last reference.
3138 * @data: data to pass to @notify
3140 * Removes a reference added with g_object_add_toggle_ref(). The
3141 * reference count of the object is decreased by one.
3146 g_object_remove_toggle_ref (GObject
*object
,
3147 GToggleNotify notify
,
3150 ToggleRefStack
*tstack
;
3151 gboolean found_one
= FALSE
;
3153 g_return_if_fail (G_IS_OBJECT (object
));
3154 g_return_if_fail (notify
!= NULL
);
3156 G_LOCK (toggle_refs_mutex
);
3157 tstack
= g_datalist_id_get_data (&object
->qdata
, quark_toggle_refs
);
3162 for (i
= 0; i
< tstack
->n_toggle_refs
; i
++)
3163 if (tstack
->toggle_refs
[i
].notify
== notify
&&
3164 tstack
->toggle_refs
[i
].data
== data
)
3167 tstack
->n_toggle_refs
-= 1;
3168 if (i
!= tstack
->n_toggle_refs
)
3169 tstack
->toggle_refs
[i
] = tstack
->toggle_refs
[tstack
->n_toggle_refs
];
3171 if (tstack
->n_toggle_refs
== 0)
3172 g_datalist_unset_flags (&object
->qdata
, OBJECT_HAS_TOGGLE_REF_FLAG
);
3177 G_UNLOCK (toggle_refs_mutex
);
3180 g_object_unref (object
);
3182 g_warning ("%s: couldn't find toggle ref %p(%p)", G_STRFUNC
, notify
, data
);
3187 * @object: (type GObject.Object): a #GObject
3189 * Increases the reference count of @object.
3191 * Since GLib 2.56, if `GLIB_VERSION_MAX_ALLOWED` is 2.56 or greater, the type
3192 * of @object will be propagated to the return type (using the GCC typeof()
3193 * extension), so any casting the caller needs to do on the return type must be
3196 * Returns: (type GObject.Object) (transfer none): the same @object
3199 (g_object_ref
) (gpointer _object
)
3201 GObject
*object
= _object
;
3204 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3205 g_return_val_if_fail (object
->ref_count
> 0, NULL
);
3207 old_val
= g_atomic_int_add (&object
->ref_count
, 1);
3209 if (old_val
== 1 && OBJECT_HAS_TOGGLE_REF (object
))
3210 toggle_refs_notify (object
, FALSE
);
3212 TRACE (GOBJECT_OBJECT_REF(object
,G_TYPE_FROM_INSTANCE(object
),old_val
));
3219 * @object: (type GObject.Object): a #GObject
3221 * Decreases the reference count of @object. When its reference count
3222 * drops to 0, the object is finalized (i.e. its memory is freed).
3224 * If the pointer to the #GObject may be reused in future (for example, if it is
3225 * an instance variable of another object), it is recommended to clear the
3226 * pointer to %NULL rather than retain a dangling pointer to a potentially
3227 * invalid #GObject instance. Use g_clear_object() for this.
3230 g_object_unref (gpointer _object
)
3232 GObject
*object
= _object
;
3235 g_return_if_fail (G_IS_OBJECT (object
));
3236 g_return_if_fail (object
->ref_count
> 0);
3238 /* here we want to atomically do: if (ref_count>1) { ref_count--; return; } */
3239 retry_atomic_decrement1
:
3240 old_ref
= g_atomic_int_get (&object
->ref_count
);
3243 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3244 gboolean has_toggle_ref
= OBJECT_HAS_TOGGLE_REF (object
);
3246 if (!g_atomic_int_compare_and_exchange ((int *)&object
->ref_count
, old_ref
, old_ref
- 1))
3247 goto retry_atomic_decrement1
;
3249 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3251 /* if we went from 2->1 we need to notify toggle refs if any */
3252 if (old_ref
== 2 && has_toggle_ref
) /* The last ref being held in this case is owned by the toggle_ref */
3253 toggle_refs_notify (object
, TRUE
);
3257 GSList
**weak_locations
;
3259 /* The only way that this object can live at this point is if
3260 * there are outstanding weak references already established
3261 * before we got here.
3263 * If there were not already weak references then no more can be
3264 * established at this time, because the other thread would have
3265 * to hold a strong ref in order to call
3266 * g_object_add_weak_pointer() and then we wouldn't be here.
3268 weak_locations
= g_datalist_id_get_data (&object
->qdata
, quark_weak_locations
);
3270 if (weak_locations
!= NULL
)
3272 g_rw_lock_writer_lock (&weak_locations_lock
);
3274 /* It is possible that one of the weak references beat us to
3275 * the lock. Make sure the refcount is still what we expected
3278 old_ref
= g_atomic_int_get (&object
->ref_count
);
3281 g_rw_lock_writer_unlock (&weak_locations_lock
);
3282 goto retry_atomic_decrement1
;
3285 /* We got the lock first, so the object will definitely die
3286 * now. Clear out all the weak references.
3288 while (*weak_locations
)
3290 GWeakRef
*weak_ref_location
= (*weak_locations
)->data
;
3292 weak_ref_location
->priv
.p
= NULL
;
3293 *weak_locations
= g_slist_delete_link (*weak_locations
, *weak_locations
);
3296 g_rw_lock_writer_unlock (&weak_locations_lock
);
3299 /* we are about to remove the last reference */
3300 TRACE (GOBJECT_OBJECT_DISPOSE(object
,G_TYPE_FROM_INSTANCE(object
), 1));
3301 G_OBJECT_GET_CLASS (object
)->dispose (object
);
3302 TRACE (GOBJECT_OBJECT_DISPOSE_END(object
,G_TYPE_FROM_INSTANCE(object
), 1));
3304 /* may have been re-referenced meanwhile */
3305 retry_atomic_decrement2
:
3306 old_ref
= g_atomic_int_get ((int *)&object
->ref_count
);
3309 /* valid if last 2 refs are owned by this call to unref and the toggle_ref */
3310 gboolean has_toggle_ref
= OBJECT_HAS_TOGGLE_REF (object
);
3312 if (!g_atomic_int_compare_and_exchange ((int *)&object
->ref_count
, old_ref
, old_ref
- 1))
3313 goto retry_atomic_decrement2
;
3315 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3317 /* if we went from 2->1 we need to notify toggle refs if any */
3318 if (old_ref
== 2 && has_toggle_ref
) /* The last ref being held in this case is owned by the toggle_ref */
3319 toggle_refs_notify (object
, TRUE
);
3324 /* we are still in the process of taking away the last ref */
3325 g_datalist_id_set_data (&object
->qdata
, quark_closure_array
, NULL
);
3326 g_signal_handlers_destroy (object
);
3327 g_datalist_id_set_data (&object
->qdata
, quark_weak_refs
, NULL
);
3329 /* decrement the last reference */
3330 old_ref
= g_atomic_int_add (&object
->ref_count
, -1);
3332 TRACE (GOBJECT_OBJECT_UNREF(object
,G_TYPE_FROM_INSTANCE(object
),old_ref
));
3334 /* may have been re-referenced meanwhile */
3335 if (G_LIKELY (old_ref
== 1))
3337 TRACE (GOBJECT_OBJECT_FINALIZE(object
,G_TYPE_FROM_INSTANCE(object
)));
3338 G_OBJECT_GET_CLASS (object
)->finalize (object
);
3340 TRACE (GOBJECT_OBJECT_FINALIZE_END(object
,G_TYPE_FROM_INSTANCE(object
)));
3342 GOBJECT_IF_DEBUG (OBJECTS
,
3344 /* catch objects not chaining finalize handlers */
3345 G_LOCK (debug_objects
);
3346 g_assert (!g_hash_table_contains (debug_objects_ht
, object
));
3347 G_UNLOCK (debug_objects
);
3349 g_type_free_instance ((GTypeInstance
*) object
);
3355 * g_clear_object: (skip)
3356 * @object_ptr: a pointer to a #GObject reference
3358 * Clears a reference to a #GObject.
3360 * @object_ptr must not be %NULL.
3362 * If the reference is %NULL then this function does nothing.
3363 * Otherwise, the reference count of the object is decreased and the
3364 * pointer is set to %NULL.
3366 * A macro is also included that allows this function to be used without
3371 #undef g_clear_object
3373 g_clear_object (volatile GObject
**object_ptr
)
3375 g_clear_pointer (object_ptr
, g_object_unref
);
3379 * g_object_get_qdata:
3380 * @object: The GObject to get a stored user data pointer from
3381 * @quark: A #GQuark, naming the user data pointer
3383 * This function gets back user data pointers stored via
3384 * g_object_set_qdata().
3386 * Returns: (transfer none) (nullable): The user data pointer set, or %NULL
3389 g_object_get_qdata (GObject
*object
,
3392 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3394 return quark
? g_datalist_id_get_data (&object
->qdata
, quark
) : NULL
;
3398 * g_object_set_qdata: (skip)
3399 * @object: The GObject to set store a user data pointer
3400 * @quark: A #GQuark, naming the user data pointer
3401 * @data: (nullable): An opaque user data pointer
3403 * This sets an opaque, named pointer on an object.
3404 * The name is specified through a #GQuark (retrived e.g. via
3405 * g_quark_from_static_string()), and the pointer
3406 * can be gotten back from the @object with g_object_get_qdata()
3407 * until the @object is finalized.
3408 * Setting a previously set user data pointer, overrides (frees)
3409 * the old pointer set, using #NULL as pointer essentially
3410 * removes the data stored.
3413 g_object_set_qdata (GObject
*object
,
3417 g_return_if_fail (G_IS_OBJECT (object
));
3418 g_return_if_fail (quark
> 0);
3420 g_datalist_id_set_data (&object
->qdata
, quark
, data
);
3424 * g_object_dup_qdata: (skip)
3425 * @object: the #GObject to store user data on
3426 * @quark: a #GQuark, naming the user data pointer
3427 * @dup_func: (nullable): function to dup the value
3428 * @user_data: (nullable): passed as user_data to @dup_func
3430 * This is a variant of g_object_get_qdata() which returns
3431 * a 'duplicate' of the value. @dup_func defines the
3432 * meaning of 'duplicate' in this context, it could e.g.
3433 * take a reference on a ref-counted object.
3435 * If the @quark is not set on the object then @dup_func
3436 * will be called with a %NULL argument.
3438 * Note that @dup_func is called while user data of @object
3441 * This function can be useful to avoid races when multiple
3442 * threads are using object data on the same key on the same
3445 * Returns: the result of calling @dup_func on the value
3446 * associated with @quark on @object, or %NULL if not set.
3447 * If @dup_func is %NULL, the value is returned
3453 g_object_dup_qdata (GObject
*object
,
3455 GDuplicateFunc dup_func
,
3458 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3459 g_return_val_if_fail (quark
> 0, NULL
);
3461 return g_datalist_id_dup_data (&object
->qdata
, quark
, dup_func
, user_data
);
3465 * g_object_replace_qdata: (skip)
3466 * @object: the #GObject to store user data on
3467 * @quark: a #GQuark, naming the user data pointer
3468 * @oldval: (nullable): the old value to compare against
3469 * @newval: (nullable): the new value
3470 * @destroy: (nullable): a destroy notify for the new value
3471 * @old_destroy: (out) (optional): destroy notify for the existing value
3473 * Compares the user data for the key @quark on @object with
3474 * @oldval, and if they are the same, replaces @oldval with
3477 * This is like a typical atomic compare-and-exchange
3478 * operation, for user data on an object.
3480 * If the previous value was replaced then ownership of the
3481 * old value (@oldval) is passed to the caller, including
3482 * the registered destroy notify for it (passed out in @old_destroy).
3483 * It’s up to the caller to free this as needed, which may
3484 * or may not include using @old_destroy as sometimes replacement
3485 * should not destroy the object in the normal way.
3487 * Returns: %TRUE if the existing value for @quark was replaced
3488 * by @newval, %FALSE otherwise.
3493 g_object_replace_qdata (GObject
*object
,
3497 GDestroyNotify destroy
,
3498 GDestroyNotify
*old_destroy
)
3500 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
3501 g_return_val_if_fail (quark
> 0, FALSE
);
3503 return g_datalist_id_replace_data (&object
->qdata
, quark
,
3504 oldval
, newval
, destroy
,
3509 * g_object_set_qdata_full: (skip)
3510 * @object: The GObject to set store a user data pointer
3511 * @quark: A #GQuark, naming the user data pointer
3512 * @data: (nullable): An opaque user data pointer
3513 * @destroy: (nullable): Function to invoke with @data as argument, when @data
3516 * This function works like g_object_set_qdata(), but in addition,
3517 * a void (*destroy) (gpointer) function may be specified which is
3518 * called with @data as argument when the @object is finalized, or
3519 * the data is being overwritten by a call to g_object_set_qdata()
3520 * with the same @quark.
3523 g_object_set_qdata_full (GObject
*object
,
3526 GDestroyNotify destroy
)
3528 g_return_if_fail (G_IS_OBJECT (object
));
3529 g_return_if_fail (quark
> 0);
3531 g_datalist_id_set_data_full (&object
->qdata
, quark
, data
,
3532 data
? destroy
: (GDestroyNotify
) NULL
);
3536 * g_object_steal_qdata:
3537 * @object: The GObject to get a stored user data pointer from
3538 * @quark: A #GQuark, naming the user data pointer
3540 * This function gets back user data pointers stored via
3541 * g_object_set_qdata() and removes the @data from object
3542 * without invoking its destroy() function (if any was
3544 * Usually, calling this function is only required to update
3545 * user data pointers with a destroy notifier, for example:
3546 * |[<!-- language="C" -->
3548 * object_add_to_user_list (GObject *object,
3549 * const gchar *new_string)
3551 * // the quark, naming the object data
3552 * GQuark quark_string_list = g_quark_from_static_string ("my-string-list");
3553 * // retrive the old string list
3554 * GList *list = g_object_steal_qdata (object, quark_string_list);
3556 * // prepend new string
3557 * list = g_list_prepend (list, g_strdup (new_string));
3558 * // this changed 'list', so we need to set it again
3559 * g_object_set_qdata_full (object, quark_string_list, list, free_string_list);
3562 * free_string_list (gpointer data)
3564 * GList *node, *list = data;
3566 * for (node = list; node; node = node->next)
3567 * g_free (node->data);
3568 * g_list_free (list);
3571 * Using g_object_get_qdata() in the above example, instead of
3572 * g_object_steal_qdata() would have left the destroy function set,
3573 * and thus the partial string list would have been freed upon
3574 * g_object_set_qdata_full().
3576 * Returns: (transfer full) (nullable): The user data pointer set, or %NULL
3579 g_object_steal_qdata (GObject
*object
,
3582 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3583 g_return_val_if_fail (quark
> 0, NULL
);
3585 return g_datalist_id_remove_no_notify (&object
->qdata
, quark
);
3589 * g_object_get_data:
3590 * @object: #GObject containing the associations
3591 * @key: name of the key for that association
3593 * Gets a named field from the objects table of associations (see g_object_set_data()).
3595 * Returns: (transfer none) (nullable): the data if found,
3596 * or %NULL if no such data exists.
3599 g_object_get_data (GObject
*object
,
3602 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3603 g_return_val_if_fail (key
!= NULL
, NULL
);
3605 return g_datalist_get_data (&object
->qdata
, key
);
3609 * g_object_set_data:
3610 * @object: #GObject containing the associations.
3611 * @key: name of the key
3612 * @data: (nullable): data to associate with that key
3614 * Each object carries around a table of associations from
3615 * strings to pointers. This function lets you set an association.
3617 * If the object already had an association with that name,
3618 * the old association will be destroyed.
3621 g_object_set_data (GObject
*object
,
3625 g_return_if_fail (G_IS_OBJECT (object
));
3626 g_return_if_fail (key
!= NULL
);
3628 g_datalist_id_set_data (&object
->qdata
, g_quark_from_string (key
), data
);
3632 * g_object_dup_data: (skip)
3633 * @object: the #GObject to store user data on
3634 * @key: a string, naming the user data pointer
3635 * @dup_func: (nullable): function to dup the value
3636 * @user_data: (nullable): passed as user_data to @dup_func
3638 * This is a variant of g_object_get_data() which returns
3639 * a 'duplicate' of the value. @dup_func defines the
3640 * meaning of 'duplicate' in this context, it could e.g.
3641 * take a reference on a ref-counted object.
3643 * If the @key is not set on the object then @dup_func
3644 * will be called with a %NULL argument.
3646 * Note that @dup_func is called while user data of @object
3649 * This function can be useful to avoid races when multiple
3650 * threads are using object data on the same key on the same
3653 * Returns: the result of calling @dup_func on the value
3654 * associated with @key on @object, or %NULL if not set.
3655 * If @dup_func is %NULL, the value is returned
3661 g_object_dup_data (GObject
*object
,
3663 GDuplicateFunc dup_func
,
3666 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3667 g_return_val_if_fail (key
!= NULL
, NULL
);
3669 return g_datalist_id_dup_data (&object
->qdata
,
3670 g_quark_from_string (key
),
3671 dup_func
, user_data
);
3675 * g_object_replace_data: (skip)
3676 * @object: the #GObject to store user data on
3677 * @key: a string, naming the user data pointer
3678 * @oldval: (nullable): the old value to compare against
3679 * @newval: (nullable): the new value
3680 * @destroy: (nullable): a destroy notify for the new value
3681 * @old_destroy: (out) (optional): destroy notify for the existing value
3683 * Compares the user data for the key @key on @object with
3684 * @oldval, and if they are the same, replaces @oldval with
3687 * This is like a typical atomic compare-and-exchange
3688 * operation, for user data on an object.
3690 * If the previous value was replaced then ownership of the
3691 * old value (@oldval) is passed to the caller, including
3692 * the registered destroy notify for it (passed out in @old_destroy).
3693 * It’s up to the caller to free this as needed, which may
3694 * or may not include using @old_destroy as sometimes replacement
3695 * should not destroy the object in the normal way.
3697 * Returns: %TRUE if the existing value for @key was replaced
3698 * by @newval, %FALSE otherwise.
3703 g_object_replace_data (GObject
*object
,
3707 GDestroyNotify destroy
,
3708 GDestroyNotify
*old_destroy
)
3710 g_return_val_if_fail (G_IS_OBJECT (object
), FALSE
);
3711 g_return_val_if_fail (key
!= NULL
, FALSE
);
3713 return g_datalist_id_replace_data (&object
->qdata
,
3714 g_quark_from_string (key
),
3715 oldval
, newval
, destroy
,
3720 * g_object_set_data_full: (skip)
3721 * @object: #GObject containing the associations
3722 * @key: name of the key
3723 * @data: (nullable): data to associate with that key
3724 * @destroy: (nullable): function to call when the association is destroyed
3726 * Like g_object_set_data() except it adds notification
3727 * for when the association is destroyed, either by setting it
3728 * to a different value or when the object is destroyed.
3730 * Note that the @destroy callback is not called if @data is %NULL.
3733 g_object_set_data_full (GObject
*object
,
3736 GDestroyNotify destroy
)
3738 g_return_if_fail (G_IS_OBJECT (object
));
3739 g_return_if_fail (key
!= NULL
);
3741 g_datalist_id_set_data_full (&object
->qdata
, g_quark_from_string (key
), data
,
3742 data
? destroy
: (GDestroyNotify
) NULL
);
3746 * g_object_steal_data:
3747 * @object: #GObject containing the associations
3748 * @key: name of the key
3750 * Remove a specified datum from the object's data associations,
3751 * without invoking the association's destroy handler.
3753 * Returns: (transfer full) (nullable): the data if found, or %NULL
3754 * if no such data exists.
3757 g_object_steal_data (GObject
*object
,
3762 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
3763 g_return_val_if_fail (key
!= NULL
, NULL
);
3765 quark
= g_quark_try_string (key
);
3767 return quark
? g_datalist_id_remove_no_notify (&object
->qdata
, quark
) : NULL
;
3771 g_value_object_init (GValue
*value
)
3773 value
->data
[0].v_pointer
= NULL
;
3777 g_value_object_free_value (GValue
*value
)
3779 if (value
->data
[0].v_pointer
)
3780 g_object_unref (value
->data
[0].v_pointer
);
3784 g_value_object_copy_value (const GValue
*src_value
,
3787 if (src_value
->data
[0].v_pointer
)
3788 dest_value
->data
[0].v_pointer
= g_object_ref (src_value
->data
[0].v_pointer
);
3790 dest_value
->data
[0].v_pointer
= NULL
;
3794 g_value_object_transform_value (const GValue
*src_value
,
3797 if (src_value
->data
[0].v_pointer
&& g_type_is_a (G_OBJECT_TYPE (src_value
->data
[0].v_pointer
), G_VALUE_TYPE (dest_value
)))
3798 dest_value
->data
[0].v_pointer
= g_object_ref (src_value
->data
[0].v_pointer
);
3800 dest_value
->data
[0].v_pointer
= NULL
;
3804 g_value_object_peek_pointer (const GValue
*value
)
3806 return value
->data
[0].v_pointer
;
3810 g_value_object_collect_value (GValue
*value
,
3811 guint n_collect_values
,
3812 GTypeCValue
*collect_values
,
3813 guint collect_flags
)
3815 if (collect_values
[0].v_pointer
)
3817 GObject
*object
= collect_values
[0].v_pointer
;
3819 if (object
->g_type_instance
.g_class
== NULL
)
3820 return g_strconcat ("invalid unclassed object pointer for value type '",
3821 G_VALUE_TYPE_NAME (value
),
3824 else if (!g_value_type_compatible (G_OBJECT_TYPE (object
), G_VALUE_TYPE (value
)))
3825 return g_strconcat ("invalid object type '",
3826 G_OBJECT_TYPE_NAME (object
),
3827 "' for value type '",
3828 G_VALUE_TYPE_NAME (value
),
3831 /* never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types */
3832 value
->data
[0].v_pointer
= g_object_ref (object
);
3835 value
->data
[0].v_pointer
= NULL
;
3841 g_value_object_lcopy_value (const GValue
*value
,
3842 guint n_collect_values
,
3843 GTypeCValue
*collect_values
,
3844 guint collect_flags
)
3846 GObject
**object_p
= collect_values
[0].v_pointer
;
3849 return g_strdup_printf ("value location for '%s' passed as NULL", G_VALUE_TYPE_NAME (value
));
3851 if (!value
->data
[0].v_pointer
)
3853 else if (collect_flags
& G_VALUE_NOCOPY_CONTENTS
)
3854 *object_p
= value
->data
[0].v_pointer
;
3856 *object_p
= g_object_ref (value
->data
[0].v_pointer
);
3862 * g_value_set_object:
3863 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3864 * @v_object: (type GObject.Object) (nullable): object value to be set
3866 * Set the contents of a %G_TYPE_OBJECT derived #GValue to @v_object.
3868 * g_value_set_object() increases the reference count of @v_object
3869 * (the #GValue holds a reference to @v_object). If you do not wish
3870 * to increase the reference count of the object (i.e. you wish to
3871 * pass your current reference to the #GValue because you no longer
3872 * need it), use g_value_take_object() instead.
3874 * It is important that your #GValue holds a reference to @v_object (either its
3875 * own, or one it has taken) to ensure that the object won't be destroyed while
3876 * the #GValue still exists).
3879 g_value_set_object (GValue
*value
,
3884 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value
));
3886 old
= value
->data
[0].v_pointer
;
3890 g_return_if_fail (G_IS_OBJECT (v_object
));
3891 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object
), G_VALUE_TYPE (value
)));
3893 value
->data
[0].v_pointer
= v_object
;
3894 g_object_ref (value
->data
[0].v_pointer
);
3897 value
->data
[0].v_pointer
= NULL
;
3900 g_object_unref (old
);
3904 * g_value_set_object_take_ownership: (skip)
3905 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3906 * @v_object: (nullable): object value to be set
3908 * This is an internal function introduced mainly for C marshallers.
3910 * Deprecated: 2.4: Use g_value_take_object() instead.
3913 g_value_set_object_take_ownership (GValue
*value
,
3916 g_value_take_object (value
, v_object
);
3920 * g_value_take_object: (skip)
3921 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3922 * @v_object: (nullable): object value to be set
3924 * Sets the contents of a %G_TYPE_OBJECT derived #GValue to @v_object
3925 * and takes over the ownership of the callers reference to @v_object;
3926 * the caller doesn't have to unref it any more (i.e. the reference
3927 * count of the object is not increased).
3929 * If you want the #GValue to hold its own reference to @v_object, use
3930 * g_value_set_object() instead.
3935 g_value_take_object (GValue
*value
,
3938 g_return_if_fail (G_VALUE_HOLDS_OBJECT (value
));
3940 if (value
->data
[0].v_pointer
)
3942 g_object_unref (value
->data
[0].v_pointer
);
3943 value
->data
[0].v_pointer
= NULL
;
3948 g_return_if_fail (G_IS_OBJECT (v_object
));
3949 g_return_if_fail (g_value_type_compatible (G_OBJECT_TYPE (v_object
), G_VALUE_TYPE (value
)));
3951 value
->data
[0].v_pointer
= v_object
; /* we take over the reference count */
3956 * g_value_get_object:
3957 * @value: a valid #GValue of %G_TYPE_OBJECT derived type
3959 * Get the contents of a %G_TYPE_OBJECT derived #GValue.
3961 * Returns: (type GObject.Object) (transfer none): object contents of @value
3964 g_value_get_object (const GValue
*value
)
3966 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value
), NULL
);
3968 return value
->data
[0].v_pointer
;
3972 * g_value_dup_object:
3973 * @value: a valid #GValue whose type is derived from %G_TYPE_OBJECT
3975 * Get the contents of a %G_TYPE_OBJECT derived #GValue, increasing
3976 * its reference count. If the contents of the #GValue are %NULL, then
3977 * %NULL will be returned.
3979 * Returns: (type GObject.Object) (transfer full): object content of @value,
3980 * should be unreferenced when no longer needed.
3983 g_value_dup_object (const GValue
*value
)
3985 g_return_val_if_fail (G_VALUE_HOLDS_OBJECT (value
), NULL
);
3987 return value
->data
[0].v_pointer
? g_object_ref (value
->data
[0].v_pointer
) : NULL
;
3991 * g_signal_connect_object: (skip)
3992 * @instance: (type GObject.TypeInstance): the instance to connect to.
3993 * @detailed_signal: a string of the form "signal-name::detail".
3994 * @c_handler: the #GCallback to connect.
3995 * @gobject: (type GObject.Object) (nullable): the object to pass as data
3997 * @connect_flags: a combination of #GConnectFlags.
3999 * This is similar to g_signal_connect_data(), but uses a closure which
4000 * ensures that the @gobject stays alive during the call to @c_handler
4001 * by temporarily adding a reference count to @gobject.
4003 * When the @gobject is destroyed the signal handler will be automatically
4004 * disconnected. Note that this is not currently threadsafe (ie:
4005 * emitting a signal while @gobject is being destroyed in another thread
4008 * Returns: the handler id.
4011 g_signal_connect_object (gpointer instance
,
4012 const gchar
*detailed_signal
,
4013 GCallback c_handler
,
4015 GConnectFlags connect_flags
)
4017 g_return_val_if_fail (G_TYPE_CHECK_INSTANCE (instance
), 0);
4018 g_return_val_if_fail (detailed_signal
!= NULL
, 0);
4019 g_return_val_if_fail (c_handler
!= NULL
, 0);
4025 g_return_val_if_fail (G_IS_OBJECT (gobject
), 0);
4027 closure
= ((connect_flags
& G_CONNECT_SWAPPED
) ? g_cclosure_new_object_swap
: g_cclosure_new_object
) (c_handler
, gobject
);
4029 return g_signal_connect_closure (instance
, detailed_signal
, closure
, connect_flags
& G_CONNECT_AFTER
);
4032 return g_signal_connect_data (instance
, detailed_signal
, c_handler
, NULL
, NULL
, connect_flags
);
4038 GClosure
*closures
[1]; /* flexible array */
4040 /* don't change this structure without supplying an accessor for
4041 * watched closures, e.g.:
4042 * GSList* g_object_list_watched_closures (GObject *object)
4045 * g_return_val_if_fail (G_IS_OBJECT (object), NULL);
4046 * carray = g_object_get_data (object, "GObject-closure-array");
4049 * GSList *slist = NULL;
4051 * for (i = 0; i < carray->n_closures; i++)
4052 * slist = g_slist_prepend (slist, carray->closures[i]);
4060 object_remove_closure (gpointer data
,
4063 GObject
*object
= data
;
4067 G_LOCK (closure_array_mutex
);
4068 carray
= g_object_get_qdata (object
, quark_closure_array
);
4069 for (i
= 0; i
< carray
->n_closures
; i
++)
4070 if (carray
->closures
[i
] == closure
)
4072 carray
->n_closures
--;
4073 if (i
< carray
->n_closures
)
4074 carray
->closures
[i
] = carray
->closures
[carray
->n_closures
];
4075 G_UNLOCK (closure_array_mutex
);
4078 G_UNLOCK (closure_array_mutex
);
4079 g_assert_not_reached ();
4083 destroy_closure_array (gpointer data
)
4085 CArray
*carray
= data
;
4086 GObject
*object
= carray
->object
;
4087 guint i
, n
= carray
->n_closures
;
4089 for (i
= 0; i
< n
; i
++)
4091 GClosure
*closure
= carray
->closures
[i
];
4093 /* removing object_remove_closure() upfront is probably faster than
4094 * letting it fiddle with quark_closure_array which is empty anyways
4096 g_closure_remove_invalidate_notifier (closure
, object
, object_remove_closure
);
4097 g_closure_invalidate (closure
);
4103 * g_object_watch_closure:
4104 * @object: GObject restricting lifetime of @closure
4105 * @closure: GClosure to watch
4107 * This function essentially limits the life time of the @closure to
4108 * the life time of the object. That is, when the object is finalized,
4109 * the @closure is invalidated by calling g_closure_invalidate() on
4110 * it, in order to prevent invocations of the closure with a finalized
4111 * (nonexisting) object. Also, g_object_ref() and g_object_unref() are
4112 * added as marshal guards to the @closure, to ensure that an extra
4113 * reference count is held on @object during invocation of the
4114 * @closure. Usually, this function will be called on closures that
4115 * use this @object as closure data.
4118 g_object_watch_closure (GObject
*object
,
4124 g_return_if_fail (G_IS_OBJECT (object
));
4125 g_return_if_fail (closure
!= NULL
);
4126 g_return_if_fail (closure
->is_invalid
== FALSE
);
4127 g_return_if_fail (closure
->in_marshal
== FALSE
);
4128 g_return_if_fail (object
->ref_count
> 0); /* this doesn't work on finalizing objects */
4130 g_closure_add_invalidate_notifier (closure
, object
, object_remove_closure
);
4131 g_closure_add_marshal_guards (closure
,
4132 object
, (GClosureNotify
) g_object_ref
,
4133 object
, (GClosureNotify
) g_object_unref
);
4134 G_LOCK (closure_array_mutex
);
4135 carray
= g_datalist_id_remove_no_notify (&object
->qdata
, quark_closure_array
);
4138 carray
= g_renew (CArray
, NULL
, 1);
4139 carray
->object
= object
;
4140 carray
->n_closures
= 1;
4145 i
= carray
->n_closures
++;
4146 carray
= g_realloc (carray
, sizeof (*carray
) + sizeof (carray
->closures
[0]) * i
);
4148 carray
->closures
[i
] = closure
;
4149 g_datalist_id_set_data_full (&object
->qdata
, quark_closure_array
, carray
, destroy_closure_array
);
4150 G_UNLOCK (closure_array_mutex
);
4154 * g_closure_new_object:
4155 * @sizeof_closure: the size of the structure to allocate, must be at least
4156 * `sizeof (GClosure)`
4157 * @object: a #GObject pointer to store in the @data field of the newly
4158 * allocated #GClosure
4160 * A variant of g_closure_new_simple() which stores @object in the
4161 * @data field of the closure and calls g_object_watch_closure() on
4162 * @object and the created closure. This function is mainly useful
4163 * when implementing new types of closures.
4165 * Returns: (transfer full): a newly allocated #GClosure
4168 g_closure_new_object (guint sizeof_closure
,
4173 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4174 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4176 closure
= g_closure_new_simple (sizeof_closure
, object
);
4177 g_object_watch_closure (object
, closure
);
4183 * g_cclosure_new_object: (skip)
4184 * @callback_func: the function to invoke
4185 * @object: a #GObject pointer to pass to @callback_func
4187 * A variant of g_cclosure_new() which uses @object as @user_data and
4188 * calls g_object_watch_closure() on @object and the created
4189 * closure. This function is useful when you have a callback closely
4190 * associated with a #GObject, and want the callback to no longer run
4191 * after the object is is freed.
4193 * Returns: a new #GCClosure
4196 g_cclosure_new_object (GCallback callback_func
,
4201 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4202 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4203 g_return_val_if_fail (callback_func
!= NULL
, NULL
);
4205 closure
= g_cclosure_new (callback_func
, object
, NULL
);
4206 g_object_watch_closure (object
, closure
);
4212 * g_cclosure_new_object_swap: (skip)
4213 * @callback_func: the function to invoke
4214 * @object: a #GObject pointer to pass to @callback_func
4216 * A variant of g_cclosure_new_swap() which uses @object as @user_data
4217 * and calls g_object_watch_closure() on @object and the created
4218 * closure. This function is useful when you have a callback closely
4219 * associated with a #GObject, and want the callback to no longer run
4220 * after the object is is freed.
4222 * Returns: a new #GCClosure
4225 g_cclosure_new_object_swap (GCallback callback_func
,
4230 g_return_val_if_fail (G_IS_OBJECT (object
), NULL
);
4231 g_return_val_if_fail (object
->ref_count
> 0, NULL
); /* this doesn't work on finalizing objects */
4232 g_return_val_if_fail (callback_func
!= NULL
, NULL
);
4234 closure
= g_cclosure_new_swap (callback_func
, object
, NULL
);
4235 g_object_watch_closure (object
, closure
);
4241 g_object_compat_control (gsize what
,
4247 case 1: /* floating base type */
4248 return G_TYPE_INITIALLY_UNOWNED
;
4249 case 2: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4250 floating_flag_handler
= (guint(*)(GObject
*,gint
)) data
;
4252 case 3: /* FIXME: remove this once GLib/Gtk+ break ABI again */
4254 *pp
= floating_flag_handler
;
4261 G_DEFINE_TYPE (GInitiallyUnowned
, g_initially_unowned
, G_TYPE_OBJECT
)
4264 g_initially_unowned_init (GInitiallyUnowned
*object
)
4266 g_object_force_floating (object
);
4270 g_initially_unowned_class_init (GInitiallyUnownedClass
*klass
)
4277 * A structure containing a weak reference to a #GObject. It can either
4278 * be empty (i.e. point to %NULL), or point to an object for as long as
4279 * at least one "strong" reference to that object exists. Before the
4280 * object's #GObjectClass.dispose method is called, every #GWeakRef
4281 * associated with becomes empty (i.e. points to %NULL).
4283 * Like #GValue, #GWeakRef can be statically allocated, stack- or
4284 * heap-allocated, or embedded in larger structures.
4286 * Unlike g_object_weak_ref() and g_object_add_weak_pointer(), this weak
4287 * reference is thread-safe: converting a weak pointer to a reference is
4288 * atomic with respect to invalidation of weak pointers to destroyed
4291 * If the object's #GObjectClass.dispose method results in additional
4292 * references to the object being held, any #GWeakRefs taken
4293 * before it was disposed will continue to point to %NULL. If
4294 * #GWeakRefs are taken after the object is disposed and
4295 * re-referenced, they will continue to point to it until its refcount
4296 * goes back to zero, at which point they too will be invalidated.
4300 * g_weak_ref_init: (skip)
4301 * @weak_ref: (inout): uninitialized or empty location for a weak
4303 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4305 * Initialise a non-statically-allocated #GWeakRef.
4307 * This function also calls g_weak_ref_set() with @object on the
4308 * freshly-initialised weak reference.
4310 * This function should always be matched with a call to
4311 * g_weak_ref_clear(). It is not necessary to use this function for a
4312 * #GWeakRef in static storage because it will already be
4313 * properly initialised. Just use g_weak_ref_set() directly.
4318 g_weak_ref_init (GWeakRef
*weak_ref
,
4321 weak_ref
->priv
.p
= NULL
;
4323 g_weak_ref_set (weak_ref
, object
);
4327 * g_weak_ref_clear: (skip)
4328 * @weak_ref: (inout): location of a weak reference, which
4331 * Frees resources associated with a non-statically-allocated #GWeakRef.
4332 * After this call, the #GWeakRef is left in an undefined state.
4334 * You should only call this on a #GWeakRef that previously had
4335 * g_weak_ref_init() called on it.
4340 g_weak_ref_clear (GWeakRef
*weak_ref
)
4342 g_weak_ref_set (weak_ref
, NULL
);
4345 weak_ref
->priv
.p
= (void *) 0xccccccccu
;
4349 * g_weak_ref_get: (skip)
4350 * @weak_ref: (inout): location of a weak reference to a #GObject
4352 * If @weak_ref is not empty, atomically acquire a strong
4353 * reference to the object it points to, and return that reference.
4355 * This function is needed because of the potential race between taking
4356 * the pointer value and g_object_ref() on it, if the object was losing
4357 * its last reference at the same time in a different thread.
4359 * The caller should release the resulting reference in the usual way,
4360 * by using g_object_unref().
4362 * Returns: (transfer full) (type GObject.Object): the object pointed to
4363 * by @weak_ref, or %NULL if it was empty
4368 g_weak_ref_get (GWeakRef
*weak_ref
)
4370 gpointer object_or_null
;
4372 g_return_val_if_fail (weak_ref
!= NULL
, NULL
);
4374 g_rw_lock_reader_lock (&weak_locations_lock
);
4376 object_or_null
= weak_ref
->priv
.p
;
4378 if (object_or_null
!= NULL
)
4379 g_object_ref (object_or_null
);
4381 g_rw_lock_reader_unlock (&weak_locations_lock
);
4383 return object_or_null
;
4387 * g_weak_ref_set: (skip)
4388 * @weak_ref: location for a weak reference
4389 * @object: (type GObject.Object) (nullable): a #GObject or %NULL
4391 * Change the object to which @weak_ref points, or set it to
4394 * You must own a strong reference on @object while calling this
4400 g_weak_ref_set (GWeakRef
*weak_ref
,
4403 GSList
**weak_locations
;
4404 GObject
*new_object
;
4405 GObject
*old_object
;
4407 g_return_if_fail (weak_ref
!= NULL
);
4408 g_return_if_fail (object
== NULL
|| G_IS_OBJECT (object
));
4410 new_object
= object
;
4412 g_rw_lock_writer_lock (&weak_locations_lock
);
4414 /* We use the extra level of indirection here so that if we have ever
4415 * had a weak pointer installed at any point in time on this object,
4416 * we can see that there is a non-NULL value associated with the
4417 * weak-pointer quark and know that this value will not change at any
4418 * point in the object's lifetime.
4420 * Both properties are important for reducing the amount of times we
4421 * need to acquire locks and for decreasing the duration of time the
4422 * lock is held while avoiding some rather tricky races.
4424 * Specifically: we can avoid having to do an extra unconditional lock
4425 * in g_object_unref() without worrying about some extremely tricky
4429 old_object
= weak_ref
->priv
.p
;
4430 if (new_object
!= old_object
)
4432 weak_ref
->priv
.p
= new_object
;
4434 /* Remove the weak ref from the old object */
4435 if (old_object
!= NULL
)
4437 weak_locations
= g_datalist_id_get_data (&old_object
->qdata
, quark_weak_locations
);
4438 /* for it to point to an object, the object must have had it added once */
4439 g_assert (weak_locations
!= NULL
);
4441 *weak_locations
= g_slist_remove (*weak_locations
, weak_ref
);
4444 /* Add the weak ref to the new object */
4445 if (new_object
!= NULL
)
4447 weak_locations
= g_datalist_id_get_data (&new_object
->qdata
, quark_weak_locations
);
4449 if (weak_locations
== NULL
)
4451 weak_locations
= g_new0 (GSList
*, 1);
4452 g_datalist_id_set_data_full (&new_object
->qdata
, quark_weak_locations
, weak_locations
, g_free
);
4455 *weak_locations
= g_slist_prepend (*weak_locations
, weak_ref
);
4459 g_rw_lock_writer_unlock (&weak_locations_lock
);