Add support for g_auto[s]list(Type)
[glib.git] / glib / gdate.c
blob58cb75cb4f713d53b4505c738f2c2172f4c2da2f
1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2.1 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
20 * file for a list of people on the GLib Team. See the ChangeLog
21 * files for a list of changes. These files are distributed with
22 * GLib at ftp://ftp.gtk.org/pub/gtk/.
25 /*
26 * MT safe
29 #include "config.h"
30 #include "glibconfig.h"
32 #define DEBUG_MSG(x) /* */
33 #ifdef G_ENABLE_DEBUG
34 /* #define DEBUG_MSG(args) g_message args ; */
35 #endif
37 #include <time.h>
38 #include <string.h>
39 #include <stdlib.h>
40 #include <locale.h>
42 #ifdef G_OS_WIN32
43 #include <windows.h>
44 #endif
46 #include "gdate.h"
48 #include "gconvert.h"
49 #include "gmem.h"
50 #include "gstrfuncs.h"
51 #include "gtestutils.h"
52 #include "gthread.h"
53 #include "gunicode.h"
55 #ifdef G_OS_WIN32
56 #include "garray.h"
57 #endif
59 /**
60 * SECTION:date
61 * @title: Date and Time Functions
62 * @short_description: calendrical calculations and miscellaneous time stuff
64 * The #GDate data structure represents a day between January 1, Year 1,
65 * and sometime a few thousand years in the future (right now it will go
66 * to the year 65535 or so, but g_date_set_parse() only parses up to the
67 * year 8000 or so - just count on "a few thousand"). #GDate is meant to
68 * represent everyday dates, not astronomical dates or historical dates
69 * or ISO timestamps or the like. It extrapolates the current Gregorian
70 * calendar forward and backward in time; there is no attempt to change
71 * the calendar to match time periods or locations. #GDate does not store
72 * time information; it represents a day.
74 * The #GDate implementation has several nice features; it is only a
75 * 64-bit struct, so storing large numbers of dates is very efficient. It
76 * can keep both a Julian and day-month-year representation of the date,
77 * since some calculations are much easier with one representation or the
78 * other. A Julian representation is simply a count of days since some
79 * fixed day in the past; for #GDate the fixed day is January 1, 1 AD.
80 * ("Julian" dates in the #GDate API aren't really Julian dates in the
81 * technical sense; technically, Julian dates count from the start of the
82 * Julian period, Jan 1, 4713 BC).
84 * #GDate is simple to use. First you need a "blank" date; you can get a
85 * dynamically allocated date from g_date_new(), or you can declare an
86 * automatic variable or array and initialize it to a sane state by
87 * calling g_date_clear(). A cleared date is sane; it's safe to call
88 * g_date_set_dmy() and the other mutator functions to initialize the
89 * value of a cleared date. However, a cleared date is initially
90 * invalid, meaning that it doesn't represent a day that exists.
91 * It is undefined to call any of the date calculation routines on an
92 * invalid date. If you obtain a date from a user or other
93 * unpredictable source, you should check its validity with the
94 * g_date_valid() predicate. g_date_valid() is also used to check for
95 * errors with g_date_set_parse() and other functions that can
96 * fail. Dates can be invalidated by calling g_date_clear() again.
98 * It is very important to use the API to access the #GDate
99 * struct. Often only the day-month-year or only the Julian
100 * representation is valid. Sometimes neither is valid. Use the API.
102 * GLib also features #GDateTime which represents a precise time.
106 * G_USEC_PER_SEC:
108 * Number of microseconds in one second (1 million).
109 * This macro is provided for code readability.
113 * GTimeVal:
114 * @tv_sec: seconds
115 * @tv_usec: microseconds
117 * Represents a precise time, with seconds and microseconds.
118 * Similar to the struct timeval returned by the gettimeofday()
119 * UNIX system call.
121 * GLib is attempting to unify around the use of 64bit integers to
122 * represent microsecond-precision time. As such, this type will be
123 * removed from a future version of GLib.
127 * GDate:
128 * @julian_days: the Julian representation of the date
129 * @julian: this bit is set if @julian_days is valid
130 * @dmy: this is set if @day, @month and @year are valid
131 * @day: the day of the day-month-year representation of the date,
132 * as a number between 1 and 31
133 * @month: the day of the day-month-year representation of the date,
134 * as a number between 1 and 12
135 * @year: the day of the day-month-year representation of the date
137 * Represents a day between January 1, Year 1 and a few thousand years in
138 * the future. None of its members should be accessed directly.
140 * If the #GDate-struct is obtained from g_date_new(), it will be safe
141 * to mutate but invalid and thus not safe for calendrical computations.
143 * If it's declared on the stack, it will contain garbage so must be
144 * initialized with g_date_clear(). g_date_clear() makes the date invalid
145 * but sane. An invalid date doesn't represent a day, it's "empty." A date
146 * becomes valid after you set it to a Julian day or you set a day, month,
147 * and year.
151 * GTime:
153 * Simply a replacement for time_t. It has been deprecated
154 * since it is not equivalent to time_t on 64-bit platforms
155 * with a 64-bit time_t. Unrelated to #GTimer.
157 * Note that #GTime is defined to always be a 32-bit integer,
158 * unlike time_t which may be 64-bit on some systems. Therefore,
159 * #GTime will overflow in the year 2038, and you cannot use the
160 * address of a #GTime variable as argument to the UNIX time()
161 * function.
163 * Instead, do the following:
164 * |[<!-- language="C" -->
165 * time_t ttime;
166 * GTime gtime;
168 * time (&ttime);
169 * gtime = (GTime)ttime;
170 * ]|
174 * GDateDMY:
175 * @G_DATE_DAY: a day
176 * @G_DATE_MONTH: a month
177 * @G_DATE_YEAR: a year
179 * This enumeration isn't used in the API, but may be useful if you need
180 * to mark a number as a day, month, or year.
184 * GDateDay:
186 * Integer representing a day of the month; between 1 and 31.
187 * #G_DATE_BAD_DAY represents an invalid day of the month.
191 * GDateMonth:
192 * @G_DATE_BAD_MONTH: invalid value
193 * @G_DATE_JANUARY: January
194 * @G_DATE_FEBRUARY: February
195 * @G_DATE_MARCH: March
196 * @G_DATE_APRIL: April
197 * @G_DATE_MAY: May
198 * @G_DATE_JUNE: June
199 * @G_DATE_JULY: July
200 * @G_DATE_AUGUST: August
201 * @G_DATE_SEPTEMBER: September
202 * @G_DATE_OCTOBER: October
203 * @G_DATE_NOVEMBER: November
204 * @G_DATE_DECEMBER: December
206 * Enumeration representing a month; values are #G_DATE_JANUARY,
207 * #G_DATE_FEBRUARY, etc. #G_DATE_BAD_MONTH is the invalid value.
211 * GDateYear:
213 * Integer representing a year; #G_DATE_BAD_YEAR is the invalid
214 * value. The year must be 1 or higher; negative (BC) years are not
215 * allowed. The year is represented with four digits.
219 * GDateWeekday:
220 * @G_DATE_BAD_WEEKDAY: invalid value
221 * @G_DATE_MONDAY: Monday
222 * @G_DATE_TUESDAY: Tuesday
223 * @G_DATE_WEDNESDAY: Wednesday
224 * @G_DATE_THURSDAY: Thursday
225 * @G_DATE_FRIDAY: Friday
226 * @G_DATE_SATURDAY: Saturday
227 * @G_DATE_SUNDAY: Sunday
229 * Enumeration representing a day of the week; #G_DATE_MONDAY,
230 * #G_DATE_TUESDAY, etc. #G_DATE_BAD_WEEKDAY is an invalid weekday.
234 * G_DATE_BAD_DAY:
236 * Represents an invalid #GDateDay.
240 * G_DATE_BAD_JULIAN:
242 * Represents an invalid Julian day number.
246 * G_DATE_BAD_YEAR:
248 * Represents an invalid year.
252 * g_date_new:
254 * Allocates a #GDate and initializes
255 * it to a sane state. The new date will
256 * be cleared (as if you'd called g_date_clear()) but invalid (it won't
257 * represent an existing day). Free the return value with g_date_free().
259 * Returns: a newly-allocated #GDate
261 GDate*
262 g_date_new (void)
264 GDate *d = g_new0 (GDate, 1); /* happily, 0 is the invalid flag for everything. */
266 return d;
270 * g_date_new_dmy:
271 * @day: day of the month
272 * @month: month of the year
273 * @year: year
275 * Like g_date_new(), but also sets the value of the date. Assuming the
276 * day-month-year triplet you pass in represents an existing day, the
277 * returned date will be valid.
279 * Returns: a newly-allocated #GDate initialized with @day, @month, and @year
281 GDate*
282 g_date_new_dmy (GDateDay day,
283 GDateMonth m,
284 GDateYear y)
286 GDate *d;
287 g_return_val_if_fail (g_date_valid_dmy (day, m, y), NULL);
289 d = g_new (GDate, 1);
291 d->julian = FALSE;
292 d->dmy = TRUE;
294 d->month = m;
295 d->day = day;
296 d->year = y;
298 g_assert (g_date_valid (d));
300 return d;
304 * g_date_new_julian:
305 * @julian_day: days since January 1, Year 1
307 * Like g_date_new(), but also sets the value of the date. Assuming the
308 * Julian day number you pass in is valid (greater than 0, less than an
309 * unreasonably large number), the returned date will be valid.
311 * Returns: a newly-allocated #GDate initialized with @julian_day
313 GDate*
314 g_date_new_julian (guint32 julian_day)
316 GDate *d;
317 g_return_val_if_fail (g_date_valid_julian (julian_day), NULL);
319 d = g_new (GDate, 1);
321 d->julian = TRUE;
322 d->dmy = FALSE;
324 d->julian_days = julian_day;
326 g_assert (g_date_valid (d));
328 return d;
332 * g_date_free:
333 * @date: a #GDate to free
335 * Frees a #GDate returned from g_date_new().
337 void
338 g_date_free (GDate *date)
340 g_return_if_fail (date != NULL);
342 g_free (date);
346 * g_date_copy:
347 * @date: a #GDate to copy
349 * Copies a GDate to a newly-allocated GDate. If the input was invalid
350 * (as determined by g_date_valid()), the invalid state will be copied
351 * as is into the new object.
353 * Returns: (transfer full): a newly-allocated #GDate initialized from @date
355 * Since: 2.56
357 GDate *
358 g_date_copy (const GDate *date)
360 GDate *res;
361 g_return_val_if_fail (date != NULL, NULL);
363 if (g_date_valid (date))
364 res = g_date_new_julian (g_date_get_julian (date));
365 else
367 res = g_date_new ();
368 *res = *date;
371 return res;
375 * g_date_valid:
376 * @date: a #GDate to check
378 * Returns %TRUE if the #GDate represents an existing day. The date must not
379 * contain garbage; it should have been initialized with g_date_clear()
380 * if it wasn't allocated by one of the g_date_new() variants.
382 * Returns: Whether the date is valid
384 gboolean
385 g_date_valid (const GDate *d)
387 g_return_val_if_fail (d != NULL, FALSE);
389 return (d->julian || d->dmy);
392 static const guint8 days_in_months[2][13] =
393 { /* error, jan feb mar apr may jun jul aug sep oct nov dec */
394 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
395 { 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } /* leap year */
398 static const guint16 days_in_year[2][14] =
399 { /* 0, jan feb mar apr may jun jul aug sep oct nov dec */
400 { 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
401 { 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
405 * g_date_valid_month:
406 * @month: month
408 * Returns %TRUE if the month value is valid. The 12 #GDateMonth
409 * enumeration values are the only valid months.
411 * Returns: %TRUE if the month is valid
413 gboolean
414 g_date_valid_month (GDateMonth m)
416 return ( (m > G_DATE_BAD_MONTH) && (m < 13) );
420 * g_date_valid_year:
421 * @year: year
423 * Returns %TRUE if the year is valid. Any year greater than 0 is valid,
424 * though there is a 16-bit limit to what #GDate will understand.
426 * Returns: %TRUE if the year is valid
428 gboolean
429 g_date_valid_year (GDateYear y)
431 return ( y > G_DATE_BAD_YEAR );
435 * g_date_valid_day:
436 * @day: day to check
438 * Returns %TRUE if the day of the month is valid (a day is valid if it's
439 * between 1 and 31 inclusive).
441 * Returns: %TRUE if the day is valid
444 gboolean
445 g_date_valid_day (GDateDay d)
447 return ( (d > G_DATE_BAD_DAY) && (d < 32) );
451 * g_date_valid_weekday:
452 * @weekday: weekday
454 * Returns %TRUE if the weekday is valid. The seven #GDateWeekday enumeration
455 * values are the only valid weekdays.
457 * Returns: %TRUE if the weekday is valid
459 gboolean
460 g_date_valid_weekday (GDateWeekday w)
462 return ( (w > G_DATE_BAD_WEEKDAY) && (w < 8) );
466 * g_date_valid_julian:
467 * @julian_date: Julian day to check
469 * Returns %TRUE if the Julian day is valid. Anything greater than zero
470 * is basically a valid Julian, though there is a 32-bit limit.
472 * Returns: %TRUE if the Julian day is valid
474 gboolean
475 g_date_valid_julian (guint32 j)
477 return (j > G_DATE_BAD_JULIAN);
481 * g_date_valid_dmy:
482 * @day: day
483 * @month: month
484 * @year: year
486 * Returns %TRUE if the day-month-year triplet forms a valid, existing day
487 * in the range of days #GDate understands (Year 1 or later, no more than
488 * a few thousand years in the future).
490 * Returns: %TRUE if the date is a valid one
492 gboolean
493 g_date_valid_dmy (GDateDay d,
494 GDateMonth m,
495 GDateYear y)
497 return ( (m > G_DATE_BAD_MONTH) &&
498 (m < 13) &&
499 (d > G_DATE_BAD_DAY) &&
500 (y > G_DATE_BAD_YEAR) && /* must check before using g_date_is_leap_year */
501 (d <= (g_date_is_leap_year (y) ?
502 days_in_months[1][m] : days_in_months[0][m])) );
506 /* "Julian days" just means an absolute number of days, where Day 1 ==
507 * Jan 1, Year 1
509 static void
510 g_date_update_julian (const GDate *const_d)
512 GDate *d = (GDate *) const_d;
513 GDateYear year;
514 gint idx;
516 g_return_if_fail (d != NULL);
517 g_return_if_fail (d->dmy);
518 g_return_if_fail (!d->julian);
519 g_return_if_fail (g_date_valid_dmy (d->day, d->month, d->year));
521 /* What we actually do is: multiply years * 365 days in the year,
522 * add the number of years divided by 4, subtract the number of
523 * years divided by 100 and add the number of years divided by 400,
524 * which accounts for leap year stuff. Code from Steffen Beyer's
525 * DateCalc.
528 year = d->year - 1; /* we know d->year > 0 since it's valid */
530 d->julian_days = year * 365U;
531 d->julian_days += (year >>= 2); /* divide by 4 and add */
532 d->julian_days -= (year /= 25); /* divides original # years by 100 */
533 d->julian_days += year >> 2; /* divides by 4, which divides original by 400 */
535 idx = g_date_is_leap_year (d->year) ? 1 : 0;
537 d->julian_days += days_in_year[idx][d->month] + d->day;
539 g_return_if_fail (g_date_valid_julian (d->julian_days));
541 d->julian = TRUE;
544 static void
545 g_date_update_dmy (const GDate *const_d)
547 GDate *d = (GDate *) const_d;
548 GDateYear y;
549 GDateMonth m;
550 GDateDay day;
552 guint32 A, B, C, D, E, M;
554 g_return_if_fail (d != NULL);
555 g_return_if_fail (d->julian);
556 g_return_if_fail (!d->dmy);
557 g_return_if_fail (g_date_valid_julian (d->julian_days));
559 /* Formula taken from the Calendar FAQ; the formula was for the
560 * Julian Period which starts on 1 January 4713 BC, so we add
561 * 1,721,425 to the number of days before doing the formula.
563 * I'm sure this can be simplified for our 1 January 1 AD period
564 * start, but I can't figure out how to unpack the formula.
567 A = d->julian_days + 1721425 + 32045;
568 B = ( 4 *(A + 36524) )/ 146097 - 1;
569 C = A - (146097 * B)/4;
570 D = ( 4 * (C + 365) ) / 1461 - 1;
571 E = C - ((1461*D) / 4);
572 M = (5 * (E - 1) + 2)/153;
574 m = M + 3 - (12*(M/10));
575 day = E - (153*M + 2)/5;
576 y = 100 * B + D - 4800 + (M/10);
578 #ifdef G_ENABLE_DEBUG
579 if (!g_date_valid_dmy (day, m, y))
580 g_warning ("\nOOPS julian: %u computed dmy: %u %u %u\n",
581 d->julian_days, day, m, y);
582 #endif
584 d->month = m;
585 d->day = day;
586 d->year = y;
588 d->dmy = TRUE;
592 * g_date_get_weekday:
593 * @date: a #GDate
595 * Returns the day of the week for a #GDate. The date must be valid.
597 * Returns: day of the week as a #GDateWeekday.
599 GDateWeekday
600 g_date_get_weekday (const GDate *d)
602 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_WEEKDAY);
604 if (!d->julian)
605 g_date_update_julian (d);
607 g_return_val_if_fail (d->julian, G_DATE_BAD_WEEKDAY);
609 return ((d->julian_days - 1) % 7) + 1;
613 * g_date_get_month:
614 * @date: a #GDate to get the month from
616 * Returns the month of the year. The date must be valid.
618 * Returns: month of the year as a #GDateMonth
620 GDateMonth
621 g_date_get_month (const GDate *d)
623 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_MONTH);
625 if (!d->dmy)
626 g_date_update_dmy (d);
628 g_return_val_if_fail (d->dmy, G_DATE_BAD_MONTH);
630 return d->month;
634 * g_date_get_year:
635 * @date: a #GDate
637 * Returns the year of a #GDate. The date must be valid.
639 * Returns: year in which the date falls
641 GDateYear
642 g_date_get_year (const GDate *d)
644 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_YEAR);
646 if (!d->dmy)
647 g_date_update_dmy (d);
649 g_return_val_if_fail (d->dmy, G_DATE_BAD_YEAR);
651 return d->year;
655 * g_date_get_day:
656 * @date: a #GDate to extract the day of the month from
658 * Returns the day of the month. The date must be valid.
660 * Returns: day of the month
662 GDateDay
663 g_date_get_day (const GDate *d)
665 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_DAY);
667 if (!d->dmy)
668 g_date_update_dmy (d);
670 g_return_val_if_fail (d->dmy, G_DATE_BAD_DAY);
672 return d->day;
676 * g_date_get_julian:
677 * @date: a #GDate to extract the Julian day from
679 * Returns the Julian day or "serial number" of the #GDate. The
680 * Julian day is simply the number of days since January 1, Year 1; i.e.,
681 * January 1, Year 1 is Julian day 1; January 2, Year 1 is Julian day 2,
682 * etc. The date must be valid.
684 * Returns: Julian day
686 guint32
687 g_date_get_julian (const GDate *d)
689 g_return_val_if_fail (g_date_valid (d), G_DATE_BAD_JULIAN);
691 if (!d->julian)
692 g_date_update_julian (d);
694 g_return_val_if_fail (d->julian, G_DATE_BAD_JULIAN);
696 return d->julian_days;
700 * g_date_get_day_of_year:
701 * @date: a #GDate to extract day of year from
703 * Returns the day of the year, where Jan 1 is the first day of the
704 * year. The date must be valid.
706 * Returns: day of the year
708 guint
709 g_date_get_day_of_year (const GDate *d)
711 gint idx;
713 g_return_val_if_fail (g_date_valid (d), 0);
715 if (!d->dmy)
716 g_date_update_dmy (d);
718 g_return_val_if_fail (d->dmy, 0);
720 idx = g_date_is_leap_year (d->year) ? 1 : 0;
722 return (days_in_year[idx][d->month] + d->day);
726 * g_date_get_monday_week_of_year:
727 * @date: a #GDate
729 * Returns the week of the year, where weeks are understood to start on
730 * Monday. If the date is before the first Monday of the year, return 0.
731 * The date must be valid.
733 * Returns: week of the year
735 guint
736 g_date_get_monday_week_of_year (const GDate *d)
738 GDateWeekday wd;
739 guint day;
740 GDate first;
742 g_return_val_if_fail (g_date_valid (d), 0);
744 if (!d->dmy)
745 g_date_update_dmy (d);
747 g_return_val_if_fail (d->dmy, 0);
749 g_date_clear (&first, 1);
751 g_date_set_dmy (&first, 1, 1, d->year);
753 wd = g_date_get_weekday (&first) - 1; /* make Monday day 0 */
754 day = g_date_get_day_of_year (d) - 1;
756 return ((day + wd)/7U + (wd == 0 ? 1 : 0));
760 * g_date_get_sunday_week_of_year:
761 * @date: a #GDate
763 * Returns the week of the year during which this date falls, if
764 * weeks are understood to begin on Sunday. The date must be valid.
765 * Can return 0 if the day is before the first Sunday of the year.
767 * Returns: week number
769 guint
770 g_date_get_sunday_week_of_year (const GDate *d)
772 GDateWeekday wd;
773 guint day;
774 GDate first;
776 g_return_val_if_fail (g_date_valid (d), 0);
778 if (!d->dmy)
779 g_date_update_dmy (d);
781 g_return_val_if_fail (d->dmy, 0);
783 g_date_clear (&first, 1);
785 g_date_set_dmy (&first, 1, 1, d->year);
787 wd = g_date_get_weekday (&first);
788 if (wd == 7) wd = 0; /* make Sunday day 0 */
789 day = g_date_get_day_of_year (d) - 1;
791 return ((day + wd)/7U + (wd == 0 ? 1 : 0));
795 * g_date_get_iso8601_week_of_year:
796 * @date: a valid #GDate
798 * Returns the week of the year, where weeks are interpreted according
799 * to ISO 8601.
801 * Returns: ISO 8601 week number of the year.
803 * Since: 2.6
805 guint
806 g_date_get_iso8601_week_of_year (const GDate *d)
808 guint j, d4, L, d1, w;
810 g_return_val_if_fail (g_date_valid (d), 0);
812 if (!d->julian)
813 g_date_update_julian (d);
815 g_return_val_if_fail (d->julian, 0);
817 /* Formula taken from the Calendar FAQ; the formula was for the
818 * Julian Period which starts on 1 January 4713 BC, so we add
819 * 1,721,425 to the number of days before doing the formula.
821 j = d->julian_days + 1721425;
822 d4 = (j + 31741 - (j % 7)) % 146097 % 36524 % 1461;
823 L = d4 / 1460;
824 d1 = ((d4 - L) % 365) + L;
825 w = d1 / 7 + 1;
827 return w;
831 * g_date_days_between:
832 * @date1: the first date
833 * @date2: the second date
835 * Computes the number of days between two dates.
836 * If @date2 is prior to @date1, the returned value is negative.
837 * Both dates must be valid.
839 * Returns: the number of days between @date1 and @date2
841 gint
842 g_date_days_between (const GDate *d1,
843 const GDate *d2)
845 g_return_val_if_fail (g_date_valid (d1), 0);
846 g_return_val_if_fail (g_date_valid (d2), 0);
848 return (gint)g_date_get_julian (d2) - (gint)g_date_get_julian (d1);
852 * g_date_clear:
853 * @date: pointer to one or more dates to clear
854 * @n_dates: number of dates to clear
856 * Initializes one or more #GDate structs to a sane but invalid
857 * state. The cleared dates will not represent an existing date, but will
858 * not contain garbage. Useful to init a date declared on the stack.
859 * Validity can be tested with g_date_valid().
861 void
862 g_date_clear (GDate *d, guint ndates)
864 g_return_if_fail (d != NULL);
865 g_return_if_fail (ndates != 0);
867 memset (d, 0x0, ndates*sizeof (GDate));
870 G_LOCK_DEFINE_STATIC (g_date_global);
872 /* These are for the parser, output to the user should use *
873 * g_date_strftime () - this creates more never-freed memory to annoy
874 * all those memory debugger users. :-)
877 static gchar *long_month_names[13] =
879 NULL,
882 static gchar *short_month_names[13] =
884 NULL,
887 /* This tells us if we need to update the parse info */
888 static gchar *current_locale = NULL;
890 /* order of these in the current locale */
891 static GDateDMY dmy_order[3] =
893 G_DATE_DAY, G_DATE_MONTH, G_DATE_YEAR
896 /* Where to chop two-digit years: i.e., for the 1930 default, numbers
897 * 29 and below are counted as in the year 2000, numbers 30 and above
898 * are counted as in the year 1900.
901 static const GDateYear twodigit_start_year = 1930;
903 /* It is impossible to enter a year between 1 AD and 99 AD with this
904 * in effect.
906 static gboolean using_twodigit_years = FALSE;
908 /* Adjustment of locale era to AD, non-zero means using locale era
910 static gint locale_era_adjust = 0;
912 struct _GDateParseTokens {
913 gint num_ints;
914 gint n[3];
915 guint month;
918 typedef struct _GDateParseTokens GDateParseTokens;
920 #define NUM_LEN 10
922 /* HOLDS: g_date_global_lock */
923 static void
924 g_date_fill_parse_tokens (const gchar *str, GDateParseTokens *pt)
926 gchar num[4][NUM_LEN+1];
927 gint i;
928 const guchar *s;
930 /* We count 4, but store 3; so we can give an error
931 * if there are 4.
933 num[0][0] = num[1][0] = num[2][0] = num[3][0] = '\0';
935 s = (const guchar *) str;
936 pt->num_ints = 0;
937 while (*s && pt->num_ints < 4)
940 i = 0;
941 while (*s && g_ascii_isdigit (*s) && i < NUM_LEN)
943 num[pt->num_ints][i] = *s;
944 ++s;
945 ++i;
948 if (i > 0)
950 num[pt->num_ints][i] = '\0';
951 ++(pt->num_ints);
954 if (*s == '\0') break;
956 ++s;
959 pt->n[0] = pt->num_ints > 0 ? atoi (num[0]) : 0;
960 pt->n[1] = pt->num_ints > 1 ? atoi (num[1]) : 0;
961 pt->n[2] = pt->num_ints > 2 ? atoi (num[2]) : 0;
963 pt->month = G_DATE_BAD_MONTH;
965 if (pt->num_ints < 3)
967 gchar *casefold;
968 gchar *normalized;
970 casefold = g_utf8_casefold (str, -1);
971 normalized = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
972 g_free (casefold);
974 i = 1;
975 while (i < 13)
977 if (long_month_names[i] != NULL)
979 const gchar *found = strstr (normalized, long_month_names[i]);
981 if (found != NULL)
983 pt->month = i;
984 break;
988 if (short_month_names[i] != NULL)
990 const gchar *found = strstr (normalized, short_month_names[i]);
992 if (found != NULL)
994 pt->month = i;
995 break;
999 ++i;
1002 g_free (normalized);
1006 /* HOLDS: g_date_global_lock */
1007 static void
1008 g_date_prepare_to_parse (const gchar *str,
1009 GDateParseTokens *pt)
1011 const gchar *locale = setlocale (LC_TIME, NULL);
1012 gboolean recompute_localeinfo = FALSE;
1013 GDate d;
1015 g_return_if_fail (locale != NULL); /* should not happen */
1017 g_date_clear (&d, 1); /* clear for scratch use */
1019 if ( (current_locale == NULL) || (strcmp (locale, current_locale) != 0) )
1020 recompute_localeinfo = TRUE; /* Uh, there used to be a reason for the temporary */
1022 if (recompute_localeinfo)
1024 int i = 1;
1025 GDateParseTokens testpt;
1026 gchar buf[128];
1028 g_free (current_locale); /* still works if current_locale == NULL */
1030 current_locale = g_strdup (locale);
1032 short_month_names[0] = "Error";
1033 long_month_names[0] = "Error";
1035 while (i < 13)
1037 gchar *casefold;
1039 g_date_set_dmy (&d, 1, i, 1);
1041 g_return_if_fail (g_date_valid (&d));
1043 g_date_strftime (buf, 127, "%b", &d);
1045 casefold = g_utf8_casefold (buf, -1);
1046 g_free (short_month_names[i]);
1047 short_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1048 g_free (casefold);
1050 g_date_strftime (buf, 127, "%B", &d);
1051 casefold = g_utf8_casefold (buf, -1);
1052 g_free (long_month_names[i]);
1053 long_month_names[i] = g_utf8_normalize (casefold, -1, G_NORMALIZE_ALL);
1054 g_free (casefold);
1056 ++i;
1059 /* Determine DMY order */
1061 /* had to pick a random day - don't change this, some strftimes
1062 * are broken on some days, and this one is good so far. */
1063 g_date_set_dmy (&d, 4, 7, 1976);
1065 g_date_strftime (buf, 127, "%x", &d);
1067 g_date_fill_parse_tokens (buf, &testpt);
1069 i = 0;
1070 while (i < testpt.num_ints)
1072 switch (testpt.n[i])
1074 case 7:
1075 dmy_order[i] = G_DATE_MONTH;
1076 break;
1077 case 4:
1078 dmy_order[i] = G_DATE_DAY;
1079 break;
1080 case 76:
1081 using_twodigit_years = TRUE; /* FALL THRU */
1082 case 1976:
1083 dmy_order[i] = G_DATE_YEAR;
1084 break;
1085 default:
1086 /* assume locale era */
1087 locale_era_adjust = 1976 - testpt.n[i];
1088 dmy_order[i] = G_DATE_YEAR;
1089 break;
1091 ++i;
1094 #if defined(G_ENABLE_DEBUG) && 0
1095 DEBUG_MSG (("**GDate prepared a new set of locale-specific parse rules."));
1096 i = 1;
1097 while (i < 13)
1099 DEBUG_MSG ((" %s %s", long_month_names[i], short_month_names[i]));
1100 ++i;
1102 if (using_twodigit_years)
1104 DEBUG_MSG (("**Using twodigit years with cutoff year: %u", twodigit_start_year));
1107 gchar *strings[3];
1108 i = 0;
1109 while (i < 3)
1111 switch (dmy_order[i])
1113 case G_DATE_MONTH:
1114 strings[i] = "Month";
1115 break;
1116 case G_DATE_YEAR:
1117 strings[i] = "Year";
1118 break;
1119 case G_DATE_DAY:
1120 strings[i] = "Day";
1121 break;
1122 default:
1123 strings[i] = NULL;
1124 break;
1126 ++i;
1128 DEBUG_MSG (("**Order: %s, %s, %s", strings[0], strings[1], strings[2]));
1129 DEBUG_MSG (("**Sample date in this locale: '%s'", buf));
1131 #endif
1134 g_date_fill_parse_tokens (str, pt);
1138 * g_date_set_parse:
1139 * @date: a #GDate to fill in
1140 * @str: string to parse
1142 * Parses a user-inputted string @str, and try to figure out what date it
1143 * represents, taking the [current locale][setlocale] into account. If the
1144 * string is successfully parsed, the date will be valid after the call.
1145 * Otherwise, it will be invalid. You should check using g_date_valid()
1146 * to see whether the parsing succeeded.
1148 * This function is not appropriate for file formats and the like; it
1149 * isn't very precise, and its exact behavior varies with the locale.
1150 * It's intended to be a heuristic routine that guesses what the user
1151 * means by a given string (and it does work pretty well in that
1152 * capacity).
1154 void
1155 g_date_set_parse (GDate *d,
1156 const gchar *str)
1158 GDateParseTokens pt;
1159 guint m = G_DATE_BAD_MONTH, day = G_DATE_BAD_DAY, y = G_DATE_BAD_YEAR;
1161 g_return_if_fail (d != NULL);
1163 /* set invalid */
1164 g_date_clear (d, 1);
1166 G_LOCK (g_date_global);
1168 g_date_prepare_to_parse (str, &pt);
1170 DEBUG_MSG (("Found %d ints, '%d' '%d' '%d' and written out month %d",
1171 pt.num_ints, pt.n[0], pt.n[1], pt.n[2], pt.month));
1174 if (pt.num_ints == 4)
1176 G_UNLOCK (g_date_global);
1177 return; /* presumably a typo; bail out. */
1180 if (pt.num_ints > 1)
1182 int i = 0;
1183 int j = 0;
1185 g_assert (pt.num_ints < 4); /* i.e., it is 2 or 3 */
1187 while (i < pt.num_ints && j < 3)
1189 switch (dmy_order[j])
1191 case G_DATE_MONTH:
1193 if (pt.num_ints == 2 && pt.month != G_DATE_BAD_MONTH)
1195 m = pt.month;
1196 ++j; /* skip months, but don't skip this number */
1197 continue;
1199 else
1200 m = pt.n[i];
1202 break;
1203 case G_DATE_DAY:
1205 if (pt.num_ints == 2 && pt.month == G_DATE_BAD_MONTH)
1207 day = 1;
1208 ++j; /* skip days, since we may have month/year */
1209 continue;
1211 day = pt.n[i];
1213 break;
1214 case G_DATE_YEAR:
1216 y = pt.n[i];
1218 if (locale_era_adjust != 0)
1220 y += locale_era_adjust;
1222 else if (using_twodigit_years && y < 100)
1224 guint two = twodigit_start_year % 100;
1225 guint century = (twodigit_start_year / 100) * 100;
1227 if (y < two)
1228 century += 100;
1230 y += century;
1233 break;
1234 default:
1235 break;
1238 ++i;
1239 ++j;
1243 if (pt.num_ints == 3 && !g_date_valid_dmy (day, m, y))
1245 /* Try YYYY MM DD */
1246 y = pt.n[0];
1247 m = pt.n[1];
1248 day = pt.n[2];
1250 if (using_twodigit_years && y < 100)
1251 y = G_DATE_BAD_YEAR; /* avoids ambiguity */
1253 else if (pt.num_ints == 2)
1255 if (m == G_DATE_BAD_MONTH && pt.month != G_DATE_BAD_MONTH)
1256 m = pt.month;
1259 else if (pt.num_ints == 1)
1261 if (pt.month != G_DATE_BAD_MONTH)
1263 /* Month name and year? */
1264 m = pt.month;
1265 day = 1;
1266 y = pt.n[0];
1268 else
1270 /* Try yyyymmdd and yymmdd */
1272 m = (pt.n[0]/100) % 100;
1273 day = pt.n[0] % 100;
1274 y = pt.n[0]/10000;
1276 /* FIXME move this into a separate function */
1277 if (using_twodigit_years && y < 100)
1279 guint two = twodigit_start_year % 100;
1280 guint century = (twodigit_start_year / 100) * 100;
1282 if (y < two)
1283 century += 100;
1285 y += century;
1290 /* See if we got anything valid out of all this. */
1291 /* y < 8000 is to catch 19998 style typos; the library is OK up to 65535 or so */
1292 if (y < 8000 && g_date_valid_dmy (day, m, y))
1294 d->month = m;
1295 d->day = day;
1296 d->year = y;
1297 d->dmy = TRUE;
1299 #ifdef G_ENABLE_DEBUG
1300 else
1302 DEBUG_MSG (("Rejected DMY %u %u %u", day, m, y));
1304 #endif
1305 G_UNLOCK (g_date_global);
1309 * g_date_set_time_t:
1310 * @date: a #GDate
1311 * @timet: time_t value to set
1313 * Sets the value of a date to the date corresponding to a time
1314 * specified as a time_t. The time to date conversion is done using
1315 * the user's current timezone.
1317 * To set the value of a date to the current day, you could write:
1318 * |[<!-- language="C" -->
1319 * g_date_set_time_t (date, time (NULL));
1320 * ]|
1322 * Since: 2.10
1324 void
1325 g_date_set_time_t (GDate *date,
1326 time_t timet)
1328 struct tm tm;
1330 g_return_if_fail (date != NULL);
1332 #ifdef HAVE_LOCALTIME_R
1333 localtime_r (&timet, &tm);
1334 #else
1336 struct tm *ptm = localtime (&timet);
1338 if (ptm == NULL)
1340 /* Happens at least in Microsoft's C library if you pass a
1341 * negative time_t. Use 2000-01-01 as default date.
1343 #ifndef G_DISABLE_CHECKS
1344 g_return_if_fail_warning (G_LOG_DOMAIN, "g_date_set_time", "ptm != NULL");
1345 #endif
1347 tm.tm_mon = 0;
1348 tm.tm_mday = 1;
1349 tm.tm_year = 100;
1351 else
1352 memcpy ((void *) &tm, (void *) ptm, sizeof(struct tm));
1354 #endif
1356 date->julian = FALSE;
1358 date->month = tm.tm_mon + 1;
1359 date->day = tm.tm_mday;
1360 date->year = tm.tm_year + 1900;
1362 g_return_if_fail (g_date_valid_dmy (date->day, date->month, date->year));
1364 date->dmy = TRUE;
1369 * g_date_set_time:
1370 * @date: a #GDate.
1371 * @time_: #GTime value to set.
1373 * Sets the value of a date from a #GTime value.
1374 * The time to date conversion is done using the user's current timezone.
1376 * Deprecated: 2.10: Use g_date_set_time_t() instead.
1378 void
1379 g_date_set_time (GDate *date,
1380 GTime time_)
1382 g_date_set_time_t (date, (time_t) time_);
1386 * g_date_set_time_val:
1387 * @date: a #GDate
1388 * @timeval: #GTimeVal value to set
1390 * Sets the value of a date from a #GTimeVal value. Note that the
1391 * @tv_usec member is ignored, because #GDate can't make use of the
1392 * additional precision.
1394 * The time to date conversion is done using the user's current timezone.
1396 * Since: 2.10
1398 void
1399 g_date_set_time_val (GDate *date,
1400 GTimeVal *timeval)
1402 g_date_set_time_t (date, (time_t) timeval->tv_sec);
1406 * g_date_set_month:
1407 * @date: a #GDate
1408 * @month: month to set
1410 * Sets the month of the year for a #GDate. If the resulting
1411 * day-month-year triplet is invalid, the date will be invalid.
1413 void
1414 g_date_set_month (GDate *d,
1415 GDateMonth m)
1417 g_return_if_fail (d != NULL);
1418 g_return_if_fail (g_date_valid_month (m));
1420 if (d->julian && !d->dmy) g_date_update_dmy(d);
1421 d->julian = FALSE;
1423 d->month = m;
1425 if (g_date_valid_dmy (d->day, d->month, d->year))
1426 d->dmy = TRUE;
1427 else
1428 d->dmy = FALSE;
1432 * g_date_set_day:
1433 * @date: a #GDate
1434 * @day: day to set
1436 * Sets the day of the month for a #GDate. If the resulting
1437 * day-month-year triplet is invalid, the date will be invalid.
1439 void
1440 g_date_set_day (GDate *d,
1441 GDateDay day)
1443 g_return_if_fail (d != NULL);
1444 g_return_if_fail (g_date_valid_day (day));
1446 if (d->julian && !d->dmy) g_date_update_dmy(d);
1447 d->julian = FALSE;
1449 d->day = day;
1451 if (g_date_valid_dmy (d->day, d->month, d->year))
1452 d->dmy = TRUE;
1453 else
1454 d->dmy = FALSE;
1458 * g_date_set_year:
1459 * @date: a #GDate
1460 * @year: year to set
1462 * Sets the year for a #GDate. If the resulting day-month-year
1463 * triplet is invalid, the date will be invalid.
1465 void
1466 g_date_set_year (GDate *d,
1467 GDateYear y)
1469 g_return_if_fail (d != NULL);
1470 g_return_if_fail (g_date_valid_year (y));
1472 if (d->julian && !d->dmy) g_date_update_dmy(d);
1473 d->julian = FALSE;
1475 d->year = y;
1477 if (g_date_valid_dmy (d->day, d->month, d->year))
1478 d->dmy = TRUE;
1479 else
1480 d->dmy = FALSE;
1484 * g_date_set_dmy:
1485 * @date: a #GDate
1486 * @day: day
1487 * @month: month
1488 * @y: year
1490 * Sets the value of a #GDate from a day, month, and year.
1491 * The day-month-year triplet must be valid; if you aren't
1492 * sure it is, call g_date_valid_dmy() to check before you
1493 * set it.
1495 void
1496 g_date_set_dmy (GDate *d,
1497 GDateDay day,
1498 GDateMonth m,
1499 GDateYear y)
1501 g_return_if_fail (d != NULL);
1502 g_return_if_fail (g_date_valid_dmy (day, m, y));
1504 d->julian = FALSE;
1506 d->month = m;
1507 d->day = day;
1508 d->year = y;
1510 d->dmy = TRUE;
1514 * g_date_set_julian:
1515 * @date: a #GDate
1516 * @julian_date: Julian day number (days since January 1, Year 1)
1518 * Sets the value of a #GDate from a Julian day number.
1520 void
1521 g_date_set_julian (GDate *d,
1522 guint32 j)
1524 g_return_if_fail (d != NULL);
1525 g_return_if_fail (g_date_valid_julian (j));
1527 d->julian_days = j;
1528 d->julian = TRUE;
1529 d->dmy = FALSE;
1533 * g_date_is_first_of_month:
1534 * @date: a #GDate to check
1536 * Returns %TRUE if the date is on the first of a month.
1537 * The date must be valid.
1539 * Returns: %TRUE if the date is the first of the month
1541 gboolean
1542 g_date_is_first_of_month (const GDate *d)
1544 g_return_val_if_fail (g_date_valid (d), FALSE);
1546 if (!d->dmy)
1547 g_date_update_dmy (d);
1549 g_return_val_if_fail (d->dmy, FALSE);
1551 if (d->day == 1) return TRUE;
1552 else return FALSE;
1556 * g_date_is_last_of_month:
1557 * @date: a #GDate to check
1559 * Returns %TRUE if the date is the last day of the month.
1560 * The date must be valid.
1562 * Returns: %TRUE if the date is the last day of the month
1564 gboolean
1565 g_date_is_last_of_month (const GDate *d)
1567 gint idx;
1569 g_return_val_if_fail (g_date_valid (d), FALSE);
1571 if (!d->dmy)
1572 g_date_update_dmy (d);
1574 g_return_val_if_fail (d->dmy, FALSE);
1576 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1578 if (d->day == days_in_months[idx][d->month]) return TRUE;
1579 else return FALSE;
1583 * g_date_add_days:
1584 * @date: a #GDate to increment
1585 * @n_days: number of days to move the date forward
1587 * Increments a date some number of days.
1588 * To move forward by weeks, add weeks*7 days.
1589 * The date must be valid.
1591 void
1592 g_date_add_days (GDate *d,
1593 guint ndays)
1595 g_return_if_fail (g_date_valid (d));
1597 if (!d->julian)
1598 g_date_update_julian (d);
1600 g_return_if_fail (d->julian);
1602 d->julian_days += ndays;
1603 d->dmy = FALSE;
1607 * g_date_subtract_days:
1608 * @date: a #GDate to decrement
1609 * @n_days: number of days to move
1611 * Moves a date some number of days into the past.
1612 * To move by weeks, just move by weeks*7 days.
1613 * The date must be valid.
1615 void
1616 g_date_subtract_days (GDate *d,
1617 guint ndays)
1619 g_return_if_fail (g_date_valid (d));
1621 if (!d->julian)
1622 g_date_update_julian (d);
1624 g_return_if_fail (d->julian);
1625 g_return_if_fail (d->julian_days > ndays);
1627 d->julian_days -= ndays;
1628 d->dmy = FALSE;
1632 * g_date_add_months:
1633 * @date: a #GDate to increment
1634 * @n_months: number of months to move forward
1636 * Increments a date by some number of months.
1637 * If the day of the month is greater than 28,
1638 * this routine may change the day of the month
1639 * (because the destination month may not have
1640 * the current day in it). The date must be valid.
1642 void
1643 g_date_add_months (GDate *d,
1644 guint nmonths)
1646 guint years, months;
1647 gint idx;
1649 g_return_if_fail (g_date_valid (d));
1651 if (!d->dmy)
1652 g_date_update_dmy (d);
1654 g_return_if_fail (d->dmy);
1656 nmonths += d->month - 1;
1658 years = nmonths/12;
1659 months = nmonths%12;
1661 d->month = months + 1;
1662 d->year += years;
1664 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1666 if (d->day > days_in_months[idx][d->month])
1667 d->day = days_in_months[idx][d->month];
1669 d->julian = FALSE;
1671 g_return_if_fail (g_date_valid (d));
1675 * g_date_subtract_months:
1676 * @date: a #GDate to decrement
1677 * @n_months: number of months to move
1679 * Moves a date some number of months into the past.
1680 * If the current day of the month doesn't exist in
1681 * the destination month, the day of the month
1682 * may change. The date must be valid.
1684 void
1685 g_date_subtract_months (GDate *d,
1686 guint nmonths)
1688 guint years, months;
1689 gint idx;
1691 g_return_if_fail (g_date_valid (d));
1693 if (!d->dmy)
1694 g_date_update_dmy (d);
1696 g_return_if_fail (d->dmy);
1698 years = nmonths/12;
1699 months = nmonths%12;
1701 g_return_if_fail (d->year > years);
1703 d->year -= years;
1705 if (d->month > months) d->month -= months;
1706 else
1708 months -= d->month;
1709 d->month = 12 - months;
1710 d->year -= 1;
1713 idx = g_date_is_leap_year (d->year) ? 1 : 0;
1715 if (d->day > days_in_months[idx][d->month])
1716 d->day = days_in_months[idx][d->month];
1718 d->julian = FALSE;
1720 g_return_if_fail (g_date_valid (d));
1724 * g_date_add_years:
1725 * @date: a #GDate to increment
1726 * @n_years: number of years to move forward
1728 * Increments a date by some number of years.
1729 * If the date is February 29, and the destination
1730 * year is not a leap year, the date will be changed
1731 * to February 28. The date must be valid.
1733 void
1734 g_date_add_years (GDate *d,
1735 guint nyears)
1737 g_return_if_fail (g_date_valid (d));
1739 if (!d->dmy)
1740 g_date_update_dmy (d);
1742 g_return_if_fail (d->dmy);
1744 d->year += nyears;
1746 if (d->month == 2 && d->day == 29)
1748 if (!g_date_is_leap_year (d->year))
1749 d->day = 28;
1752 d->julian = FALSE;
1756 * g_date_subtract_years:
1757 * @date: a #GDate to decrement
1758 * @n_years: number of years to move
1760 * Moves a date some number of years into the past.
1761 * If the current day doesn't exist in the destination
1762 * year (i.e. it's February 29 and you move to a non-leap-year)
1763 * then the day is changed to February 29. The date
1764 * must be valid.
1766 void
1767 g_date_subtract_years (GDate *d,
1768 guint nyears)
1770 g_return_if_fail (g_date_valid (d));
1772 if (!d->dmy)
1773 g_date_update_dmy (d);
1775 g_return_if_fail (d->dmy);
1776 g_return_if_fail (d->year > nyears);
1778 d->year -= nyears;
1780 if (d->month == 2 && d->day == 29)
1782 if (!g_date_is_leap_year (d->year))
1783 d->day = 28;
1786 d->julian = FALSE;
1790 * g_date_is_leap_year:
1791 * @year: year to check
1793 * Returns %TRUE if the year is a leap year.
1795 * For the purposes of this function, leap year is every year
1796 * divisible by 4 unless that year is divisible by 100. If it
1797 * is divisible by 100 it would be a leap year only if that year
1798 * is also divisible by 400.
1800 * Returns: %TRUE if the year is a leap year
1802 gboolean
1803 g_date_is_leap_year (GDateYear year)
1805 g_return_val_if_fail (g_date_valid_year (year), FALSE);
1807 return ( (((year % 4) == 0) && ((year % 100) != 0)) ||
1808 (year % 400) == 0 );
1812 * g_date_get_days_in_month:
1813 * @month: month
1814 * @year: year
1816 * Returns the number of days in a month, taking leap
1817 * years into account.
1819 * Returns: number of days in @month during the @year
1821 guint8
1822 g_date_get_days_in_month (GDateMonth month,
1823 GDateYear year)
1825 gint idx;
1827 g_return_val_if_fail (g_date_valid_year (year), 0);
1828 g_return_val_if_fail (g_date_valid_month (month), 0);
1830 idx = g_date_is_leap_year (year) ? 1 : 0;
1832 return days_in_months[idx][month];
1836 * g_date_get_monday_weeks_in_year:
1837 * @year: a year
1839 * Returns the number of weeks in the year, where weeks
1840 * are taken to start on Monday. Will be 52 or 53. The
1841 * date must be valid. (Years always have 52 7-day periods,
1842 * plus 1 or 2 extra days depending on whether it's a leap
1843 * year. This function is basically telling you how many
1844 * Mondays are in the year, i.e. there are 53 Mondays if
1845 * one of the extra days happens to be a Monday.)
1847 * Returns: number of Mondays in the year
1849 guint8
1850 g_date_get_monday_weeks_in_year (GDateYear year)
1852 GDate d;
1854 g_return_val_if_fail (g_date_valid_year (year), 0);
1856 g_date_clear (&d, 1);
1857 g_date_set_dmy (&d, 1, 1, year);
1858 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1859 g_date_set_dmy (&d, 31, 12, year);
1860 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1861 if (g_date_is_leap_year (year))
1863 g_date_set_dmy (&d, 2, 1, year);
1864 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1865 g_date_set_dmy (&d, 30, 12, year);
1866 if (g_date_get_weekday (&d) == G_DATE_MONDAY) return 53;
1868 return 52;
1872 * g_date_get_sunday_weeks_in_year:
1873 * @year: year to count weeks in
1875 * Returns the number of weeks in the year, where weeks
1876 * are taken to start on Sunday. Will be 52 or 53. The
1877 * date must be valid. (Years always have 52 7-day periods,
1878 * plus 1 or 2 extra days depending on whether it's a leap
1879 * year. This function is basically telling you how many
1880 * Sundays are in the year, i.e. there are 53 Sundays if
1881 * one of the extra days happens to be a Sunday.)
1883 * Returns: the number of weeks in @year
1885 guint8
1886 g_date_get_sunday_weeks_in_year (GDateYear year)
1888 GDate d;
1890 g_return_val_if_fail (g_date_valid_year (year), 0);
1892 g_date_clear (&d, 1);
1893 g_date_set_dmy (&d, 1, 1, year);
1894 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1895 g_date_set_dmy (&d, 31, 12, year);
1896 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1897 if (g_date_is_leap_year (year))
1899 g_date_set_dmy (&d, 2, 1, year);
1900 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1901 g_date_set_dmy (&d, 30, 12, year);
1902 if (g_date_get_weekday (&d) == G_DATE_SUNDAY) return 53;
1904 return 52;
1908 * g_date_compare:
1909 * @lhs: first date to compare
1910 * @rhs: second date to compare
1912 * qsort()-style comparison function for dates.
1913 * Both dates must be valid.
1915 * Returns: 0 for equal, less than zero if @lhs is less than @rhs,
1916 * greater than zero if @lhs is greater than @rhs
1918 gint
1919 g_date_compare (const GDate *lhs,
1920 const GDate *rhs)
1922 g_return_val_if_fail (lhs != NULL, 0);
1923 g_return_val_if_fail (rhs != NULL, 0);
1924 g_return_val_if_fail (g_date_valid (lhs), 0);
1925 g_return_val_if_fail (g_date_valid (rhs), 0);
1927 /* Remember the self-comparison case! I think it works right now. */
1929 while (TRUE)
1931 if (lhs->julian && rhs->julian)
1933 if (lhs->julian_days < rhs->julian_days) return -1;
1934 else if (lhs->julian_days > rhs->julian_days) return 1;
1935 else return 0;
1937 else if (lhs->dmy && rhs->dmy)
1939 if (lhs->year < rhs->year) return -1;
1940 else if (lhs->year > rhs->year) return 1;
1941 else
1943 if (lhs->month < rhs->month) return -1;
1944 else if (lhs->month > rhs->month) return 1;
1945 else
1947 if (lhs->day < rhs->day) return -1;
1948 else if (lhs->day > rhs->day) return 1;
1949 else return 0;
1955 else
1957 if (!lhs->julian) g_date_update_julian (lhs);
1958 if (!rhs->julian) g_date_update_julian (rhs);
1959 g_return_val_if_fail (lhs->julian, 0);
1960 g_return_val_if_fail (rhs->julian, 0);
1964 return 0; /* warnings */
1968 * g_date_to_struct_tm:
1969 * @date: a #GDate to set the struct tm from
1970 * @tm: (not nullable): struct tm to fill
1972 * Fills in the date-related bits of a struct tm using the @date value.
1973 * Initializes the non-date parts with something sane but meaningless.
1975 void
1976 g_date_to_struct_tm (const GDate *d,
1977 struct tm *tm)
1979 GDateWeekday day;
1981 g_return_if_fail (g_date_valid (d));
1982 g_return_if_fail (tm != NULL);
1984 if (!d->dmy)
1985 g_date_update_dmy (d);
1987 g_return_if_fail (d->dmy);
1989 /* zero all the irrelevant fields to be sure they're valid */
1991 /* On Linux and maybe other systems, there are weird non-POSIX
1992 * fields on the end of struct tm that choke strftime if they
1993 * contain garbage. So we need to 0 the entire struct, not just the
1994 * fields we know to exist.
1997 memset (tm, 0x0, sizeof (struct tm));
1999 tm->tm_mday = d->day;
2000 tm->tm_mon = d->month - 1; /* 0-11 goes in tm */
2001 tm->tm_year = ((int)d->year) - 1900; /* X/Open says tm_year can be negative */
2003 day = g_date_get_weekday (d);
2004 if (day == 7) day = 0; /* struct tm wants days since Sunday, so Sunday is 0 */
2006 tm->tm_wday = (int)day;
2008 tm->tm_yday = g_date_get_day_of_year (d) - 1; /* 0 to 365 */
2009 tm->tm_isdst = -1; /* -1 means "information not available" */
2013 * g_date_clamp:
2014 * @date: a #GDate to clamp
2015 * @min_date: minimum accepted value for @date
2016 * @max_date: maximum accepted value for @date
2018 * If @date is prior to @min_date, sets @date equal to @min_date.
2019 * If @date falls after @max_date, sets @date equal to @max_date.
2020 * Otherwise, @date is unchanged.
2021 * Either of @min_date and @max_date may be %NULL.
2022 * All non-%NULL dates must be valid.
2024 void
2025 g_date_clamp (GDate *date,
2026 const GDate *min_date,
2027 const GDate *max_date)
2029 g_return_if_fail (g_date_valid (date));
2031 if (min_date != NULL)
2032 g_return_if_fail (g_date_valid (min_date));
2034 if (max_date != NULL)
2035 g_return_if_fail (g_date_valid (max_date));
2037 if (min_date != NULL && max_date != NULL)
2038 g_return_if_fail (g_date_compare (min_date, max_date) <= 0);
2040 if (min_date && g_date_compare (date, min_date) < 0)
2041 *date = *min_date;
2043 if (max_date && g_date_compare (max_date, date) < 0)
2044 *date = *max_date;
2048 * g_date_order:
2049 * @date1: the first date
2050 * @date2: the second date
2052 * Checks if @date1 is less than or equal to @date2,
2053 * and swap the values if this is not the case.
2055 void
2056 g_date_order (GDate *date1,
2057 GDate *date2)
2059 g_return_if_fail (g_date_valid (date1));
2060 g_return_if_fail (g_date_valid (date2));
2062 if (g_date_compare (date1, date2) > 0)
2064 GDate tmp = *date1;
2065 *date1 = *date2;
2066 *date2 = tmp;
2070 #ifdef G_OS_WIN32
2071 static gsize
2072 win32_strftime_helper (const GDate *d,
2073 const gchar *format,
2074 const struct tm *tm,
2075 gchar *s,
2076 gsize slen)
2078 SYSTEMTIME systemtime;
2079 TIME_ZONE_INFORMATION tzinfo;
2080 LCID lcid;
2081 int n, k;
2082 GArray *result;
2083 const gchar *p;
2084 gunichar c;
2085 const wchar_t digits[] = L"0123456789";
2086 gchar *convbuf;
2087 glong convlen = 0;
2088 gsize retval;
2090 systemtime.wYear = tm->tm_year + 1900;
2091 systemtime.wMonth = tm->tm_mon + 1;
2092 systemtime.wDayOfWeek = tm->tm_wday;
2093 systemtime.wDay = tm->tm_mday;
2094 systemtime.wHour = tm->tm_hour;
2095 systemtime.wMinute = tm->tm_min;
2096 systemtime.wSecond = tm->tm_sec;
2097 systemtime.wMilliseconds = 0;
2099 lcid = GetThreadLocale ();
2100 result = g_array_sized_new (FALSE, FALSE, sizeof (wchar_t), MAX (128, strlen (format) * 2));
2102 p = format;
2103 while (*p)
2105 c = g_utf8_get_char (p);
2106 if (c == '%')
2108 p = g_utf8_next_char (p);
2109 if (!*p)
2111 s[0] = '\0';
2112 g_array_free (result, TRUE);
2114 return 0;
2117 c = g_utf8_get_char (p);
2118 if (c == 'E' || c == 'O')
2120 /* Ignore modified conversion specifiers for now. */
2121 p = g_utf8_next_char (p);
2122 if (!*p)
2124 s[0] = '\0';
2125 g_array_free (result, TRUE);
2127 return 0;
2130 c = g_utf8_get_char (p);
2133 switch (c)
2135 case 'a':
2136 if (systemtime.wDayOfWeek == 0)
2137 k = 6;
2138 else
2139 k = systemtime.wDayOfWeek - 1;
2140 n = GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, NULL, 0);
2141 g_array_set_size (result, result->len + n);
2142 GetLocaleInfoW (lcid, LOCALE_SABBREVDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2143 g_array_set_size (result, result->len - 1);
2144 break;
2145 case 'A':
2146 if (systemtime.wDayOfWeek == 0)
2147 k = 6;
2148 else
2149 k = systemtime.wDayOfWeek - 1;
2150 n = GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, NULL, 0);
2151 g_array_set_size (result, result->len + n);
2152 GetLocaleInfoW (lcid, LOCALE_SDAYNAME1+k, ((wchar_t *) result->data) + result->len - n, n);
2153 g_array_set_size (result, result->len - 1);
2154 break;
2155 case 'b':
2156 case 'h':
2157 n = GetLocaleInfoW (lcid, LOCALE_SABBREVMONTHNAME1+systemtime.wMonth-1, NULL, 0);
2158 g_array_set_size (result, result->len + n);
2159 GetLocaleInfoW (lcid, LOCALE_SABBREVMONTHNAME1+systemtime.wMonth-1, ((wchar_t *) result->data) + result->len - n, n);
2160 g_array_set_size (result, result->len - 1);
2161 break;
2162 case 'B':
2163 n = GetLocaleInfoW (lcid, LOCALE_SMONTHNAME1+systemtime.wMonth-1, NULL, 0);
2164 g_array_set_size (result, result->len + n);
2165 GetLocaleInfoW (lcid, LOCALE_SMONTHNAME1+systemtime.wMonth-1, ((wchar_t *) result->data) + result->len - n, n);
2166 g_array_set_size (result, result->len - 1);
2167 break;
2168 case 'c':
2169 n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2170 if (n > 0)
2172 g_array_set_size (result, result->len + n);
2173 GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2174 g_array_set_size (result, result->len - 1);
2176 g_array_append_vals (result, L" ", 1);
2177 n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2178 if (n > 0)
2180 g_array_set_size (result, result->len + n);
2181 GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2182 g_array_set_size (result, result->len - 1);
2184 break;
2185 case 'C':
2186 g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2187 g_array_append_vals (result, digits + (systemtime.wYear/1000)%10, 1);
2188 break;
2189 case 'd':
2190 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2191 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2192 break;
2193 case 'D':
2194 g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2195 g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2196 g_array_append_vals (result, L"/", 1);
2197 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2198 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2199 g_array_append_vals (result, L"/", 1);
2200 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2201 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2202 break;
2203 case 'e':
2204 if (systemtime.wDay >= 10)
2205 g_array_append_vals (result, digits + systemtime.wDay/10, 1);
2206 else
2207 g_array_append_vals (result, L" ", 1);
2208 g_array_append_vals (result, digits + systemtime.wDay%10, 1);
2209 break;
2211 /* A GDate has no time fields, so for now we can
2212 * hardcode all time conversions into zeros (or 12 for
2213 * %I). The alternative code snippets in the #else
2214 * branches are here ready to be taken into use when
2215 * needed by a g_strftime() or g_date_and_time_format()
2216 * or whatever.
2218 case 'H':
2219 #if 1
2220 g_array_append_vals (result, L"00", 2);
2221 #else
2222 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2223 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2224 #endif
2225 break;
2226 case 'I':
2227 #if 1
2228 g_array_append_vals (result, L"12", 2);
2229 #else
2230 if (systemtime.wHour == 0)
2231 g_array_append_vals (result, L"12", 2);
2232 else
2234 g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2235 g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2237 #endif
2238 break;
2239 case 'j':
2240 g_array_append_vals (result, digits + (tm->tm_yday+1)/100, 1);
2241 g_array_append_vals (result, digits + ((tm->tm_yday+1)/10)%10, 1);
2242 g_array_append_vals (result, digits + (tm->tm_yday+1)%10, 1);
2243 break;
2244 case 'm':
2245 g_array_append_vals (result, digits + systemtime.wMonth/10, 1);
2246 g_array_append_vals (result, digits + systemtime.wMonth%10, 1);
2247 break;
2248 case 'M':
2249 #if 1
2250 g_array_append_vals (result, L"00", 2);
2251 #else
2252 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2253 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2254 #endif
2255 break;
2256 case 'n':
2257 g_array_append_vals (result, L"\n", 1);
2258 break;
2259 case 'p':
2260 n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2261 if (n > 0)
2263 g_array_set_size (result, result->len + n);
2264 GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2265 g_array_set_size (result, result->len - 1);
2267 break;
2268 case 'r':
2269 /* This is a rather odd format. Hard to say what to do.
2270 * Let's always use the POSIX %I:%M:%S %p
2272 #if 1
2273 g_array_append_vals (result, L"12:00:00", 8);
2274 #else
2275 if (systemtime.wHour == 0)
2276 g_array_append_vals (result, L"12", 2);
2277 else
2279 g_array_append_vals (result, digits + (systemtime.wHour%12)/10, 1);
2280 g_array_append_vals (result, digits + (systemtime.wHour%12)%10, 1);
2282 g_array_append_vals (result, L":", 1);
2283 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2284 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2285 g_array_append_vals (result, L":", 1);
2286 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2287 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2288 g_array_append_vals (result, L" ", 1);
2289 #endif
2290 n = GetTimeFormatW (lcid, 0, &systemtime, L"tt", NULL, 0);
2291 if (n > 0)
2293 g_array_set_size (result, result->len + n);
2294 GetTimeFormatW (lcid, 0, &systemtime, L"tt", ((wchar_t *) result->data) + result->len - n, n);
2295 g_array_set_size (result, result->len - 1);
2297 break;
2298 case 'R':
2299 #if 1
2300 g_array_append_vals (result, L"00:00", 5);
2301 #else
2302 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2303 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2304 g_array_append_vals (result, L":", 1);
2305 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2306 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2307 #endif
2308 break;
2309 case 'S':
2310 #if 1
2311 g_array_append_vals (result, L"00", 2);
2312 #else
2313 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2314 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2315 #endif
2316 break;
2317 case 't':
2318 g_array_append_vals (result, L"\t", 1);
2319 break;
2320 case 'T':
2321 #if 1
2322 g_array_append_vals (result, L"00:00:00", 8);
2323 #else
2324 g_array_append_vals (result, digits + systemtime.wHour/10, 1);
2325 g_array_append_vals (result, digits + systemtime.wHour%10, 1);
2326 g_array_append_vals (result, L":", 1);
2327 g_array_append_vals (result, digits + systemtime.wMinute/10, 1);
2328 g_array_append_vals (result, digits + systemtime.wMinute%10, 1);
2329 g_array_append_vals (result, L":", 1);
2330 g_array_append_vals (result, digits + systemtime.wSecond/10, 1);
2331 g_array_append_vals (result, digits + systemtime.wSecond%10, 1);
2332 #endif
2333 break;
2334 case 'u':
2335 if (systemtime.wDayOfWeek == 0)
2336 g_array_append_vals (result, L"7", 1);
2337 else
2338 g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2339 break;
2340 case 'U':
2341 n = g_date_get_sunday_week_of_year (d);
2342 g_array_append_vals (result, digits + n/10, 1);
2343 g_array_append_vals (result, digits + n%10, 1);
2344 break;
2345 case 'V':
2346 n = g_date_get_iso8601_week_of_year (d);
2347 g_array_append_vals (result, digits + n/10, 1);
2348 g_array_append_vals (result, digits + n%10, 1);
2349 break;
2350 case 'w':
2351 g_array_append_vals (result, digits + systemtime.wDayOfWeek, 1);
2352 break;
2353 case 'W':
2354 n = g_date_get_monday_week_of_year (d);
2355 g_array_append_vals (result, digits + n/10, 1);
2356 g_array_append_vals (result, digits + n%10, 1);
2357 break;
2358 case 'x':
2359 n = GetDateFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2360 if (n > 0)
2362 g_array_set_size (result, result->len + n);
2363 GetDateFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2364 g_array_set_size (result, result->len - 1);
2366 break;
2367 case 'X':
2368 n = GetTimeFormatW (lcid, 0, &systemtime, NULL, NULL, 0);
2369 if (n > 0)
2371 g_array_set_size (result, result->len + n);
2372 GetTimeFormatW (lcid, 0, &systemtime, NULL, ((wchar_t *) result->data) + result->len - n, n);
2373 g_array_set_size (result, result->len - 1);
2375 break;
2376 case 'y':
2377 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2378 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2379 break;
2380 case 'Y':
2381 g_array_append_vals (result, digits + systemtime.wYear/1000, 1);
2382 g_array_append_vals (result, digits + (systemtime.wYear/100)%10, 1);
2383 g_array_append_vals (result, digits + (systemtime.wYear/10)%10, 1);
2384 g_array_append_vals (result, digits + systemtime.wYear%10, 1);
2385 break;
2386 case 'Z':
2387 n = GetTimeZoneInformation (&tzinfo);
2388 if (n == TIME_ZONE_ID_UNKNOWN)
2390 else if (n == TIME_ZONE_ID_STANDARD)
2391 g_array_append_vals (result, tzinfo.StandardName, wcslen (tzinfo.StandardName));
2392 else if (n == TIME_ZONE_ID_DAYLIGHT)
2393 g_array_append_vals (result, tzinfo.DaylightName, wcslen (tzinfo.DaylightName));
2394 break;
2395 case '%':
2396 g_array_append_vals (result, L"%", 1);
2397 break;
2400 else if (c <= 0xFFFF)
2402 wchar_t wc = c;
2403 g_array_append_vals (result, &wc, 1);
2405 else
2407 glong nwc;
2408 wchar_t *ws;
2410 ws = g_ucs4_to_utf16 (&c, 1, NULL, &nwc, NULL);
2411 g_array_append_vals (result, ws, nwc);
2412 g_free (ws);
2414 p = g_utf8_next_char (p);
2417 convbuf = g_utf16_to_utf8 ((wchar_t *) result->data, result->len, NULL, &convlen, NULL);
2418 g_array_free (result, TRUE);
2420 if (!convbuf)
2422 s[0] = '\0';
2423 return 0;
2426 if (slen <= convlen)
2428 /* Ensure only whole characters are copied into the buffer. */
2429 gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2430 g_assert (end != NULL);
2431 convlen = end - convbuf;
2433 /* Return 0 because the buffer isn't large enough. */
2434 retval = 0;
2436 else
2437 retval = convlen;
2439 memcpy (s, convbuf, convlen);
2440 s[convlen] = '\0';
2441 g_free (convbuf);
2443 return retval;
2446 #endif
2449 * g_date_strftime:
2450 * @s: destination buffer
2451 * @slen: buffer size
2452 * @format: format string
2453 * @date: valid #GDate
2455 * Generates a printed representation of the date, in a
2456 * [locale][setlocale]-specific way.
2457 * Works just like the platform's C library strftime() function,
2458 * but only accepts date-related formats; time-related formats
2459 * give undefined results. Date must be valid. Unlike strftime()
2460 * (which uses the locale encoding), works on a UTF-8 format
2461 * string and stores a UTF-8 result.
2463 * This function does not provide any conversion specifiers in
2464 * addition to those implemented by the platform's C library.
2465 * For example, don't expect that using g_date_strftime() would
2466 * make the \%F provided by the C99 strftime() work on Windows
2467 * where the C library only complies to C89.
2469 * Returns: number of characters written to the buffer, or 0 the buffer was too small
2471 #pragma GCC diagnostic push
2472 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
2474 gsize
2475 g_date_strftime (gchar *s,
2476 gsize slen,
2477 const gchar *format,
2478 const GDate *d)
2480 struct tm tm;
2481 #ifndef G_OS_WIN32
2482 gsize locale_format_len = 0;
2483 gchar *locale_format;
2484 gsize tmplen;
2485 gchar *tmpbuf;
2486 gsize tmpbufsize;
2487 gsize convlen = 0;
2488 gchar *convbuf;
2489 GError *error = NULL;
2490 gsize retval;
2491 #endif
2493 g_return_val_if_fail (g_date_valid (d), 0);
2494 g_return_val_if_fail (slen > 0, 0);
2495 g_return_val_if_fail (format != NULL, 0);
2496 g_return_val_if_fail (s != NULL, 0);
2498 g_date_to_struct_tm (d, &tm);
2500 #ifdef G_OS_WIN32
2501 if (!g_utf8_validate (format, -1, NULL))
2503 s[0] = '\0';
2504 return 0;
2506 return win32_strftime_helper (d, format, &tm, s, slen);
2507 #else
2509 locale_format = g_locale_from_utf8 (format, -1, NULL, &locale_format_len, &error);
2511 if (error)
2513 g_warning (G_STRLOC "Error converting format to locale encoding: %s\n", error->message);
2514 g_error_free (error);
2516 s[0] = '\0';
2517 return 0;
2520 tmpbufsize = MAX (128, locale_format_len * 2);
2521 while (TRUE)
2523 tmpbuf = g_malloc (tmpbufsize);
2525 /* Set the first byte to something other than '\0', to be able to
2526 * recognize whether strftime actually failed or just returned "".
2528 tmpbuf[0] = '\1';
2529 tmplen = strftime (tmpbuf, tmpbufsize, locale_format, &tm);
2531 if (tmplen == 0 && tmpbuf[0] != '\0')
2533 g_free (tmpbuf);
2534 tmpbufsize *= 2;
2536 if (tmpbufsize > 65536)
2538 g_warning (G_STRLOC "Maximum buffer size for g_date_strftime exceeded: giving up\n");
2539 g_free (locale_format);
2541 s[0] = '\0';
2542 return 0;
2545 else
2546 break;
2548 g_free (locale_format);
2550 convbuf = g_locale_to_utf8 (tmpbuf, tmplen, NULL, &convlen, &error);
2551 g_free (tmpbuf);
2553 if (error)
2555 g_warning (G_STRLOC "Error converting results of strftime to UTF-8: %s\n", error->message);
2556 g_error_free (error);
2558 s[0] = '\0';
2559 return 0;
2562 if (slen <= convlen)
2564 /* Ensure only whole characters are copied into the buffer.
2566 gchar *end = g_utf8_find_prev_char (convbuf, convbuf + slen);
2567 g_assert (end != NULL);
2568 convlen = end - convbuf;
2570 /* Return 0 because the buffer isn't large enough.
2572 retval = 0;
2574 else
2575 retval = convlen;
2577 memcpy (s, convbuf, convlen);
2578 s[convlen] = '\0';
2579 g_free (convbuf);
2581 return retval;
2582 #endif
2585 #pragma GCC diagnostic pop