gnetworkmonitornm: Check if network-manager is running
[glib.git] / glib / gvariant.c
blob52b40a7aae2d5ecb5f62d170836851fdf109dd7c
1 /*
2 * Copyright © 2007, 2008 Ryan Lortie
3 * Copyright © 2010 Codethink Limited
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the licence, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 * Author: Ryan Lortie <desrt@desrt.ca>
21 /* Prologue {{{1 */
23 #include "config.h"
25 #include <glib/gvariant-serialiser.h>
26 #include "gvariant-internal.h"
27 #include <glib/gvariant-core.h>
28 #include <glib/gtestutils.h>
29 #include <glib/gstrfuncs.h>
30 #include <glib/gslice.h>
31 #include <glib/ghash.h>
32 #include <glib/gmem.h>
34 #include <string.h>
37 /**
38 * SECTION:gvariant
39 * @title: GVariant
40 * @short_description: strongly typed value datatype
41 * @see_also: GVariantType
43 * #GVariant is a variant datatype; it stores a value along with
44 * information about the type of that value. The range of possible
45 * values is determined by the type. The type system used by #GVariant
46 * is #GVariantType.
48 * #GVariant instances always have a type and a value (which are given
49 * at construction time). The type and value of a #GVariant instance
50 * can never change other than by the #GVariant itself being
51 * destroyed. A #GVariant cannot contain a pointer.
53 * #GVariant is reference counted using g_variant_ref() and
54 * g_variant_unref(). #GVariant also has floating reference counts --
55 * see g_variant_ref_sink().
57 * #GVariant is completely threadsafe. A #GVariant instance can be
58 * concurrently accessed in any way from any number of threads without
59 * problems.
61 * #GVariant is heavily optimised for dealing with data in serialised
62 * form. It works particularly well with data located in memory-mapped
63 * files. It can perform nearly all deserialisation operations in a
64 * small constant time, usually touching only a single memory page.
65 * Serialised #GVariant data can also be sent over the network.
67 * #GVariant is largely compatible with D-Bus. Almost all types of
68 * #GVariant instances can be sent over D-Bus. See #GVariantType for
69 * exceptions. (However, #GVariant's serialisation format is not the same
70 * as the serialisation format of a D-Bus message body: use #GDBusMessage,
71 * in the gio library, for those.)
73 * For space-efficiency, the #GVariant serialisation format does not
74 * automatically include the variant's length, type or endianness,
75 * which must either be implied from context (such as knowledge that a
76 * particular file format always contains a little-endian
77 * %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
78 * or supplied out-of-band (for instance, a length, type and/or endianness
79 * indicator could be placed at the beginning of a file, network message
80 * or network stream).
82 * A #GVariant's size is limited mainly by any lower level operating
83 * system constraints, such as the number of bits in #gsize. For
84 * example, it is reasonable to have a 2GB file mapped into memory
85 * with #GMappedFile, and call g_variant_new_from_data() on it.
87 * For convenience to C programmers, #GVariant features powerful
88 * varargs-based value construction and destruction. This feature is
89 * designed to be embedded in other libraries.
91 * There is a Python-inspired text language for describing #GVariant
92 * values. #GVariant includes a printer for this language and a parser
93 * with type inferencing.
95 * ## Memory Use
97 * #GVariant tries to be quite efficient with respect to memory use.
98 * This section gives a rough idea of how much memory is used by the
99 * current implementation. The information here is subject to change
100 * in the future.
102 * The memory allocated by #GVariant can be grouped into 4 broad
103 * purposes: memory for serialised data, memory for the type
104 * information cache, buffer management memory and memory for the
105 * #GVariant structure itself.
107 * ## Serialised Data Memory
109 * This is the memory that is used for storing GVariant data in
110 * serialised form. This is what would be sent over the network or
111 * what would end up on disk, not counting any indicator of the
112 * endianness, or of the length or type of the top-level variant.
114 * The amount of memory required to store a boolean is 1 byte. 16,
115 * 32 and 64 bit integers and double precision floating point numbers
116 * use their "natural" size. Strings (including object path and
117 * signature strings) are stored with a nul terminator, and as such
118 * use the length of the string plus 1 byte.
120 * Maybe types use no space at all to represent the null value and
121 * use the same amount of space (sometimes plus one byte) as the
122 * equivalent non-maybe-typed value to represent the non-null case.
124 * Arrays use the amount of space required to store each of their
125 * members, concatenated. Additionally, if the items stored in an
126 * array are not of a fixed-size (ie: strings, other arrays, etc)
127 * then an additional framing offset is stored for each item. The
128 * size of this offset is either 1, 2 or 4 bytes depending on the
129 * overall size of the container. Additionally, extra padding bytes
130 * are added as required for alignment of child values.
132 * Tuples (including dictionary entries) use the amount of space
133 * required to store each of their members, concatenated, plus one
134 * framing offset (as per arrays) for each non-fixed-sized item in
135 * the tuple, except for the last one. Additionally, extra padding
136 * bytes are added as required for alignment of child values.
138 * Variants use the same amount of space as the item inside of the
139 * variant, plus 1 byte, plus the length of the type string for the
140 * item inside the variant.
142 * As an example, consider a dictionary mapping strings to variants.
143 * In the case that the dictionary is empty, 0 bytes are required for
144 * the serialisation.
146 * If we add an item "width" that maps to the int32 value of 500 then
147 * we will use 4 byte to store the int32 (so 6 for the variant
148 * containing it) and 6 bytes for the string. The variant must be
149 * aligned to 8 after the 6 bytes of the string, so that's 2 extra
150 * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
151 * for the dictionary entry. An additional 1 byte is added to the
152 * array as a framing offset making a total of 15 bytes.
154 * If we add another entry, "title" that maps to a nullable string
155 * that happens to have a value of null, then we use 0 bytes for the
156 * null value (and 3 bytes for the variant to contain it along with
157 * its type string) plus 6 bytes for the string. Again, we need 2
158 * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
160 * We now require extra padding between the two items in the array.
161 * After the 14 bytes of the first item, that's 2 bytes required.
162 * We now require 2 framing offsets for an extra two
163 * bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
164 * dictionary.
166 * ## Type Information Cache
168 * For each GVariant type that currently exists in the program a type
169 * information structure is kept in the type information cache. The
170 * type information structure is required for rapid deserialisation.
172 * Continuing with the above example, if a #GVariant exists with the
173 * type "a{sv}" then a type information struct will exist for
174 * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
175 * will share the same type information. Additionally, all
176 * single-digit types are stored in read-only static memory and do
177 * not contribute to the writable memory footprint of a program using
178 * #GVariant.
180 * Aside from the type information structures stored in read-only
181 * memory, there are two forms of type information. One is used for
182 * container types where there is a single element type: arrays and
183 * maybe types. The other is used for container types where there
184 * are multiple element types: tuples and dictionary entries.
186 * Array type info structures are 6 * sizeof (void *), plus the
187 * memory required to store the type string itself. This means that
188 * on 32-bit systems, the cache entry for "a{sv}" would require 30
189 * bytes of memory (plus malloc overhead).
191 * Tuple type info structures are 6 * sizeof (void *), plus 4 *
192 * sizeof (void *) for each item in the tuple, plus the memory
193 * required to store the type string itself. A 2-item tuple, for
194 * example, would have a type information structure that consumed
195 * writable memory in the size of 14 * sizeof (void *) (plus type
196 * string) This means that on 32-bit systems, the cache entry for
197 * "{sv}" would require 61 bytes of memory (plus malloc overhead).
199 * This means that in total, for our "a{sv}" example, 91 bytes of
200 * type information would be allocated.
202 * The type information cache, additionally, uses a #GHashTable to
203 * store and lookup the cached items and stores a pointer to this
204 * hash table in static storage. The hash table is freed when there
205 * are zero items in the type cache.
207 * Although these sizes may seem large it is important to remember
208 * that a program will probably only have a very small number of
209 * different types of values in it and that only one type information
210 * structure is required for many different values of the same type.
212 * ## Buffer Management Memory
214 * #GVariant uses an internal buffer management structure to deal
215 * with the various different possible sources of serialised data
216 * that it uses. The buffer is responsible for ensuring that the
217 * correct call is made when the data is no longer in use by
218 * #GVariant. This may involve a g_free() or a g_slice_free() or
219 * even g_mapped_file_unref().
221 * One buffer management structure is used for each chunk of
222 * serialised data. The size of the buffer management structure
223 * is 4 * (void *). On 32-bit systems, that's 16 bytes.
225 * ## GVariant structure
227 * The size of a #GVariant structure is 6 * (void *). On 32-bit
228 * systems, that's 24 bytes.
230 * #GVariant structures only exist if they are explicitly created
231 * with API calls. For example, if a #GVariant is constructed out of
232 * serialised data for the example given above (with the dictionary)
233 * then although there are 9 individual values that comprise the
234 * entire dictionary (two keys, two values, two variants containing
235 * the values, two dictionary entries, plus the dictionary itself),
236 * only 1 #GVariant instance exists -- the one referring to the
237 * dictionary.
239 * If calls are made to start accessing the other values then
240 * #GVariant instances will exist for those values only for as long
241 * as they are in use (ie: until you call g_variant_unref()). The
242 * type information is shared. The serialised data and the buffer
243 * management structure for that serialised data is shared by the
244 * child.
246 * ## Summary
248 * To put the entire example together, for our dictionary mapping
249 * strings to variants (with two entries, as given above), we are
250 * using 91 bytes of memory for type information, 29 byes of memory
251 * for the serialised data, 16 bytes for buffer management and 24
252 * bytes for the #GVariant instance, or a total of 160 bytes, plus
253 * malloc overhead. If we were to use g_variant_get_child_value() to
254 * access the two dictionary entries, we would use an additional 48
255 * bytes. If we were to have other dictionaries of the same type, we
256 * would use more memory for the serialised data and buffer
257 * management for those dictionaries, but the type information would
258 * be shared.
261 /* definition of GVariant structure is in gvariant-core.c */
263 /* this is a g_return_val_if_fail() for making
264 * sure a (GVariant *) has the required type.
266 #define TYPE_CHECK(value, TYPE, val) \
267 if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
268 g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
269 "g_variant_is_of_type (" #value \
270 ", " #TYPE ")"); \
271 return val; \
274 /* Numeric Type Constructor/Getters {{{1 */
275 /* < private >
276 * g_variant_new_from_trusted:
277 * @type: the #GVariantType
278 * @data: the data to use
279 * @size: the size of @data
281 * Constructs a new trusted #GVariant instance from the provided data.
282 * This is used to implement g_variant_new_* for all the basic types.
284 * Returns: a new floating #GVariant
286 static GVariant *
287 g_variant_new_from_trusted (const GVariantType *type,
288 gconstpointer data,
289 gsize size)
291 GVariant *value;
292 GBytes *bytes;
294 bytes = g_bytes_new (data, size);
295 value = g_variant_new_from_bytes (type, bytes, TRUE);
296 g_bytes_unref (bytes);
298 return value;
302 * g_variant_new_boolean:
303 * @value: a #gboolean value
305 * Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
307 * Returns: (transfer none): a floating reference to a new boolean #GVariant instance
309 * Since: 2.24
311 GVariant *
312 g_variant_new_boolean (gboolean value)
314 guchar v = value;
316 return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
320 * g_variant_get_boolean:
321 * @value: a boolean #GVariant instance
323 * Returns the boolean value of @value.
325 * It is an error to call this function with a @value of any type
326 * other than %G_VARIANT_TYPE_BOOLEAN.
328 * Returns: %TRUE or %FALSE
330 * Since: 2.24
332 gboolean
333 g_variant_get_boolean (GVariant *value)
335 const guchar *data;
337 TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
339 data = g_variant_get_data (value);
341 return data != NULL ? *data != 0 : FALSE;
344 /* the constructors and accessors for byte, int{16,32,64}, handles and
345 * doubles all look pretty much exactly the same, so we reduce
346 * copy/pasting here.
348 #define NUMERIC_TYPE(TYPE, type, ctype) \
349 GVariant *g_variant_new_##type (ctype value) { \
350 return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
351 &value, sizeof value); \
353 ctype g_variant_get_##type (GVariant *value) { \
354 const ctype *data; \
355 TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
356 data = g_variant_get_data (value); \
357 return data != NULL ? *data : 0; \
362 * g_variant_new_byte:
363 * @value: a #guint8 value
365 * Creates a new byte #GVariant instance.
367 * Returns: (transfer none): a floating reference to a new byte #GVariant instance
369 * Since: 2.24
372 * g_variant_get_byte:
373 * @value: a byte #GVariant instance
375 * Returns the byte value of @value.
377 * It is an error to call this function with a @value of any type
378 * other than %G_VARIANT_TYPE_BYTE.
380 * Returns: a #guchar
382 * Since: 2.24
384 NUMERIC_TYPE (BYTE, byte, guchar)
387 * g_variant_new_int16:
388 * @value: a #gint16 value
390 * Creates a new int16 #GVariant instance.
392 * Returns: (transfer none): a floating reference to a new int16 #GVariant instance
394 * Since: 2.24
397 * g_variant_get_int16:
398 * @value: a int16 #GVariant instance
400 * Returns the 16-bit signed integer value of @value.
402 * It is an error to call this function with a @value of any type
403 * other than %G_VARIANT_TYPE_INT16.
405 * Returns: a #gint16
407 * Since: 2.24
409 NUMERIC_TYPE (INT16, int16, gint16)
412 * g_variant_new_uint16:
413 * @value: a #guint16 value
415 * Creates a new uint16 #GVariant instance.
417 * Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
419 * Since: 2.24
422 * g_variant_get_uint16:
423 * @value: a uint16 #GVariant instance
425 * Returns the 16-bit unsigned integer value of @value.
427 * It is an error to call this function with a @value of any type
428 * other than %G_VARIANT_TYPE_UINT16.
430 * Returns: a #guint16
432 * Since: 2.24
434 NUMERIC_TYPE (UINT16, uint16, guint16)
437 * g_variant_new_int32:
438 * @value: a #gint32 value
440 * Creates a new int32 #GVariant instance.
442 * Returns: (transfer none): a floating reference to a new int32 #GVariant instance
444 * Since: 2.24
447 * g_variant_get_int32:
448 * @value: a int32 #GVariant instance
450 * Returns the 32-bit signed integer value of @value.
452 * It is an error to call this function with a @value of any type
453 * other than %G_VARIANT_TYPE_INT32.
455 * Returns: a #gint32
457 * Since: 2.24
459 NUMERIC_TYPE (INT32, int32, gint32)
462 * g_variant_new_uint32:
463 * @value: a #guint32 value
465 * Creates a new uint32 #GVariant instance.
467 * Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
469 * Since: 2.24
472 * g_variant_get_uint32:
473 * @value: a uint32 #GVariant instance
475 * Returns the 32-bit unsigned integer value of @value.
477 * It is an error to call this function with a @value of any type
478 * other than %G_VARIANT_TYPE_UINT32.
480 * Returns: a #guint32
482 * Since: 2.24
484 NUMERIC_TYPE (UINT32, uint32, guint32)
487 * g_variant_new_int64:
488 * @value: a #gint64 value
490 * Creates a new int64 #GVariant instance.
492 * Returns: (transfer none): a floating reference to a new int64 #GVariant instance
494 * Since: 2.24
497 * g_variant_get_int64:
498 * @value: a int64 #GVariant instance
500 * Returns the 64-bit signed integer value of @value.
502 * It is an error to call this function with a @value of any type
503 * other than %G_VARIANT_TYPE_INT64.
505 * Returns: a #gint64
507 * Since: 2.24
509 NUMERIC_TYPE (INT64, int64, gint64)
512 * g_variant_new_uint64:
513 * @value: a #guint64 value
515 * Creates a new uint64 #GVariant instance.
517 * Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
519 * Since: 2.24
522 * g_variant_get_uint64:
523 * @value: a uint64 #GVariant instance
525 * Returns the 64-bit unsigned integer value of @value.
527 * It is an error to call this function with a @value of any type
528 * other than %G_VARIANT_TYPE_UINT64.
530 * Returns: a #guint64
532 * Since: 2.24
534 NUMERIC_TYPE (UINT64, uint64, guint64)
537 * g_variant_new_handle:
538 * @value: a #gint32 value
540 * Creates a new handle #GVariant instance.
542 * By convention, handles are indexes into an array of file descriptors
543 * that are sent alongside a D-Bus message. If you're not interacting
544 * with D-Bus, you probably don't need them.
546 * Returns: (transfer none): a floating reference to a new handle #GVariant instance
548 * Since: 2.24
551 * g_variant_get_handle:
552 * @value: a handle #GVariant instance
554 * Returns the 32-bit signed integer value of @value.
556 * It is an error to call this function with a @value of any type other
557 * than %G_VARIANT_TYPE_HANDLE.
559 * By convention, handles are indexes into an array of file descriptors
560 * that are sent alongside a D-Bus message. If you're not interacting
561 * with D-Bus, you probably don't need them.
563 * Returns: a #gint32
565 * Since: 2.24
567 NUMERIC_TYPE (HANDLE, handle, gint32)
570 * g_variant_new_double:
571 * @value: a #gdouble floating point value
573 * Creates a new double #GVariant instance.
575 * Returns: (transfer none): a floating reference to a new double #GVariant instance
577 * Since: 2.24
580 * g_variant_get_double:
581 * @value: a double #GVariant instance
583 * Returns the double precision floating point value of @value.
585 * It is an error to call this function with a @value of any type
586 * other than %G_VARIANT_TYPE_DOUBLE.
588 * Returns: a #gdouble
590 * Since: 2.24
592 NUMERIC_TYPE (DOUBLE, double, gdouble)
594 /* Container type Constructor / Deconstructors {{{1 */
596 * g_variant_new_maybe:
597 * @child_type: (allow-none): the #GVariantType of the child, or %NULL
598 * @child: (allow-none): the child value, or %NULL
600 * Depending on if @child is %NULL, either wraps @child inside of a
601 * maybe container or creates a Nothing instance for the given @type.
603 * At least one of @child_type and @child must be non-%NULL.
604 * If @child_type is non-%NULL then it must be a definite type.
605 * If they are both non-%NULL then @child_type must be the type
606 * of @child.
608 * If @child is a floating reference (see g_variant_ref_sink()), the new
609 * instance takes ownership of @child.
611 * Returns: (transfer none): a floating reference to a new #GVariant maybe instance
613 * Since: 2.24
615 GVariant *
616 g_variant_new_maybe (const GVariantType *child_type,
617 GVariant *child)
619 GVariantType *maybe_type;
620 GVariant *value;
622 g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
623 (child_type), 0);
624 g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
625 g_return_val_if_fail (child_type == NULL || child == NULL ||
626 g_variant_is_of_type (child, child_type),
627 NULL);
629 if (child_type == NULL)
630 child_type = g_variant_get_type (child);
632 maybe_type = g_variant_type_new_maybe (child_type);
634 if (child != NULL)
636 GVariant **children;
637 gboolean trusted;
639 children = g_new (GVariant *, 1);
640 children[0] = g_variant_ref_sink (child);
641 trusted = g_variant_is_trusted (children[0]);
643 value = g_variant_new_from_children (maybe_type, children, 1, trusted);
645 else
646 value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
648 g_variant_type_free (maybe_type);
650 return value;
654 * g_variant_get_maybe:
655 * @value: a maybe-typed value
657 * Given a maybe-typed #GVariant instance, extract its value. If the
658 * value is Nothing, then this function returns %NULL.
660 * Returns: (allow-none) (transfer full): the contents of @value, or %NULL
662 * Since: 2.24
664 GVariant *
665 g_variant_get_maybe (GVariant *value)
667 TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
669 if (g_variant_n_children (value))
670 return g_variant_get_child_value (value, 0);
672 return NULL;
676 * g_variant_new_variant: (constructor)
677 * @value: a #GVariant instance
679 * Boxes @value. The result is a #GVariant instance representing a
680 * variant containing the original value.
682 * If @child is a floating reference (see g_variant_ref_sink()), the new
683 * instance takes ownership of @child.
685 * Returns: (transfer none): a floating reference to a new variant #GVariant instance
687 * Since: 2.24
689 GVariant *
690 g_variant_new_variant (GVariant *value)
692 g_return_val_if_fail (value != NULL, NULL);
694 g_variant_ref_sink (value);
696 return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
697 g_memdup (&value, sizeof value),
698 1, g_variant_is_trusted (value));
702 * g_variant_get_variant:
703 * @value: a variant #GVariant instance
705 * Unboxes @value. The result is the #GVariant instance that was
706 * contained in @value.
708 * Returns: (transfer full): the item contained in the variant
710 * Since: 2.24
712 GVariant *
713 g_variant_get_variant (GVariant *value)
715 TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
717 return g_variant_get_child_value (value, 0);
721 * g_variant_new_array:
722 * @child_type: (allow-none): the element type of the new array
723 * @children: (allow-none) (array length=n_children): an array of
724 * #GVariant pointers, the children
725 * @n_children: the length of @children
727 * Creates a new #GVariant array from @children.
729 * @child_type must be non-%NULL if @n_children is zero. Otherwise, the
730 * child type is determined by inspecting the first element of the
731 * @children array. If @child_type is non-%NULL then it must be a
732 * definite type.
734 * The items of the array are taken from the @children array. No entry
735 * in the @children array may be %NULL.
737 * All items in the array must have the same type, which must be the
738 * same as @child_type, if given.
740 * If the @children are floating references (see g_variant_ref_sink()), the
741 * new instance takes ownership of them as if via g_variant_ref_sink().
743 * Returns: (transfer none): a floating reference to a new #GVariant array
745 * Since: 2.24
747 GVariant *
748 g_variant_new_array (const GVariantType *child_type,
749 GVariant * const *children,
750 gsize n_children)
752 GVariantType *array_type;
753 GVariant **my_children;
754 gboolean trusted;
755 GVariant *value;
756 gsize i;
758 g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
759 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
760 g_return_val_if_fail (child_type == NULL ||
761 g_variant_type_is_definite (child_type), NULL);
763 my_children = g_new (GVariant *, n_children);
764 trusted = TRUE;
766 if (child_type == NULL)
767 child_type = g_variant_get_type (children[0]);
768 array_type = g_variant_type_new_array (child_type);
770 for (i = 0; i < n_children; i++)
772 TYPE_CHECK (children[i], child_type, NULL);
773 my_children[i] = g_variant_ref_sink (children[i]);
774 trusted &= g_variant_is_trusted (children[i]);
777 value = g_variant_new_from_children (array_type, my_children,
778 n_children, trusted);
779 g_variant_type_free (array_type);
781 return value;
784 /*< private >
785 * g_variant_make_tuple_type:
786 * @children: (array length=n_children): an array of GVariant *
787 * @n_children: the length of @children
789 * Return the type of a tuple containing @children as its items.
791 static GVariantType *
792 g_variant_make_tuple_type (GVariant * const *children,
793 gsize n_children)
795 const GVariantType **types;
796 GVariantType *type;
797 gsize i;
799 types = g_new (const GVariantType *, n_children);
801 for (i = 0; i < n_children; i++)
802 types[i] = g_variant_get_type (children[i]);
804 type = g_variant_type_new_tuple (types, n_children);
805 g_free (types);
807 return type;
811 * g_variant_new_tuple:
812 * @children: (array length=n_children): the items to make the tuple out of
813 * @n_children: the length of @children
815 * Creates a new tuple #GVariant out of the items in @children. The
816 * type is determined from the types of @children. No entry in the
817 * @children array may be %NULL.
819 * If @n_children is 0 then the unit tuple is constructed.
821 * If the @children are floating references (see g_variant_ref_sink()), the
822 * new instance takes ownership of them as if via g_variant_ref_sink().
824 * Returns: (transfer none): a floating reference to a new #GVariant tuple
826 * Since: 2.24
828 GVariant *
829 g_variant_new_tuple (GVariant * const *children,
830 gsize n_children)
832 GVariantType *tuple_type;
833 GVariant **my_children;
834 gboolean trusted;
835 GVariant *value;
836 gsize i;
838 g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
840 my_children = g_new (GVariant *, n_children);
841 trusted = TRUE;
843 for (i = 0; i < n_children; i++)
845 my_children[i] = g_variant_ref_sink (children[i]);
846 trusted &= g_variant_is_trusted (children[i]);
849 tuple_type = g_variant_make_tuple_type (children, n_children);
850 value = g_variant_new_from_children (tuple_type, my_children,
851 n_children, trusted);
852 g_variant_type_free (tuple_type);
854 return value;
857 /*< private >
858 * g_variant_make_dict_entry_type:
859 * @key: a #GVariant, the key
860 * @val: a #GVariant, the value
862 * Return the type of a dictionary entry containing @key and @val as its
863 * children.
865 static GVariantType *
866 g_variant_make_dict_entry_type (GVariant *key,
867 GVariant *val)
869 return g_variant_type_new_dict_entry (g_variant_get_type (key),
870 g_variant_get_type (val));
874 * g_variant_new_dict_entry: (constructor)
875 * @key: a basic #GVariant, the key
876 * @value: a #GVariant, the value
878 * Creates a new dictionary entry #GVariant. @key and @value must be
879 * non-%NULL. @key must be a value of a basic type (ie: not a container).
881 * If the @key or @value are floating references (see g_variant_ref_sink()),
882 * the new instance takes ownership of them as if via g_variant_ref_sink().
884 * Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
886 * Since: 2.24
888 GVariant *
889 g_variant_new_dict_entry (GVariant *key,
890 GVariant *value)
892 GVariantType *dict_type;
893 GVariant **children;
894 gboolean trusted;
896 g_return_val_if_fail (key != NULL && value != NULL, NULL);
897 g_return_val_if_fail (!g_variant_is_container (key), NULL);
899 children = g_new (GVariant *, 2);
900 children[0] = g_variant_ref_sink (key);
901 children[1] = g_variant_ref_sink (value);
902 trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
904 dict_type = g_variant_make_dict_entry_type (key, value);
905 value = g_variant_new_from_children (dict_type, children, 2, trusted);
906 g_variant_type_free (dict_type);
908 return value;
912 * g_variant_lookup: (skip)
913 * @dictionary: a dictionary #GVariant
914 * @key: the key to lookup in the dictionary
915 * @format_string: a GVariant format string
916 * @...: the arguments to unpack the value into
918 * Looks up a value in a dictionary #GVariant.
920 * This function is a wrapper around g_variant_lookup_value() and
921 * g_variant_get(). In the case that %NULL would have been returned,
922 * this function returns %FALSE. Otherwise, it unpacks the returned
923 * value and returns %TRUE.
925 * @format_string determines the C types that are used for unpacking
926 * the values and also determines if the values are copied or borrowed,
927 * see the section on
928 * [GVariant format strings][gvariant-format-strings-pointers].
930 * This function is currently implemented with a linear scan. If you
931 * plan to do many lookups then #GVariantDict may be more efficient.
933 * Returns: %TRUE if a value was unpacked
935 * Since: 2.28
937 gboolean
938 g_variant_lookup (GVariant *dictionary,
939 const gchar *key,
940 const gchar *format_string,
941 ...)
943 GVariantType *type;
944 GVariant *value;
946 /* flatten */
947 g_variant_get_data (dictionary);
949 type = g_variant_format_string_scan_type (format_string, NULL, NULL);
950 value = g_variant_lookup_value (dictionary, key, type);
951 g_variant_type_free (type);
953 if (value)
955 va_list ap;
957 va_start (ap, format_string);
958 g_variant_get_va (value, format_string, NULL, &ap);
959 g_variant_unref (value);
960 va_end (ap);
962 return TRUE;
965 else
966 return FALSE;
970 * g_variant_lookup_value:
971 * @dictionary: a dictionary #GVariant
972 * @key: the key to lookup in the dictionary
973 * @expected_type: (allow-none): a #GVariantType, or %NULL
975 * Looks up a value in a dictionary #GVariant.
977 * This function works with dictionaries of the type a{s*} (and equally
978 * well with type a{o*}, but we only further discuss the string case
979 * for sake of clarity).
981 * In the event that @dictionary has the type a{sv}, the @expected_type
982 * string specifies what type of value is expected to be inside of the
983 * variant. If the value inside the variant has a different type then
984 * %NULL is returned. In the event that @dictionary has a value type other
985 * than v then @expected_type must directly match the key type and it is
986 * used to unpack the value directly or an error occurs.
988 * In either case, if @key is not found in @dictionary, %NULL is returned.
990 * If the key is found and the value has the correct type, it is
991 * returned. If @expected_type was specified then any non-%NULL return
992 * value will have this type.
994 * This function is currently implemented with a linear scan. If you
995 * plan to do many lookups then #GVariantDict may be more efficient.
997 * Returns: (transfer full): the value of the dictionary key, or %NULL
999 * Since: 2.28
1001 GVariant *
1002 g_variant_lookup_value (GVariant *dictionary,
1003 const gchar *key,
1004 const GVariantType *expected_type)
1006 GVariantIter iter;
1007 GVariant *entry;
1008 GVariant *value;
1010 g_return_val_if_fail (g_variant_is_of_type (dictionary,
1011 G_VARIANT_TYPE ("a{s*}")) ||
1012 g_variant_is_of_type (dictionary,
1013 G_VARIANT_TYPE ("a{o*}")),
1014 NULL);
1016 g_variant_iter_init (&iter, dictionary);
1018 while ((entry = g_variant_iter_next_value (&iter)))
1020 GVariant *entry_key;
1021 gboolean matches;
1023 entry_key = g_variant_get_child_value (entry, 0);
1024 matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
1025 g_variant_unref (entry_key);
1027 if (matches)
1028 break;
1030 g_variant_unref (entry);
1033 if (entry == NULL)
1034 return NULL;
1036 value = g_variant_get_child_value (entry, 1);
1037 g_variant_unref (entry);
1039 if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
1041 GVariant *tmp;
1043 tmp = g_variant_get_variant (value);
1044 g_variant_unref (value);
1046 if (expected_type && !g_variant_is_of_type (tmp, expected_type))
1048 g_variant_unref (tmp);
1049 tmp = NULL;
1052 value = tmp;
1055 g_return_val_if_fail (expected_type == NULL || value == NULL ||
1056 g_variant_is_of_type (value, expected_type), NULL);
1058 return value;
1062 * g_variant_get_fixed_array:
1063 * @value: a #GVariant array with fixed-sized elements
1064 * @n_elements: (out): a pointer to the location to store the number of items
1065 * @element_size: the size of each element
1067 * Provides access to the serialised data for an array of fixed-sized
1068 * items.
1070 * @value must be an array with fixed-sized elements. Numeric types are
1071 * fixed-size, as are tuples containing only other fixed-sized types.
1073 * @element_size must be the size of a single element in the array,
1074 * as given by the section on
1075 * [serialized data memory][gvariant-serialised-data-memory].
1077 * In particular, arrays of these fixed-sized types can be interpreted
1078 * as an array of the given C type, with @element_size set to the size
1079 * the appropriate type:
1080 * - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
1081 * - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
1082 * - %G_VARIANT_TYPE_BYTE: #guchar
1083 * - %G_VARIANT_TYPE_HANDLE: #guint32
1084 * - %G_VARIANT_TYPE_DOUBLE: #gdouble
1086 * For example, if calling this function for an array of 32-bit integers,
1087 * you might say sizeof(gint32). This value isn't used except for the purpose
1088 * of a double-check that the form of the serialised data matches the caller's
1089 * expectation.
1091 * @n_elements, which must be non-%NULL is set equal to the number of
1092 * items in the array.
1094 * Returns: (array length=n_elements) (transfer none): a pointer to
1095 * the fixed array
1097 * Since: 2.24
1099 gconstpointer
1100 g_variant_get_fixed_array (GVariant *value,
1101 gsize *n_elements,
1102 gsize element_size)
1104 GVariantTypeInfo *array_info;
1105 gsize array_element_size;
1106 gconstpointer data;
1107 gsize size;
1109 TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
1111 g_return_val_if_fail (n_elements != NULL, NULL);
1112 g_return_val_if_fail (element_size > 0, NULL);
1114 array_info = g_variant_get_type_info (value);
1115 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1117 g_return_val_if_fail (array_element_size, NULL);
1119 if G_UNLIKELY (array_element_size != element_size)
1121 if (array_element_size)
1122 g_critical ("g_variant_get_fixed_array: assertion "
1123 "'g_variant_array_has_fixed_size (value, element_size)' "
1124 "failed: array size %"G_GSIZE_FORMAT" does not match "
1125 "given element_size %"G_GSIZE_FORMAT".",
1126 array_element_size, element_size);
1127 else
1128 g_critical ("g_variant_get_fixed_array: assertion "
1129 "'g_variant_array_has_fixed_size (value, element_size)' "
1130 "failed: array does not have fixed size.");
1133 data = g_variant_get_data (value);
1134 size = g_variant_get_size (value);
1136 if (size % element_size)
1137 *n_elements = 0;
1138 else
1139 *n_elements = size / element_size;
1141 if (*n_elements)
1142 return data;
1144 return NULL;
1148 * g_variant_new_fixed_array:
1149 * @element_type: the #GVariantType of each element
1150 * @elements: a pointer to the fixed array of contiguous elements
1151 * @n_elements: the number of elements
1152 * @element_size: the size of each element
1154 * Provides access to the serialised data for an array of fixed-sized
1155 * items.
1157 * @value must be an array with fixed-sized elements. Numeric types are
1158 * fixed-size as are tuples containing only other fixed-sized types.
1160 * @element_size must be the size of a single element in the array.
1161 * For example, if calling this function for an array of 32-bit integers,
1162 * you might say sizeof(gint32). This value isn't used except for the purpose
1163 * of a double-check that the form of the serialised data matches the caller's
1164 * expectation.
1166 * @n_elements, which must be non-%NULL is set equal to the number of
1167 * items in the array.
1169 * Returns: (transfer none): a floating reference to a new array #GVariant instance
1171 * Since: 2.32
1173 GVariant *
1174 g_variant_new_fixed_array (const GVariantType *element_type,
1175 gconstpointer elements,
1176 gsize n_elements,
1177 gsize element_size)
1179 GVariantType *array_type;
1180 gsize array_element_size;
1181 GVariantTypeInfo *array_info;
1182 GVariant *value;
1183 gpointer data;
1185 g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
1186 g_return_val_if_fail (element_size > 0, NULL);
1188 array_type = g_variant_type_new_array (element_type);
1189 array_info = g_variant_type_info_get (array_type);
1190 g_variant_type_info_query_element (array_info, NULL, &array_element_size);
1191 if G_UNLIKELY (array_element_size != element_size)
1193 if (array_element_size)
1194 g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
1195 " does not match given element_size %" G_GSIZE_FORMAT ".",
1196 array_element_size, element_size);
1197 else
1198 g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
1199 return NULL;
1202 data = g_memdup (elements, n_elements * element_size);
1203 value = g_variant_new_from_data (array_type, data,
1204 n_elements * element_size,
1205 FALSE, g_free, data);
1207 g_variant_type_free (array_type);
1208 g_variant_type_info_unref (array_info);
1210 return value;
1213 /* String type constructor/getters/validation {{{1 */
1215 * g_variant_new_string:
1216 * @string: a normal utf8 nul-terminated string
1218 * Creates a string #GVariant with the contents of @string.
1220 * @string must be valid utf8.
1222 * Returns: (transfer none): a floating reference to a new string #GVariant instance
1224 * Since: 2.24
1226 GVariant *
1227 g_variant_new_string (const gchar *string)
1229 g_return_val_if_fail (string != NULL, NULL);
1230 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1232 return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
1233 string, strlen (string) + 1);
1237 * g_variant_new_take_string: (skip)
1238 * @string: a normal utf8 nul-terminated string
1240 * Creates a string #GVariant with the contents of @string.
1242 * @string must be valid utf8.
1244 * This function consumes @string. g_free() will be called on @string
1245 * when it is no longer required.
1247 * You must not modify or access @string in any other way after passing
1248 * it to this function. It is even possible that @string is immediately
1249 * freed.
1251 * Returns: (transfer none): a floating reference to a new string
1252 * #GVariant instance
1254 * Since: 2.38
1256 GVariant *
1257 g_variant_new_take_string (gchar *string)
1259 GVariant *value;
1260 GBytes *bytes;
1262 g_return_val_if_fail (string != NULL, NULL);
1263 g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
1265 bytes = g_bytes_new_take (string, strlen (string) + 1);
1266 value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1267 g_bytes_unref (bytes);
1269 return value;
1273 * g_variant_new_printf: (skip)
1274 * @format_string: a printf-style format string
1275 * @...: arguments for @format_string
1277 * Creates a string-type GVariant using printf formatting.
1279 * This is similar to calling g_strdup_printf() and then
1280 * g_variant_new_string() but it saves a temporary variable and an
1281 * unnecessary copy.
1283 * Returns: (transfer none): a floating reference to a new string
1284 * #GVariant instance
1286 * Since: 2.38
1288 GVariant *
1289 g_variant_new_printf (const gchar *format_string,
1290 ...)
1292 GVariant *value;
1293 GBytes *bytes;
1294 gchar *string;
1295 va_list ap;
1297 g_return_val_if_fail (format_string != NULL, NULL);
1299 va_start (ap, format_string);
1300 string = g_strdup_vprintf (format_string, ap);
1301 va_end (ap);
1303 bytes = g_bytes_new_take (string, strlen (string) + 1);
1304 value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
1305 g_bytes_unref (bytes);
1307 return value;
1311 * g_variant_new_object_path:
1312 * @object_path: a normal C nul-terminated string
1314 * Creates a D-Bus object path #GVariant with the contents of @string.
1315 * @string must be a valid D-Bus object path. Use
1316 * g_variant_is_object_path() if you're not sure.
1318 * Returns: (transfer none): a floating reference to a new object path #GVariant instance
1320 * Since: 2.24
1322 GVariant *
1323 g_variant_new_object_path (const gchar *object_path)
1325 g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
1327 return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
1328 object_path, strlen (object_path) + 1);
1332 * g_variant_is_object_path:
1333 * @string: a normal C nul-terminated string
1335 * Determines if a given string is a valid D-Bus object path. You
1336 * should ensure that a string is a valid D-Bus object path before
1337 * passing it to g_variant_new_object_path().
1339 * A valid object path starts with '/' followed by zero or more
1340 * sequences of characters separated by '/' characters. Each sequence
1341 * must contain only the characters "[A-Z][a-z][0-9]_". No sequence
1342 * (including the one following the final '/' character) may be empty.
1344 * Returns: %TRUE if @string is a D-Bus object path
1346 * Since: 2.24
1348 gboolean
1349 g_variant_is_object_path (const gchar *string)
1351 g_return_val_if_fail (string != NULL, FALSE);
1353 return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
1357 * g_variant_new_signature:
1358 * @signature: a normal C nul-terminated string
1360 * Creates a D-Bus type signature #GVariant with the contents of
1361 * @string. @string must be a valid D-Bus type signature. Use
1362 * g_variant_is_signature() if you're not sure.
1364 * Returns: (transfer none): a floating reference to a new signature #GVariant instance
1366 * Since: 2.24
1368 GVariant *
1369 g_variant_new_signature (const gchar *signature)
1371 g_return_val_if_fail (g_variant_is_signature (signature), NULL);
1373 return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
1374 signature, strlen (signature) + 1);
1378 * g_variant_is_signature:
1379 * @string: a normal C nul-terminated string
1381 * Determines if a given string is a valid D-Bus type signature. You
1382 * should ensure that a string is a valid D-Bus type signature before
1383 * passing it to g_variant_new_signature().
1385 * D-Bus type signatures consist of zero or more definite #GVariantType
1386 * strings in sequence.
1388 * Returns: %TRUE if @string is a D-Bus type signature
1390 * Since: 2.24
1392 gboolean
1393 g_variant_is_signature (const gchar *string)
1395 g_return_val_if_fail (string != NULL, FALSE);
1397 return g_variant_serialiser_is_signature (string, strlen (string) + 1);
1401 * g_variant_get_string:
1402 * @value: a string #GVariant instance
1403 * @length: (allow-none) (default 0) (out): a pointer to a #gsize,
1404 * to store the length
1406 * Returns the string value of a #GVariant instance with a string
1407 * type. This includes the types %G_VARIANT_TYPE_STRING,
1408 * %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
1410 * The string will always be utf8 encoded.
1412 * If @length is non-%NULL then the length of the string (in bytes) is
1413 * returned there. For trusted values, this information is already
1414 * known. For untrusted values, a strlen() will be performed.
1416 * It is an error to call this function with a @value of any type
1417 * other than those three.
1419 * The return value remains valid as long as @value exists.
1421 * Returns: (transfer none): the constant string, utf8 encoded
1423 * Since: 2.24
1425 const gchar *
1426 g_variant_get_string (GVariant *value,
1427 gsize *length)
1429 gconstpointer data;
1430 gsize size;
1432 g_return_val_if_fail (value != NULL, NULL);
1433 g_return_val_if_fail (
1434 g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
1435 g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
1436 g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
1438 data = g_variant_get_data (value);
1439 size = g_variant_get_size (value);
1441 if (!g_variant_is_trusted (value))
1443 switch (g_variant_classify (value))
1445 case G_VARIANT_CLASS_STRING:
1446 if (g_variant_serialiser_is_string (data, size))
1447 break;
1449 data = "";
1450 size = 1;
1451 break;
1453 case G_VARIANT_CLASS_OBJECT_PATH:
1454 if (g_variant_serialiser_is_object_path (data, size))
1455 break;
1457 data = "/";
1458 size = 2;
1459 break;
1461 case G_VARIANT_CLASS_SIGNATURE:
1462 if (g_variant_serialiser_is_signature (data, size))
1463 break;
1465 data = "";
1466 size = 1;
1467 break;
1469 default:
1470 g_assert_not_reached ();
1474 if (length)
1475 *length = size - 1;
1477 return data;
1481 * g_variant_dup_string:
1482 * @value: a string #GVariant instance
1483 * @length: (out): a pointer to a #gsize, to store the length
1485 * Similar to g_variant_get_string() except that instead of returning
1486 * a constant string, the string is duplicated.
1488 * The string will always be utf8 encoded.
1490 * The return value must be freed using g_free().
1492 * Returns: (transfer full): a newly allocated string, utf8 encoded
1494 * Since: 2.24
1496 gchar *
1497 g_variant_dup_string (GVariant *value,
1498 gsize *length)
1500 return g_strdup (g_variant_get_string (value, length));
1504 * g_variant_new_strv:
1505 * @strv: (array length=length) (element-type utf8): an array of strings
1506 * @length: the length of @strv, or -1
1508 * Constructs an array of strings #GVariant from the given array of
1509 * strings.
1511 * If @length is -1 then @strv is %NULL-terminated.
1513 * Returns: (transfer none): a new floating #GVariant instance
1515 * Since: 2.24
1517 GVariant *
1518 g_variant_new_strv (const gchar * const *strv,
1519 gssize length)
1521 GVariant **strings;
1522 gsize i;
1524 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1526 if (length < 0)
1527 length = g_strv_length ((gchar **) strv);
1529 strings = g_new (GVariant *, length);
1530 for (i = 0; i < length; i++)
1531 strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
1533 return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
1534 strings, length, TRUE);
1538 * g_variant_get_strv:
1539 * @value: an array of strings #GVariant
1540 * @length: (out) (allow-none): the length of the result, or %NULL
1542 * Gets the contents of an array of strings #GVariant. This call
1543 * makes a shallow copy; the return result should be released with
1544 * g_free(), but the individual strings must not be modified.
1546 * If @length is non-%NULL then the number of elements in the result
1547 * is stored there. In any case, the resulting array will be
1548 * %NULL-terminated.
1550 * For an empty array, @length will be set to 0 and a pointer to a
1551 * %NULL pointer will be returned.
1553 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1555 * Since: 2.24
1557 const gchar **
1558 g_variant_get_strv (GVariant *value,
1559 gsize *length)
1561 const gchar **strv;
1562 gsize n;
1563 gsize i;
1565 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1567 g_variant_get_data (value);
1568 n = g_variant_n_children (value);
1569 strv = g_new (const gchar *, n + 1);
1571 for (i = 0; i < n; i++)
1573 GVariant *string;
1575 string = g_variant_get_child_value (value, i);
1576 strv[i] = g_variant_get_string (string, NULL);
1577 g_variant_unref (string);
1579 strv[i] = NULL;
1581 if (length)
1582 *length = n;
1584 return strv;
1588 * g_variant_dup_strv:
1589 * @value: an array of strings #GVariant
1590 * @length: (out) (allow-none): the length of the result, or %NULL
1592 * Gets the contents of an array of strings #GVariant. This call
1593 * makes a deep copy; the return result should be released with
1594 * g_strfreev().
1596 * If @length is non-%NULL then the number of elements in the result
1597 * is stored there. In any case, the resulting array will be
1598 * %NULL-terminated.
1600 * For an empty array, @length will be set to 0 and a pointer to a
1601 * %NULL pointer will be returned.
1603 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1605 * Since: 2.24
1607 gchar **
1608 g_variant_dup_strv (GVariant *value,
1609 gsize *length)
1611 gchar **strv;
1612 gsize n;
1613 gsize i;
1615 TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
1617 n = g_variant_n_children (value);
1618 strv = g_new (gchar *, n + 1);
1620 for (i = 0; i < n; i++)
1622 GVariant *string;
1624 string = g_variant_get_child_value (value, i);
1625 strv[i] = g_variant_dup_string (string, NULL);
1626 g_variant_unref (string);
1628 strv[i] = NULL;
1630 if (length)
1631 *length = n;
1633 return strv;
1637 * g_variant_new_objv:
1638 * @strv: (array length=length) (element-type utf8): an array of strings
1639 * @length: the length of @strv, or -1
1641 * Constructs an array of object paths #GVariant from the given array of
1642 * strings.
1644 * Each string must be a valid #GVariant object path; see
1645 * g_variant_is_object_path().
1647 * If @length is -1 then @strv is %NULL-terminated.
1649 * Returns: (transfer none): a new floating #GVariant instance
1651 * Since: 2.30
1653 GVariant *
1654 g_variant_new_objv (const gchar * const *strv,
1655 gssize length)
1657 GVariant **strings;
1658 gsize i;
1660 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1662 if (length < 0)
1663 length = g_strv_length ((gchar **) strv);
1665 strings = g_new (GVariant *, length);
1666 for (i = 0; i < length; i++)
1667 strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
1669 return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
1670 strings, length, TRUE);
1674 * g_variant_get_objv:
1675 * @value: an array of object paths #GVariant
1676 * @length: (out) (allow-none): the length of the result, or %NULL
1678 * Gets the contents of an array of object paths #GVariant. This call
1679 * makes a shallow copy; the return result should be released with
1680 * g_free(), but the individual strings must not be modified.
1682 * If @length is non-%NULL then the number of elements in the result
1683 * is stored there. In any case, the resulting array will be
1684 * %NULL-terminated.
1686 * For an empty array, @length will be set to 0 and a pointer to a
1687 * %NULL pointer will be returned.
1689 * Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
1691 * Since: 2.30
1693 const gchar **
1694 g_variant_get_objv (GVariant *value,
1695 gsize *length)
1697 const gchar **strv;
1698 gsize n;
1699 gsize i;
1701 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1703 g_variant_get_data (value);
1704 n = g_variant_n_children (value);
1705 strv = g_new (const gchar *, n + 1);
1707 for (i = 0; i < n; i++)
1709 GVariant *string;
1711 string = g_variant_get_child_value (value, i);
1712 strv[i] = g_variant_get_string (string, NULL);
1713 g_variant_unref (string);
1715 strv[i] = NULL;
1717 if (length)
1718 *length = n;
1720 return strv;
1724 * g_variant_dup_objv:
1725 * @value: an array of object paths #GVariant
1726 * @length: (out) (allow-none): the length of the result, or %NULL
1728 * Gets the contents of an array of object paths #GVariant. This call
1729 * makes a deep copy; the return result should be released with
1730 * g_strfreev().
1732 * If @length is non-%NULL then the number of elements in the result
1733 * is stored there. In any case, the resulting array will be
1734 * %NULL-terminated.
1736 * For an empty array, @length will be set to 0 and a pointer to a
1737 * %NULL pointer will be returned.
1739 * Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
1741 * Since: 2.30
1743 gchar **
1744 g_variant_dup_objv (GVariant *value,
1745 gsize *length)
1747 gchar **strv;
1748 gsize n;
1749 gsize i;
1751 TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
1753 n = g_variant_n_children (value);
1754 strv = g_new (gchar *, n + 1);
1756 for (i = 0; i < n; i++)
1758 GVariant *string;
1760 string = g_variant_get_child_value (value, i);
1761 strv[i] = g_variant_dup_string (string, NULL);
1762 g_variant_unref (string);
1764 strv[i] = NULL;
1766 if (length)
1767 *length = n;
1769 return strv;
1774 * g_variant_new_bytestring:
1775 * @string: (array zero-terminated=1) (element-type guint8): a normal
1776 * nul-terminated string in no particular encoding
1778 * Creates an array-of-bytes #GVariant with the contents of @string.
1779 * This function is just like g_variant_new_string() except that the
1780 * string need not be valid utf8.
1782 * The nul terminator character at the end of the string is stored in
1783 * the array.
1785 * Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
1787 * Since: 2.26
1789 GVariant *
1790 g_variant_new_bytestring (const gchar *string)
1792 g_return_val_if_fail (string != NULL, NULL);
1794 return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
1795 string, strlen (string) + 1);
1799 * g_variant_get_bytestring:
1800 * @value: an array-of-bytes #GVariant instance
1802 * Returns the string value of a #GVariant instance with an
1803 * array-of-bytes type. The string has no particular encoding.
1805 * If the array does not end with a nul terminator character, the empty
1806 * string is returned. For this reason, you can always trust that a
1807 * non-%NULL nul-terminated string will be returned by this function.
1809 * If the array contains a nul terminator character somewhere other than
1810 * the last byte then the returned string is the string, up to the first
1811 * such nul character.
1813 * It is an error to call this function with a @value that is not an
1814 * array of bytes.
1816 * The return value remains valid as long as @value exists.
1818 * Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
1819 * the constant string
1821 * Since: 2.26
1823 const gchar *
1824 g_variant_get_bytestring (GVariant *value)
1826 const gchar *string;
1827 gsize size;
1829 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
1831 /* Won't be NULL since this is an array type */
1832 string = g_variant_get_data (value);
1833 size = g_variant_get_size (value);
1835 if (size && string[size - 1] == '\0')
1836 return string;
1837 else
1838 return "";
1842 * g_variant_dup_bytestring:
1843 * @value: an array-of-bytes #GVariant instance
1844 * @length: (out) (allow-none) (default NULL): a pointer to a #gsize, to store
1845 * the length (not including the nul terminator)
1847 * Similar to g_variant_get_bytestring() except that instead of
1848 * returning a constant string, the string is duplicated.
1850 * The return value must be freed using g_free().
1852 * Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
1853 * a newly allocated string
1855 * Since: 2.26
1857 gchar *
1858 g_variant_dup_bytestring (GVariant *value,
1859 gsize *length)
1861 const gchar *original = g_variant_get_bytestring (value);
1862 gsize size;
1864 /* don't crash in case get_bytestring() had an assert failure */
1865 if (original == NULL)
1866 return NULL;
1868 size = strlen (original);
1870 if (length)
1871 *length = size;
1873 return g_memdup (original, size + 1);
1877 * g_variant_new_bytestring_array:
1878 * @strv: (array length=length): an array of strings
1879 * @length: the length of @strv, or -1
1881 * Constructs an array of bytestring #GVariant from the given array of
1882 * strings.
1884 * If @length is -1 then @strv is %NULL-terminated.
1886 * Returns: (transfer none): a new floating #GVariant instance
1888 * Since: 2.26
1890 GVariant *
1891 g_variant_new_bytestring_array (const gchar * const *strv,
1892 gssize length)
1894 GVariant **strings;
1895 gsize i;
1897 g_return_val_if_fail (length == 0 || strv != NULL, NULL);
1899 if (length < 0)
1900 length = g_strv_length ((gchar **) strv);
1902 strings = g_new (GVariant *, length);
1903 for (i = 0; i < length; i++)
1904 strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
1906 return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
1907 strings, length, TRUE);
1911 * g_variant_get_bytestring_array:
1912 * @value: an array of array of bytes #GVariant ('aay')
1913 * @length: (out) (allow-none): the length of the result, or %NULL
1915 * Gets the contents of an array of array of bytes #GVariant. This call
1916 * makes a shallow copy; the return result should be released with
1917 * g_free(), but the individual strings must not be modified.
1919 * If @length is non-%NULL then the number of elements in the result is
1920 * stored there. In any case, the resulting array will be
1921 * %NULL-terminated.
1923 * For an empty array, @length will be set to 0 and a pointer to a
1924 * %NULL pointer will be returned.
1926 * Returns: (array length=length) (transfer container): an array of constant strings
1928 * Since: 2.26
1930 const gchar **
1931 g_variant_get_bytestring_array (GVariant *value,
1932 gsize *length)
1934 const gchar **strv;
1935 gsize n;
1936 gsize i;
1938 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1940 g_variant_get_data (value);
1941 n = g_variant_n_children (value);
1942 strv = g_new (const gchar *, n + 1);
1944 for (i = 0; i < n; i++)
1946 GVariant *string;
1948 string = g_variant_get_child_value (value, i);
1949 strv[i] = g_variant_get_bytestring (string);
1950 g_variant_unref (string);
1952 strv[i] = NULL;
1954 if (length)
1955 *length = n;
1957 return strv;
1961 * g_variant_dup_bytestring_array:
1962 * @value: an array of array of bytes #GVariant ('aay')
1963 * @length: (out) (allow-none): the length of the result, or %NULL
1965 * Gets the contents of an array of array of bytes #GVariant. This call
1966 * makes a deep copy; the return result should be released with
1967 * g_strfreev().
1969 * If @length is non-%NULL then the number of elements in the result is
1970 * stored there. In any case, the resulting array will be
1971 * %NULL-terminated.
1973 * For an empty array, @length will be set to 0 and a pointer to a
1974 * %NULL pointer will be returned.
1976 * Returns: (array length=length) (transfer full): an array of strings
1978 * Since: 2.26
1980 gchar **
1981 g_variant_dup_bytestring_array (GVariant *value,
1982 gsize *length)
1984 gchar **strv;
1985 gsize n;
1986 gsize i;
1988 TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
1990 g_variant_get_data (value);
1991 n = g_variant_n_children (value);
1992 strv = g_new (gchar *, n + 1);
1994 for (i = 0; i < n; i++)
1996 GVariant *string;
1998 string = g_variant_get_child_value (value, i);
1999 strv[i] = g_variant_dup_bytestring (string, NULL);
2000 g_variant_unref (string);
2002 strv[i] = NULL;
2004 if (length)
2005 *length = n;
2007 return strv;
2010 /* Type checking and querying {{{1 */
2012 * g_variant_get_type:
2013 * @value: a #GVariant
2015 * Determines the type of @value.
2017 * The return value is valid for the lifetime of @value and must not
2018 * be freed.
2020 * Returns: a #GVariantType
2022 * Since: 2.24
2024 const GVariantType *
2025 g_variant_get_type (GVariant *value)
2027 GVariantTypeInfo *type_info;
2029 g_return_val_if_fail (value != NULL, NULL);
2031 type_info = g_variant_get_type_info (value);
2033 return (GVariantType *) g_variant_type_info_get_type_string (type_info);
2037 * g_variant_get_type_string:
2038 * @value: a #GVariant
2040 * Returns the type string of @value. Unlike the result of calling
2041 * g_variant_type_peek_string(), this string is nul-terminated. This
2042 * string belongs to #GVariant and must not be freed.
2044 * Returns: the type string for the type of @value
2046 * Since: 2.24
2048 const gchar *
2049 g_variant_get_type_string (GVariant *value)
2051 GVariantTypeInfo *type_info;
2053 g_return_val_if_fail (value != NULL, NULL);
2055 type_info = g_variant_get_type_info (value);
2057 return g_variant_type_info_get_type_string (type_info);
2061 * g_variant_is_of_type:
2062 * @value: a #GVariant instance
2063 * @type: a #GVariantType
2065 * Checks if a value has a type matching the provided type.
2067 * Returns: %TRUE if the type of @value matches @type
2069 * Since: 2.24
2071 gboolean
2072 g_variant_is_of_type (GVariant *value,
2073 const GVariantType *type)
2075 return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
2079 * g_variant_is_container:
2080 * @value: a #GVariant instance
2082 * Checks if @value is a container.
2084 * Returns: %TRUE if @value is a container
2086 * Since: 2.24
2088 gboolean
2089 g_variant_is_container (GVariant *value)
2091 return g_variant_type_is_container (g_variant_get_type (value));
2096 * g_variant_classify:
2097 * @value: a #GVariant
2099 * Classifies @value according to its top-level type.
2101 * Returns: the #GVariantClass of @value
2103 * Since: 2.24
2106 * GVariantClass:
2107 * @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
2108 * @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
2109 * @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
2110 * @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
2111 * @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
2112 * @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
2113 * @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
2114 * @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
2115 * @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
2116 * @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
2117 * point value.
2118 * @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
2119 * @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
2120 * string.
2121 * @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
2122 * @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
2123 * @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
2124 * @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
2125 * @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
2126 * @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
2128 * The range of possible top-level types of #GVariant instances.
2130 * Since: 2.24
2132 GVariantClass
2133 g_variant_classify (GVariant *value)
2135 g_return_val_if_fail (value != NULL, 0);
2137 return *g_variant_get_type_string (value);
2140 /* Pretty printer {{{1 */
2141 /* This function is not introspectable because if @string is NULL,
2142 @returns is (transfer full), otherwise it is (transfer none), which
2143 is not supported by GObjectIntrospection */
2145 * g_variant_print_string: (skip)
2146 * @value: a #GVariant
2147 * @string: (allow-none) (default NULL): a #GString, or %NULL
2148 * @type_annotate: %TRUE if type information should be included in
2149 * the output
2151 * Behaves as g_variant_print(), but operates on a #GString.
2153 * If @string is non-%NULL then it is appended to and returned. Else,
2154 * a new empty #GString is allocated and it is returned.
2156 * Returns: a #GString containing the string
2158 * Since: 2.24
2160 GString *
2161 g_variant_print_string (GVariant *value,
2162 GString *string,
2163 gboolean type_annotate)
2165 if G_UNLIKELY (string == NULL)
2166 string = g_string_new (NULL);
2168 switch (g_variant_classify (value))
2170 case G_VARIANT_CLASS_MAYBE:
2171 if (type_annotate)
2172 g_string_append_printf (string, "@%s ",
2173 g_variant_get_type_string (value));
2175 if (g_variant_n_children (value))
2177 gchar *printed_child;
2178 GVariant *element;
2180 /* Nested maybes:
2182 * Consider the case of the type "mmi". In this case we could
2183 * write "just just 4", but "4" alone is totally unambiguous,
2184 * so we try to drop "just" where possible.
2186 * We have to be careful not to always drop "just", though,
2187 * since "nothing" needs to be distinguishable from "just
2188 * nothing". The case where we need to ensure we keep the
2189 * "just" is actually exactly the case where we have a nested
2190 * Nothing.
2192 * Instead of searching for that nested Nothing, we just print
2193 * the contained value into a separate string and see if we
2194 * end up with "nothing" at the end of it. If so, we need to
2195 * add "just" at our level.
2197 element = g_variant_get_child_value (value, 0);
2198 printed_child = g_variant_print (element, FALSE);
2199 g_variant_unref (element);
2201 if (g_str_has_suffix (printed_child, "nothing"))
2202 g_string_append (string, "just ");
2203 g_string_append (string, printed_child);
2204 g_free (printed_child);
2206 else
2207 g_string_append (string, "nothing");
2209 break;
2211 case G_VARIANT_CLASS_ARRAY:
2212 /* it's an array so the first character of the type string is 'a'
2214 * if the first two characters are 'ay' then it's a bytestring.
2215 * under certain conditions we print those as strings.
2217 if (g_variant_get_type_string (value)[1] == 'y')
2219 const gchar *str;
2220 gsize size;
2221 gsize i;
2223 /* first determine if it is a byte string.
2224 * that's when there's a single nul character: at the end.
2226 str = g_variant_get_data (value);
2227 size = g_variant_get_size (value);
2229 for (i = 0; i < size; i++)
2230 if (str[i] == '\0')
2231 break;
2233 /* first nul byte is the last byte -> it's a byte string. */
2234 if (i == size - 1)
2236 gchar *escaped = g_strescape (str, NULL);
2238 /* use double quotes only if a ' is in the string */
2239 if (strchr (str, '\''))
2240 g_string_append_printf (string, "b\"%s\"", escaped);
2241 else
2242 g_string_append_printf (string, "b'%s'", escaped);
2244 g_free (escaped);
2245 break;
2248 else
2249 /* fall through and handle normally... */;
2253 * if the first two characters are 'a{' then it's an array of
2254 * dictionary entries (ie: a dictionary) so we print that
2255 * differently.
2257 if (g_variant_get_type_string (value)[1] == '{')
2258 /* dictionary */
2260 const gchar *comma = "";
2261 gsize n, i;
2263 if ((n = g_variant_n_children (value)) == 0)
2265 if (type_annotate)
2266 g_string_append_printf (string, "@%s ",
2267 g_variant_get_type_string (value));
2268 g_string_append (string, "{}");
2269 break;
2272 g_string_append_c (string, '{');
2273 for (i = 0; i < n; i++)
2275 GVariant *entry, *key, *val;
2277 g_string_append (string, comma);
2278 comma = ", ";
2280 entry = g_variant_get_child_value (value, i);
2281 key = g_variant_get_child_value (entry, 0);
2282 val = g_variant_get_child_value (entry, 1);
2283 g_variant_unref (entry);
2285 g_variant_print_string (key, string, type_annotate);
2286 g_variant_unref (key);
2287 g_string_append (string, ": ");
2288 g_variant_print_string (val, string, type_annotate);
2289 g_variant_unref (val);
2290 type_annotate = FALSE;
2292 g_string_append_c (string, '}');
2294 else
2295 /* normal (non-dictionary) array */
2297 const gchar *comma = "";
2298 gsize n, i;
2300 if ((n = g_variant_n_children (value)) == 0)
2302 if (type_annotate)
2303 g_string_append_printf (string, "@%s ",
2304 g_variant_get_type_string (value));
2305 g_string_append (string, "[]");
2306 break;
2309 g_string_append_c (string, '[');
2310 for (i = 0; i < n; i++)
2312 GVariant *element;
2314 g_string_append (string, comma);
2315 comma = ", ";
2317 element = g_variant_get_child_value (value, i);
2319 g_variant_print_string (element, string, type_annotate);
2320 g_variant_unref (element);
2321 type_annotate = FALSE;
2323 g_string_append_c (string, ']');
2326 break;
2328 case G_VARIANT_CLASS_TUPLE:
2330 gsize n, i;
2332 n = g_variant_n_children (value);
2334 g_string_append_c (string, '(');
2335 for (i = 0; i < n; i++)
2337 GVariant *element;
2339 element = g_variant_get_child_value (value, i);
2340 g_variant_print_string (element, string, type_annotate);
2341 g_string_append (string, ", ");
2342 g_variant_unref (element);
2345 /* for >1 item: remove final ", "
2346 * for 1 item: remove final " ", but leave the ","
2347 * for 0 items: there is only "(", so remove nothing
2349 g_string_truncate (string, string->len - (n > 0) - (n > 1));
2350 g_string_append_c (string, ')');
2352 break;
2354 case G_VARIANT_CLASS_DICT_ENTRY:
2356 GVariant *element;
2358 g_string_append_c (string, '{');
2360 element = g_variant_get_child_value (value, 0);
2361 g_variant_print_string (element, string, type_annotate);
2362 g_variant_unref (element);
2364 g_string_append (string, ", ");
2366 element = g_variant_get_child_value (value, 1);
2367 g_variant_print_string (element, string, type_annotate);
2368 g_variant_unref (element);
2370 g_string_append_c (string, '}');
2372 break;
2374 case G_VARIANT_CLASS_VARIANT:
2376 GVariant *child = g_variant_get_variant (value);
2378 /* Always annotate types in nested variants, because they are
2379 * (by nature) of variable type.
2381 g_string_append_c (string, '<');
2382 g_variant_print_string (child, string, TRUE);
2383 g_string_append_c (string, '>');
2385 g_variant_unref (child);
2387 break;
2389 case G_VARIANT_CLASS_BOOLEAN:
2390 if (g_variant_get_boolean (value))
2391 g_string_append (string, "true");
2392 else
2393 g_string_append (string, "false");
2394 break;
2396 case G_VARIANT_CLASS_STRING:
2398 const gchar *str = g_variant_get_string (value, NULL);
2399 gunichar quote = strchr (str, '\'') ? '"' : '\'';
2401 g_string_append_c (string, quote);
2403 while (*str)
2405 gunichar c = g_utf8_get_char (str);
2407 if (c == quote || c == '\\')
2408 g_string_append_c (string, '\\');
2410 if (g_unichar_isprint (c))
2411 g_string_append_unichar (string, c);
2413 else
2415 g_string_append_c (string, '\\');
2416 if (c < 0x10000)
2417 switch (c)
2419 case '\a':
2420 g_string_append_c (string, 'a');
2421 break;
2423 case '\b':
2424 g_string_append_c (string, 'b');
2425 break;
2427 case '\f':
2428 g_string_append_c (string, 'f');
2429 break;
2431 case '\n':
2432 g_string_append_c (string, 'n');
2433 break;
2435 case '\r':
2436 g_string_append_c (string, 'r');
2437 break;
2439 case '\t':
2440 g_string_append_c (string, 't');
2441 break;
2443 case '\v':
2444 g_string_append_c (string, 'v');
2445 break;
2447 default:
2448 g_string_append_printf (string, "u%04x", c);
2449 break;
2451 else
2452 g_string_append_printf (string, "U%08x", c);
2455 str = g_utf8_next_char (str);
2458 g_string_append_c (string, quote);
2460 break;
2462 case G_VARIANT_CLASS_BYTE:
2463 if (type_annotate)
2464 g_string_append (string, "byte ");
2465 g_string_append_printf (string, "0x%02x",
2466 g_variant_get_byte (value));
2467 break;
2469 case G_VARIANT_CLASS_INT16:
2470 if (type_annotate)
2471 g_string_append (string, "int16 ");
2472 g_string_append_printf (string, "%"G_GINT16_FORMAT,
2473 g_variant_get_int16 (value));
2474 break;
2476 case G_VARIANT_CLASS_UINT16:
2477 if (type_annotate)
2478 g_string_append (string, "uint16 ");
2479 g_string_append_printf (string, "%"G_GUINT16_FORMAT,
2480 g_variant_get_uint16 (value));
2481 break;
2483 case G_VARIANT_CLASS_INT32:
2484 /* Never annotate this type because it is the default for numbers
2485 * (and this is a *pretty* printer)
2487 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2488 g_variant_get_int32 (value));
2489 break;
2491 case G_VARIANT_CLASS_HANDLE:
2492 if (type_annotate)
2493 g_string_append (string, "handle ");
2494 g_string_append_printf (string, "%"G_GINT32_FORMAT,
2495 g_variant_get_handle (value));
2496 break;
2498 case G_VARIANT_CLASS_UINT32:
2499 if (type_annotate)
2500 g_string_append (string, "uint32 ");
2501 g_string_append_printf (string, "%"G_GUINT32_FORMAT,
2502 g_variant_get_uint32 (value));
2503 break;
2505 case G_VARIANT_CLASS_INT64:
2506 if (type_annotate)
2507 g_string_append (string, "int64 ");
2508 g_string_append_printf (string, "%"G_GINT64_FORMAT,
2509 g_variant_get_int64 (value));
2510 break;
2512 case G_VARIANT_CLASS_UINT64:
2513 if (type_annotate)
2514 g_string_append (string, "uint64 ");
2515 g_string_append_printf (string, "%"G_GUINT64_FORMAT,
2516 g_variant_get_uint64 (value));
2517 break;
2519 case G_VARIANT_CLASS_DOUBLE:
2521 gchar buffer[100];
2522 gint i;
2524 g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
2526 for (i = 0; buffer[i]; i++)
2527 if (buffer[i] == '.' || buffer[i] == 'e' ||
2528 buffer[i] == 'n' || buffer[i] == 'N')
2529 break;
2531 /* if there is no '.' or 'e' in the float then add one */
2532 if (buffer[i] == '\0')
2534 buffer[i++] = '.';
2535 buffer[i++] = '0';
2536 buffer[i++] = '\0';
2539 g_string_append (string, buffer);
2541 break;
2543 case G_VARIANT_CLASS_OBJECT_PATH:
2544 if (type_annotate)
2545 g_string_append (string, "objectpath ");
2546 g_string_append_printf (string, "\'%s\'",
2547 g_variant_get_string (value, NULL));
2548 break;
2550 case G_VARIANT_CLASS_SIGNATURE:
2551 if (type_annotate)
2552 g_string_append (string, "signature ");
2553 g_string_append_printf (string, "\'%s\'",
2554 g_variant_get_string (value, NULL));
2555 break;
2557 default:
2558 g_assert_not_reached ();
2561 return string;
2565 * g_variant_print:
2566 * @value: a #GVariant
2567 * @type_annotate: %TRUE if type information should be included in
2568 * the output
2570 * Pretty-prints @value in the format understood by g_variant_parse().
2572 * The format is described [here][gvariant-text].
2574 * If @type_annotate is %TRUE, then type information is included in
2575 * the output.
2577 * Returns: (transfer full): a newly-allocated string holding the result.
2579 * Since: 2.24
2581 gchar *
2582 g_variant_print (GVariant *value,
2583 gboolean type_annotate)
2585 return g_string_free (g_variant_print_string (value, NULL, type_annotate),
2586 FALSE);
2589 /* Hash, Equal, Compare {{{1 */
2591 * g_variant_hash:
2592 * @value: (type GVariant): a basic #GVariant value as a #gconstpointer
2594 * Generates a hash value for a #GVariant instance.
2596 * The output of this function is guaranteed to be the same for a given
2597 * value only per-process. It may change between different processor
2598 * architectures or even different versions of GLib. Do not use this
2599 * function as a basis for building protocols or file formats.
2601 * The type of @value is #gconstpointer only to allow use of this
2602 * function with #GHashTable. @value must be a #GVariant.
2604 * Returns: a hash value corresponding to @value
2606 * Since: 2.24
2608 guint
2609 g_variant_hash (gconstpointer value_)
2611 GVariant *value = (GVariant *) value_;
2613 switch (g_variant_classify (value))
2615 case G_VARIANT_CLASS_STRING:
2616 case G_VARIANT_CLASS_OBJECT_PATH:
2617 case G_VARIANT_CLASS_SIGNATURE:
2618 return g_str_hash (g_variant_get_string (value, NULL));
2620 case G_VARIANT_CLASS_BOOLEAN:
2621 /* this is a very odd thing to hash... */
2622 return g_variant_get_boolean (value);
2624 case G_VARIANT_CLASS_BYTE:
2625 return g_variant_get_byte (value);
2627 case G_VARIANT_CLASS_INT16:
2628 case G_VARIANT_CLASS_UINT16:
2630 const guint16 *ptr;
2632 ptr = g_variant_get_data (value);
2634 if (ptr)
2635 return *ptr;
2636 else
2637 return 0;
2640 case G_VARIANT_CLASS_INT32:
2641 case G_VARIANT_CLASS_UINT32:
2642 case G_VARIANT_CLASS_HANDLE:
2644 const guint *ptr;
2646 ptr = g_variant_get_data (value);
2648 if (ptr)
2649 return *ptr;
2650 else
2651 return 0;
2654 case G_VARIANT_CLASS_INT64:
2655 case G_VARIANT_CLASS_UINT64:
2656 case G_VARIANT_CLASS_DOUBLE:
2657 /* need a separate case for these guys because otherwise
2658 * performance could be quite bad on big endian systems
2661 const guint *ptr;
2663 ptr = g_variant_get_data (value);
2665 if (ptr)
2666 return ptr[0] + ptr[1];
2667 else
2668 return 0;
2671 default:
2672 g_return_val_if_fail (!g_variant_is_container (value), 0);
2673 g_assert_not_reached ();
2678 * g_variant_equal:
2679 * @one: (type GVariant): a #GVariant instance
2680 * @two: (type GVariant): a #GVariant instance
2682 * Checks if @one and @two have the same type and value.
2684 * The types of @one and @two are #gconstpointer only to allow use of
2685 * this function with #GHashTable. They must each be a #GVariant.
2687 * Returns: %TRUE if @one and @two are equal
2689 * Since: 2.24
2691 gboolean
2692 g_variant_equal (gconstpointer one,
2693 gconstpointer two)
2695 gboolean equal;
2697 g_return_val_if_fail (one != NULL && two != NULL, FALSE);
2699 if (g_variant_get_type_info ((GVariant *) one) !=
2700 g_variant_get_type_info ((GVariant *) two))
2701 return FALSE;
2703 /* if both values are trusted to be in their canonical serialised form
2704 * then a simple memcmp() of their serialised data will answer the
2705 * question.
2707 * if not, then this might generate a false negative (since it is
2708 * possible for two different byte sequences to represent the same
2709 * value). for now we solve this by pretty-printing both values and
2710 * comparing the result.
2712 if (g_variant_is_trusted ((GVariant *) one) &&
2713 g_variant_is_trusted ((GVariant *) two))
2715 gconstpointer data_one, data_two;
2716 gsize size_one, size_two;
2718 size_one = g_variant_get_size ((GVariant *) one);
2719 size_two = g_variant_get_size ((GVariant *) two);
2721 if (size_one != size_two)
2722 return FALSE;
2724 data_one = g_variant_get_data ((GVariant *) one);
2725 data_two = g_variant_get_data ((GVariant *) two);
2727 equal = memcmp (data_one, data_two, size_one) == 0;
2729 else
2731 gchar *strone, *strtwo;
2733 strone = g_variant_print ((GVariant *) one, FALSE);
2734 strtwo = g_variant_print ((GVariant *) two, FALSE);
2735 equal = strcmp (strone, strtwo) == 0;
2736 g_free (strone);
2737 g_free (strtwo);
2740 return equal;
2744 * g_variant_compare:
2745 * @one: (type GVariant): a basic-typed #GVariant instance
2746 * @two: (type GVariant): a #GVariant instance of the same type
2748 * Compares @one and @two.
2750 * The types of @one and @two are #gconstpointer only to allow use of
2751 * this function with #GTree, #GPtrArray, etc. They must each be a
2752 * #GVariant.
2754 * Comparison is only defined for basic types (ie: booleans, numbers,
2755 * strings). For booleans, %FALSE is less than %TRUE. Numbers are
2756 * ordered in the usual way. Strings are in ASCII lexographical order.
2758 * It is a programmer error to attempt to compare container values or
2759 * two values that have types that are not exactly equal. For example,
2760 * you cannot compare a 32-bit signed integer with a 32-bit unsigned
2761 * integer. Also note that this function is not particularly
2762 * well-behaved when it comes to comparison of doubles; in particular,
2763 * the handling of incomparable values (ie: NaN) is undefined.
2765 * If you only require an equality comparison, g_variant_equal() is more
2766 * general.
2768 * Returns: negative value if a < b;
2769 * zero if a = b;
2770 * positive value if a > b.
2772 * Since: 2.26
2774 gint
2775 g_variant_compare (gconstpointer one,
2776 gconstpointer two)
2778 GVariant *a = (GVariant *) one;
2779 GVariant *b = (GVariant *) two;
2781 g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
2783 switch (g_variant_classify (a))
2785 case G_VARIANT_CLASS_BOOLEAN:
2786 return g_variant_get_boolean (a) -
2787 g_variant_get_boolean (b);
2789 case G_VARIANT_CLASS_BYTE:
2790 return ((gint) g_variant_get_byte (a)) -
2791 ((gint) g_variant_get_byte (b));
2793 case G_VARIANT_CLASS_INT16:
2794 return ((gint) g_variant_get_int16 (a)) -
2795 ((gint) g_variant_get_int16 (b));
2797 case G_VARIANT_CLASS_UINT16:
2798 return ((gint) g_variant_get_uint16 (a)) -
2799 ((gint) g_variant_get_uint16 (b));
2801 case G_VARIANT_CLASS_INT32:
2803 gint32 a_val = g_variant_get_int32 (a);
2804 gint32 b_val = g_variant_get_int32 (b);
2806 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2809 case G_VARIANT_CLASS_UINT32:
2811 guint32 a_val = g_variant_get_uint32 (a);
2812 guint32 b_val = g_variant_get_uint32 (b);
2814 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2817 case G_VARIANT_CLASS_INT64:
2819 gint64 a_val = g_variant_get_int64 (a);
2820 gint64 b_val = g_variant_get_int64 (b);
2822 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2825 case G_VARIANT_CLASS_UINT64:
2827 guint64 a_val = g_variant_get_uint64 (a);
2828 guint64 b_val = g_variant_get_uint64 (b);
2830 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2833 case G_VARIANT_CLASS_DOUBLE:
2835 gdouble a_val = g_variant_get_double (a);
2836 gdouble b_val = g_variant_get_double (b);
2838 return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
2841 case G_VARIANT_CLASS_STRING:
2842 case G_VARIANT_CLASS_OBJECT_PATH:
2843 case G_VARIANT_CLASS_SIGNATURE:
2844 return strcmp (g_variant_get_string (a, NULL),
2845 g_variant_get_string (b, NULL));
2847 default:
2848 g_return_val_if_fail (!g_variant_is_container (a), 0);
2849 g_assert_not_reached ();
2853 /* GVariantIter {{{1 */
2855 * GVariantIter: (skip)
2857 * #GVariantIter is an opaque data structure and can only be accessed
2858 * using the following functions.
2860 struct stack_iter
2862 GVariant *value;
2863 gssize n, i;
2865 const gchar *loop_format;
2867 gsize padding[3];
2868 gsize magic;
2871 G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
2873 struct heap_iter
2875 struct stack_iter iter;
2877 GVariant *value_ref;
2878 gsize magic;
2881 #define GVSI(i) ((struct stack_iter *) (i))
2882 #define GVHI(i) ((struct heap_iter *) (i))
2883 #define GVSI_MAGIC ((gsize) 3579507750u)
2884 #define GVHI_MAGIC ((gsize) 1450270775u)
2885 #define is_valid_iter(i) (i != NULL && \
2886 GVSI(i)->magic == GVSI_MAGIC)
2887 #define is_valid_heap_iter(i) (GVHI(i)->magic == GVHI_MAGIC && \
2888 is_valid_iter(i))
2891 * g_variant_iter_new:
2892 * @value: a container #GVariant
2894 * Creates a heap-allocated #GVariantIter for iterating over the items
2895 * in @value.
2897 * Use g_variant_iter_free() to free the return value when you no longer
2898 * need it.
2900 * A reference is taken to @value and will be released only when
2901 * g_variant_iter_free() is called.
2903 * Returns: (transfer full): a new heap-allocated #GVariantIter
2905 * Since: 2.24
2907 GVariantIter *
2908 g_variant_iter_new (GVariant *value)
2910 GVariantIter *iter;
2912 iter = (GVariantIter *) g_slice_new (struct heap_iter);
2913 GVHI(iter)->value_ref = g_variant_ref (value);
2914 GVHI(iter)->magic = GVHI_MAGIC;
2916 g_variant_iter_init (iter, value);
2918 return iter;
2922 * g_variant_iter_init: (skip)
2923 * @iter: a pointer to a #GVariantIter
2924 * @value: a container #GVariant
2926 * Initialises (without allocating) a #GVariantIter. @iter may be
2927 * completely uninitialised prior to this call; its old value is
2928 * ignored.
2930 * The iterator remains valid for as long as @value exists, and need not
2931 * be freed in any way.
2933 * Returns: the number of items in @value
2935 * Since: 2.24
2937 gsize
2938 g_variant_iter_init (GVariantIter *iter,
2939 GVariant *value)
2941 GVSI(iter)->magic = GVSI_MAGIC;
2942 GVSI(iter)->value = value;
2943 GVSI(iter)->n = g_variant_n_children (value);
2944 GVSI(iter)->i = -1;
2945 GVSI(iter)->loop_format = NULL;
2947 return GVSI(iter)->n;
2951 * g_variant_iter_copy:
2952 * @iter: a #GVariantIter
2954 * Creates a new heap-allocated #GVariantIter to iterate over the
2955 * container that was being iterated over by @iter. Iteration begins on
2956 * the new iterator from the current position of the old iterator but
2957 * the two copies are independent past that point.
2959 * Use g_variant_iter_free() to free the return value when you no longer
2960 * need it.
2962 * A reference is taken to the container that @iter is iterating over
2963 * and will be releated only when g_variant_iter_free() is called.
2965 * Returns: (transfer full): a new heap-allocated #GVariantIter
2967 * Since: 2.24
2969 GVariantIter *
2970 g_variant_iter_copy (GVariantIter *iter)
2972 GVariantIter *copy;
2974 g_return_val_if_fail (is_valid_iter (iter), 0);
2976 copy = g_variant_iter_new (GVSI(iter)->value);
2977 GVSI(copy)->i = GVSI(iter)->i;
2979 return copy;
2983 * g_variant_iter_n_children:
2984 * @iter: a #GVariantIter
2986 * Queries the number of child items in the container that we are
2987 * iterating over. This is the total number of items -- not the number
2988 * of items remaining.
2990 * This function might be useful for preallocation of arrays.
2992 * Returns: the number of children in the container
2994 * Since: 2.24
2996 gsize
2997 g_variant_iter_n_children (GVariantIter *iter)
2999 g_return_val_if_fail (is_valid_iter (iter), 0);
3001 return GVSI(iter)->n;
3005 * g_variant_iter_free:
3006 * @iter: (transfer full): a heap-allocated #GVariantIter
3008 * Frees a heap-allocated #GVariantIter. Only call this function on
3009 * iterators that were returned by g_variant_iter_new() or
3010 * g_variant_iter_copy().
3012 * Since: 2.24
3014 void
3015 g_variant_iter_free (GVariantIter *iter)
3017 g_return_if_fail (is_valid_heap_iter (iter));
3019 g_variant_unref (GVHI(iter)->value_ref);
3020 GVHI(iter)->magic = 0;
3022 g_slice_free (struct heap_iter, GVHI(iter));
3026 * g_variant_iter_next_value:
3027 * @iter: a #GVariantIter
3029 * Gets the next item in the container. If no more items remain then
3030 * %NULL is returned.
3032 * Use g_variant_unref() to drop your reference on the return value when
3033 * you no longer need it.
3035 * Here is an example for iterating with g_variant_iter_next_value():
3036 * |[<!-- language="C" -->
3037 * // recursively iterate a container
3038 * void
3039 * iterate_container_recursive (GVariant *container)
3041 * GVariantIter iter;
3042 * GVariant *child;
3044 * g_variant_iter_init (&iter, container);
3045 * while ((child = g_variant_iter_next_value (&iter)))
3047 * g_print ("type '%s'\n", g_variant_get_type_string (child));
3049 * if (g_variant_is_container (child))
3050 * iterate_container_recursive (child);
3052 * g_variant_unref (child);
3055 * ]|
3057 * Returns: (allow-none) (transfer full): a #GVariant, or %NULL
3059 * Since: 2.24
3061 GVariant *
3062 g_variant_iter_next_value (GVariantIter *iter)
3064 g_return_val_if_fail (is_valid_iter (iter), FALSE);
3066 if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
3068 g_critical ("g_variant_iter_next_value: must not be called again "
3069 "after NULL has already been returned.");
3070 return NULL;
3073 GVSI(iter)->i++;
3075 if (GVSI(iter)->i < GVSI(iter)->n)
3076 return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
3078 return NULL;
3081 /* GVariantBuilder {{{1 */
3083 * GVariantBuilder:
3085 * A utility type for constructing container-type #GVariant instances.
3087 * This is an opaque structure and may only be accessed using the
3088 * following functions.
3090 * #GVariantBuilder is not threadsafe in any way. Do not attempt to
3091 * access it from more than one thread.
3094 struct stack_builder
3096 GVariantBuilder *parent;
3097 GVariantType *type;
3099 /* type constraint explicitly specified by 'type'.
3100 * for tuple types, this moves along as we add more items.
3102 const GVariantType *expected_type;
3104 /* type constraint implied by previous array item.
3106 const GVariantType *prev_item_type;
3108 /* constraints on the number of children. max = -1 for unlimited. */
3109 gsize min_items;
3110 gsize max_items;
3112 /* dynamically-growing pointer array */
3113 GVariant **children;
3114 gsize allocated_children;
3115 gsize offset;
3117 /* set to '1' if all items in the container will have the same type
3118 * (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
3120 guint uniform_item_types : 1;
3122 /* set to '1' initially and changed to '0' if an untrusted value is
3123 * added
3125 guint trusted : 1;
3127 gsize magic;
3130 G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
3132 struct heap_builder
3134 GVariantBuilder builder;
3135 gsize magic;
3137 gint ref_count;
3140 #define GVSB(b) ((struct stack_builder *) (b))
3141 #define GVHB(b) ((struct heap_builder *) (b))
3142 #define GVSB_MAGIC ((gsize) 1033660112u)
3143 #define GVHB_MAGIC ((gsize) 3087242682u)
3144 #define is_valid_builder(b) (b != NULL && \
3145 GVSB(b)->magic == GVSB_MAGIC)
3146 #define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
3149 * g_variant_builder_new:
3150 * @type: a container type
3152 * Allocates and initialises a new #GVariantBuilder.
3154 * You should call g_variant_builder_unref() on the return value when it
3155 * is no longer needed. The memory will not be automatically freed by
3156 * any other call.
3158 * In most cases it is easier to place a #GVariantBuilder directly on
3159 * the stack of the calling function and initialise it with
3160 * g_variant_builder_init().
3162 * Returns: (transfer full): a #GVariantBuilder
3164 * Since: 2.24
3166 GVariantBuilder *
3167 g_variant_builder_new (const GVariantType *type)
3169 GVariantBuilder *builder;
3171 builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
3172 g_variant_builder_init (builder, type);
3173 GVHB(builder)->magic = GVHB_MAGIC;
3174 GVHB(builder)->ref_count = 1;
3176 return builder;
3180 * g_variant_builder_unref:
3181 * @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
3183 * Decreases the reference count on @builder.
3185 * In the event that there are no more references, releases all memory
3186 * associated with the #GVariantBuilder.
3188 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3189 * things will happen.
3191 * Since: 2.24
3193 void
3194 g_variant_builder_unref (GVariantBuilder *builder)
3196 g_return_if_fail (is_valid_heap_builder (builder));
3198 if (--GVHB(builder)->ref_count)
3199 return;
3201 g_variant_builder_clear (builder);
3202 GVHB(builder)->magic = 0;
3204 g_slice_free (struct heap_builder, GVHB(builder));
3208 * g_variant_builder_ref:
3209 * @builder: a #GVariantBuilder allocated by g_variant_builder_new()
3211 * Increases the reference count on @builder.
3213 * Don't call this on stack-allocated #GVariantBuilder instances or bad
3214 * things will happen.
3216 * Returns: (transfer full): a new reference to @builder
3218 * Since: 2.24
3220 GVariantBuilder *
3221 g_variant_builder_ref (GVariantBuilder *builder)
3223 g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
3225 GVHB(builder)->ref_count++;
3227 return builder;
3231 * g_variant_builder_clear: (skip)
3232 * @builder: a #GVariantBuilder
3234 * Releases all memory associated with a #GVariantBuilder without
3235 * freeing the #GVariantBuilder structure itself.
3237 * It typically only makes sense to do this on a stack-allocated
3238 * #GVariantBuilder if you want to abort building the value part-way
3239 * through. This function need not be called if you call
3240 * g_variant_builder_end() and it also doesn't need to be called on
3241 * builders allocated with g_variant_builder_new (see
3242 * g_variant_builder_unref() for that).
3244 * This function leaves the #GVariantBuilder structure set to all-zeros.
3245 * It is valid to call this function on either an initialised
3246 * #GVariantBuilder or one that is set to all-zeros but it is not valid
3247 * to call this function on uninitialised memory.
3249 * Since: 2.24
3251 void
3252 g_variant_builder_clear (GVariantBuilder *builder)
3254 gsize i;
3256 if (GVSB(builder)->magic == 0)
3257 /* all-zeros case */
3258 return;
3260 g_return_if_fail (is_valid_builder (builder));
3262 g_variant_type_free (GVSB(builder)->type);
3264 for (i = 0; i < GVSB(builder)->offset; i++)
3265 g_variant_unref (GVSB(builder)->children[i]);
3267 g_free (GVSB(builder)->children);
3269 if (GVSB(builder)->parent)
3271 g_variant_builder_clear (GVSB(builder)->parent);
3272 g_slice_free (GVariantBuilder, GVSB(builder)->parent);
3275 memset (builder, 0, sizeof (GVariantBuilder));
3279 * g_variant_builder_init: (skip)
3280 * @builder: a #GVariantBuilder
3281 * @type: a container type
3283 * Initialises a #GVariantBuilder structure.
3285 * @type must be non-%NULL. It specifies the type of container to
3286 * construct. It can be an indefinite type such as
3287 * %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
3288 * Maybe, array, tuple, dictionary entry and variant-typed values may be
3289 * constructed.
3291 * After the builder is initialised, values are added using
3292 * g_variant_builder_add_value() or g_variant_builder_add().
3294 * After all the child values are added, g_variant_builder_end() frees
3295 * the memory associated with the builder and returns the #GVariant that
3296 * was created.
3298 * This function completely ignores the previous contents of @builder.
3299 * On one hand this means that it is valid to pass in completely
3300 * uninitialised memory. On the other hand, this means that if you are
3301 * initialising over top of an existing #GVariantBuilder you need to
3302 * first call g_variant_builder_clear() in order to avoid leaking
3303 * memory.
3305 * You must not call g_variant_builder_ref() or
3306 * g_variant_builder_unref() on a #GVariantBuilder that was initialised
3307 * with this function. If you ever pass a reference to a
3308 * #GVariantBuilder outside of the control of your own code then you
3309 * should assume that the person receiving that reference may try to use
3310 * reference counting; you should use g_variant_builder_new() instead of
3311 * this function.
3313 * Since: 2.24
3315 void
3316 g_variant_builder_init (GVariantBuilder *builder,
3317 const GVariantType *type)
3319 g_return_if_fail (type != NULL);
3320 g_return_if_fail (g_variant_type_is_container (type));
3322 memset (builder, 0, sizeof (GVariantBuilder));
3324 GVSB(builder)->type = g_variant_type_copy (type);
3325 GVSB(builder)->magic = GVSB_MAGIC;
3326 GVSB(builder)->trusted = TRUE;
3328 switch (*(const gchar *) type)
3330 case G_VARIANT_CLASS_VARIANT:
3331 GVSB(builder)->uniform_item_types = TRUE;
3332 GVSB(builder)->allocated_children = 1;
3333 GVSB(builder)->expected_type = NULL;
3334 GVSB(builder)->min_items = 1;
3335 GVSB(builder)->max_items = 1;
3336 break;
3338 case G_VARIANT_CLASS_ARRAY:
3339 GVSB(builder)->uniform_item_types = TRUE;
3340 GVSB(builder)->allocated_children = 8;
3341 GVSB(builder)->expected_type =
3342 g_variant_type_element (GVSB(builder)->type);
3343 GVSB(builder)->min_items = 0;
3344 GVSB(builder)->max_items = -1;
3345 break;
3347 case G_VARIANT_CLASS_MAYBE:
3348 GVSB(builder)->uniform_item_types = TRUE;
3349 GVSB(builder)->allocated_children = 1;
3350 GVSB(builder)->expected_type =
3351 g_variant_type_element (GVSB(builder)->type);
3352 GVSB(builder)->min_items = 0;
3353 GVSB(builder)->max_items = 1;
3354 break;
3356 case G_VARIANT_CLASS_DICT_ENTRY:
3357 GVSB(builder)->uniform_item_types = FALSE;
3358 GVSB(builder)->allocated_children = 2;
3359 GVSB(builder)->expected_type =
3360 g_variant_type_key (GVSB(builder)->type);
3361 GVSB(builder)->min_items = 2;
3362 GVSB(builder)->max_items = 2;
3363 break;
3365 case 'r': /* G_VARIANT_TYPE_TUPLE was given */
3366 GVSB(builder)->uniform_item_types = FALSE;
3367 GVSB(builder)->allocated_children = 8;
3368 GVSB(builder)->expected_type = NULL;
3369 GVSB(builder)->min_items = 0;
3370 GVSB(builder)->max_items = -1;
3371 break;
3373 case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
3374 GVSB(builder)->allocated_children = g_variant_type_n_items (type);
3375 GVSB(builder)->expected_type =
3376 g_variant_type_first (GVSB(builder)->type);
3377 GVSB(builder)->min_items = GVSB(builder)->allocated_children;
3378 GVSB(builder)->max_items = GVSB(builder)->allocated_children;
3379 GVSB(builder)->uniform_item_types = FALSE;
3380 break;
3382 default:
3383 g_assert_not_reached ();
3386 GVSB(builder)->children = g_new (GVariant *,
3387 GVSB(builder)->allocated_children);
3390 static void
3391 g_variant_builder_make_room (struct stack_builder *builder)
3393 if (builder->offset == builder->allocated_children)
3395 builder->allocated_children *= 2;
3396 builder->children = g_renew (GVariant *, builder->children,
3397 builder->allocated_children);
3402 * g_variant_builder_add_value:
3403 * @builder: a #GVariantBuilder
3404 * @value: a #GVariant
3406 * Adds @value to @builder.
3408 * It is an error to call this function in any way that would create an
3409 * inconsistent value to be constructed. Some examples of this are
3410 * putting different types of items into an array, putting the wrong
3411 * types or number of items in a tuple, putting more than one value into
3412 * a variant, etc.
3414 * If @value is a floating reference (see g_variant_ref_sink()),
3415 * the @builder instance takes ownership of @value.
3417 * Since: 2.24
3419 void
3420 g_variant_builder_add_value (GVariantBuilder *builder,
3421 GVariant *value)
3423 g_return_if_fail (is_valid_builder (builder));
3424 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3425 g_return_if_fail (!GVSB(builder)->expected_type ||
3426 g_variant_is_of_type (value,
3427 GVSB(builder)->expected_type));
3428 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3429 g_variant_is_of_type (value,
3430 GVSB(builder)->prev_item_type));
3432 GVSB(builder)->trusted &= g_variant_is_trusted (value);
3434 if (!GVSB(builder)->uniform_item_types)
3436 /* advance our expected type pointers */
3437 if (GVSB(builder)->expected_type)
3438 GVSB(builder)->expected_type =
3439 g_variant_type_next (GVSB(builder)->expected_type);
3441 if (GVSB(builder)->prev_item_type)
3442 GVSB(builder)->prev_item_type =
3443 g_variant_type_next (GVSB(builder)->prev_item_type);
3445 else
3446 GVSB(builder)->prev_item_type = g_variant_get_type (value);
3448 g_variant_builder_make_room (GVSB(builder));
3450 GVSB(builder)->children[GVSB(builder)->offset++] =
3451 g_variant_ref_sink (value);
3455 * g_variant_builder_open:
3456 * @builder: a #GVariantBuilder
3457 * @type: a #GVariantType
3459 * Opens a subcontainer inside the given @builder. When done adding
3460 * items to the subcontainer, g_variant_builder_close() must be called.
3462 * It is an error to call this function in any way that would cause an
3463 * inconsistent value to be constructed (ie: adding too many values or
3464 * a value of an incorrect type).
3466 * Since: 2.24
3468 void
3469 g_variant_builder_open (GVariantBuilder *builder,
3470 const GVariantType *type)
3472 GVariantBuilder *parent;
3474 g_return_if_fail (is_valid_builder (builder));
3475 g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
3476 g_return_if_fail (!GVSB(builder)->expected_type ||
3477 g_variant_type_is_subtype_of (type,
3478 GVSB(builder)->expected_type));
3479 g_return_if_fail (!GVSB(builder)->prev_item_type ||
3480 g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
3481 type));
3483 parent = g_slice_dup (GVariantBuilder, builder);
3484 g_variant_builder_init (builder, type);
3485 GVSB(builder)->parent = parent;
3487 /* push the prev_item_type down into the subcontainer */
3488 if (GVSB(parent)->prev_item_type)
3490 if (!GVSB(builder)->uniform_item_types)
3491 /* tuples and dict entries */
3492 GVSB(builder)->prev_item_type =
3493 g_variant_type_first (GVSB(parent)->prev_item_type);
3495 else if (!g_variant_type_is_variant (GVSB(builder)->type))
3496 /* maybes and arrays */
3497 GVSB(builder)->prev_item_type =
3498 g_variant_type_element (GVSB(parent)->prev_item_type);
3503 * g_variant_builder_close:
3504 * @builder: a #GVariantBuilder
3506 * Closes the subcontainer inside the given @builder that was opened by
3507 * the most recent call to g_variant_builder_open().
3509 * It is an error to call this function in any way that would create an
3510 * inconsistent value to be constructed (ie: too few values added to the
3511 * subcontainer).
3513 * Since: 2.24
3515 void
3516 g_variant_builder_close (GVariantBuilder *builder)
3518 GVariantBuilder *parent;
3520 g_return_if_fail (is_valid_builder (builder));
3521 g_return_if_fail (GVSB(builder)->parent != NULL);
3523 parent = GVSB(builder)->parent;
3524 GVSB(builder)->parent = NULL;
3526 g_variant_builder_add_value (parent, g_variant_builder_end (builder));
3527 *builder = *parent;
3529 g_slice_free (GVariantBuilder, parent);
3532 /*< private >
3533 * g_variant_make_maybe_type:
3534 * @element: a #GVariant
3536 * Return the type of a maybe containing @element.
3538 static GVariantType *
3539 g_variant_make_maybe_type (GVariant *element)
3541 return g_variant_type_new_maybe (g_variant_get_type (element));
3544 /*< private >
3545 * g_variant_make_array_type:
3546 * @element: a #GVariant
3548 * Return the type of an array containing @element.
3550 static GVariantType *
3551 g_variant_make_array_type (GVariant *element)
3553 return g_variant_type_new_array (g_variant_get_type (element));
3557 * g_variant_builder_end:
3558 * @builder: a #GVariantBuilder
3560 * Ends the builder process and returns the constructed value.
3562 * It is not permissible to use @builder in any way after this call
3563 * except for reference counting operations (in the case of a
3564 * heap-allocated #GVariantBuilder) or by reinitialising it with
3565 * g_variant_builder_init() (in the case of stack-allocated).
3567 * It is an error to call this function in any way that would create an
3568 * inconsistent value to be constructed (ie: insufficient number of
3569 * items added to a container with a specific number of children
3570 * required). It is also an error to call this function if the builder
3571 * was created with an indefinite array or maybe type and no children
3572 * have been added; in this case it is impossible to infer the type of
3573 * the empty array.
3575 * Returns: (transfer none): a new, floating, #GVariant
3577 * Since: 2.24
3579 GVariant *
3580 g_variant_builder_end (GVariantBuilder *builder)
3582 GVariantType *my_type;
3583 GVariant *value;
3585 g_return_val_if_fail (is_valid_builder (builder), NULL);
3586 g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
3587 NULL);
3588 g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
3589 GVSB(builder)->prev_item_type != NULL ||
3590 g_variant_type_is_definite (GVSB(builder)->type),
3591 NULL);
3593 if (g_variant_type_is_definite (GVSB(builder)->type))
3594 my_type = g_variant_type_copy (GVSB(builder)->type);
3596 else if (g_variant_type_is_maybe (GVSB(builder)->type))
3597 my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
3599 else if (g_variant_type_is_array (GVSB(builder)->type))
3600 my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
3602 else if (g_variant_type_is_tuple (GVSB(builder)->type))
3603 my_type = g_variant_make_tuple_type (GVSB(builder)->children,
3604 GVSB(builder)->offset);
3606 else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
3607 my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
3608 GVSB(builder)->children[1]);
3609 else
3610 g_assert_not_reached ();
3612 value = g_variant_new_from_children (my_type,
3613 g_renew (GVariant *,
3614 GVSB(builder)->children,
3615 GVSB(builder)->offset),
3616 GVSB(builder)->offset,
3617 GVSB(builder)->trusted);
3618 GVSB(builder)->children = NULL;
3619 GVSB(builder)->offset = 0;
3621 g_variant_builder_clear (builder);
3622 g_variant_type_free (my_type);
3624 return value;
3627 /* GVariantDict {{{1 */
3630 * GVariantDict:
3632 * #GVariantDict is a mutable interface to #GVariant dictionaries.
3634 * It can be used for doing a sequence of dictionary lookups in an
3635 * efficient way on an existing #GVariant dictionary or it can be used
3636 * to construct new dictionaries with a hashtable-like interface. It
3637 * can also be used for taking existing dictionaries and modifying them
3638 * in order to create new ones.
3640 * #GVariantDict can only be used with %G_VARIANT_TYPE_VARDICT
3641 * dictionaries.
3643 * It is possible to use #GVariantDict allocated on the stack or on the
3644 * heap. When using a stack-allocated #GVariantDict, you begin with a
3645 * call to g_variant_dict_init() and free the resources with a call to
3646 * g_variant_dict_clear().
3648 * Heap-allocated #GVariantDict follows normal refcounting rules: you
3649 * allocate it with g_variant_dict_new() and use g_variant_dict_ref()
3650 * and g_variant_dict_unref().
3652 * g_variant_dict_end() is used to convert the #GVariantDict back into a
3653 * dictionary-type #GVariant. When used with stack-allocated instances,
3654 * this also implicitly frees all associated memory, but for
3655 * heap-allocated instances, you must still call g_variant_dict_unref()
3656 * afterwards.
3658 * You will typically want to use a heap-allocated #GVariantDict when
3659 * you expose it as part of an API. For most other uses, the
3660 * stack-allocated form will be more convenient.
3662 * Consider the following two examples that do the same thing in each
3663 * style: take an existing dictionary and look up the "count" uint32
3664 * key, adding 1 to it if it is found, or returning an error if the
3665 * key is not found. Each returns the new dictionary as a floating
3666 * #GVariant.
3668 * ## Using a stack-allocated GVariantDict
3670 * |[<!-- language="C" -->
3671 * GVariant *
3672 * add_to_count (GVariant *orig,
3673 * GError **error)
3675 * GVariantDict dict;
3676 * guint32 count;
3678 * g_variant_dict_init (&dict, orig);
3679 * if (!g_variant_dict_lookup (&dict, "count", "u", &count))
3681 * g_set_error (...);
3682 * g_variant_dict_clear (&dict);
3683 * return NULL;
3686 * g_variant_dict_insert (&dict, "count", "u", count + 1);
3688 * return g_variant_dict_end (&dict);
3690 * ]|
3692 * ## Using heap-allocated GVariantDict
3694 * |[<!-- language="C" -->
3695 * GVariant *
3696 * add_to_count (GVariant *orig,
3697 * GError **error)
3699 * GVariantDict *dict;
3700 * GVariant *result;
3701 * guint32 count;
3703 * dict = g_variant_dict_new (orig);
3705 * if (g_variant_dict_lookup (dict, "count", "u", &count))
3707 * g_variant_dict_insert (dict, "count", "u", count + 1);
3708 * result = g_variant_dict_end (dict);
3710 * else
3712 * g_set_error (...);
3713 * result = NULL;
3716 * g_variant_dict_unref (dict);
3718 * return result;
3720 * ]|
3722 * Since: 2.40
3724 struct stack_dict
3726 GHashTable *values;
3727 gsize magic;
3730 G_STATIC_ASSERT (sizeof (struct stack_dict) <= sizeof (GVariantDict));
3732 struct heap_dict
3734 struct stack_dict dict;
3735 gint ref_count;
3736 gsize magic;
3739 #define GVSD(d) ((struct stack_dict *) (d))
3740 #define GVHD(d) ((struct heap_dict *) (d))
3741 #define GVSD_MAGIC ((gsize) 2579507750u)
3742 #define GVHD_MAGIC ((gsize) 2450270775u)
3743 #define is_valid_dict(d) (d != NULL && \
3744 GVSD(d)->magic == GVSD_MAGIC)
3745 #define is_valid_heap_dict(d) (GVHD(d)->magic == GVHD_MAGIC)
3748 * g_variant_dict_new:
3749 * @from_asv: (allow-none): the #GVariant with which to initialise the
3750 * dictionary
3752 * Allocates and initialises a new #GVariantDict.
3754 * You should call g_variant_dict_unref() on the return value when it
3755 * is no longer needed. The memory will not be automatically freed by
3756 * any other call.
3758 * In some cases it may be easier to place a #GVariantDict directly on
3759 * the stack of the calling function and initialise it with
3760 * g_variant_dict_init(). This is particularly useful when you are
3761 * using #GVariantDict to construct a #GVariant.
3763 * Returns: (transfer full): a #GVariantDict
3765 * Since: 2.40
3767 GVariantDict *
3768 g_variant_dict_new (GVariant *from_asv)
3770 GVariantDict *dict;
3772 dict = g_slice_alloc (sizeof (struct heap_dict));
3773 g_variant_dict_init (dict, from_asv);
3774 GVHD(dict)->magic = GVHD_MAGIC;
3775 GVHD(dict)->ref_count = 1;
3777 return dict;
3781 * g_variant_dict_init: (skip)
3782 * @dict: a #GVariantDict
3783 * @from_asv: (allow-none): the initial value for @dict
3785 * Initialises a #GVariantDict structure.
3787 * If @from_asv is given, it is used to initialise the dictionary.
3789 * This function completely ignores the previous contents of @dict. On
3790 * one hand this means that it is valid to pass in completely
3791 * uninitialised memory. On the other hand, this means that if you are
3792 * initialising over top of an existing #GVariantDict you need to first
3793 * call g_variant_dict_clear() in order to avoid leaking memory.
3795 * You must not call g_variant_dict_ref() or g_variant_dict_unref() on a
3796 * #GVariantDict that was initialised with this function. If you ever
3797 * pass a reference to a #GVariantDict outside of the control of your
3798 * own code then you should assume that the person receiving that
3799 * reference may try to use reference counting; you should use
3800 * g_variant_dict_new() instead of this function.
3802 * Since: 2.40
3804 void
3805 g_variant_dict_init (GVariantDict *dict,
3806 GVariant *from_asv)
3808 GVariantIter iter;
3809 gchar *key;
3810 GVariant *value;
3812 GVSD(dict)->values = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
3813 GVSD(dict)->magic = GVSD_MAGIC;
3815 if (from_asv)
3817 g_variant_iter_init (&iter, from_asv);
3818 while (g_variant_iter_next (&iter, "{sv}", &key, &value))
3819 g_hash_table_insert (GVSD(dict)->values, key, value);
3824 * g_variant_dict_lookup:
3825 * @dict: a #GVariantDict
3826 * @key: the key to lookup in the dictionary
3827 * @format_string: a GVariant format string
3828 * @...: the arguments to unpack the value into
3830 * Looks up a value in a #GVariantDict.
3832 * This function is a wrapper around g_variant_dict_lookup_value() and
3833 * g_variant_get(). In the case that %NULL would have been returned,
3834 * this function returns %FALSE. Otherwise, it unpacks the returned
3835 * value and returns %TRUE.
3837 * @format_string determines the C types that are used for unpacking the
3838 * values and also determines if the values are copied or borrowed, see the
3839 * section on [GVariant format strings][gvariant-format-strings-pointers].
3841 * Returns: %TRUE if a value was unpacked
3843 * Since: 2.40
3845 gboolean
3846 g_variant_dict_lookup (GVariantDict *dict,
3847 const gchar *key,
3848 const gchar *format_string,
3849 ...)
3851 GVariant *value;
3852 va_list ap;
3854 g_return_val_if_fail (is_valid_dict (dict), FALSE);
3855 g_return_val_if_fail (key != NULL, FALSE);
3856 g_return_val_if_fail (format_string != NULL, FALSE);
3858 value = g_hash_table_lookup (GVSD(dict)->values, key);
3860 if (value == NULL || !g_variant_check_format_string (value, format_string, FALSE))
3861 return FALSE;
3863 va_start (ap, format_string);
3864 g_variant_get_va (value, format_string, NULL, &ap);
3865 va_end (ap);
3867 return TRUE;
3871 * g_variant_dict_lookup_value:
3872 * @dict: a #GVariantDict
3873 * @key: the key to lookup in the dictionary
3874 * @expected_type: (allow-none): a #GVariantType, or %NULL
3876 * Looks up a value in a #GVariantDict.
3878 * If @key is not found in @dictionary, %NULL is returned.
3880 * The @expected_type string specifies what type of value is expected.
3881 * If the value associated with @key has a different type then %NULL is
3882 * returned.
3884 * If the key is found and the value has the correct type, it is
3885 * returned. If @expected_type was specified then any non-%NULL return
3886 * value will have this type.
3888 * Returns: (transfer full): the value of the dictionary key, or %NULL
3890 * Since: 2.40
3892 GVariant *
3893 g_variant_dict_lookup_value (GVariantDict *dict,
3894 const gchar *key,
3895 const GVariantType *expected_type)
3897 GVariant *result;
3899 g_return_val_if_fail (is_valid_dict (dict), NULL);
3900 g_return_val_if_fail (key != NULL, NULL);
3902 result = g_hash_table_lookup (GVSD(dict)->values, key);
3904 if (result && (!expected_type || g_variant_is_of_type (result, expected_type)))
3905 return g_variant_ref (result);
3907 return NULL;
3911 * g_variant_dict_contains:
3912 * @dict: a #GVariantDict
3913 * @key: the key to lookup in the dictionary
3915 * Checks if @key exists in @dict.
3917 * Returns: %TRUE if @key is in @dict
3919 * Since: 2.40
3921 gboolean
3922 g_variant_dict_contains (GVariantDict *dict,
3923 const gchar *key)
3925 g_return_val_if_fail (is_valid_dict (dict), FALSE);
3926 g_return_val_if_fail (key != NULL, FALSE);
3928 return g_hash_table_contains (GVSD(dict)->values, key);
3932 * g_variant_dict_insert:
3933 * @dict: a #GVariantDict
3934 * @key: the key to insert a value for
3935 * @format_string: a #GVariant varargs format string
3936 * @...: arguments, as per @format_string
3938 * Inserts a value into a #GVariantDict.
3940 * This call is a convenience wrapper that is exactly equivalent to
3941 * calling g_variant_new() followed by g_variant_dict_insert_value().
3943 * Since: 2.40
3945 void
3946 g_variant_dict_insert (GVariantDict *dict,
3947 const gchar *key,
3948 const gchar *format_string,
3949 ...)
3951 va_list ap;
3953 g_return_if_fail (is_valid_dict (dict));
3954 g_return_if_fail (key != NULL);
3955 g_return_if_fail (format_string != NULL);
3957 va_start (ap, format_string);
3958 g_variant_dict_insert_value (dict, key, g_variant_new_va (format_string, NULL, &ap));
3959 va_end (ap);
3963 * g_variant_dict_insert_value:
3964 * @dict: a #GVariantDict
3965 * @key: the key to insert a value for
3966 * @value: the value to insert
3968 * Inserts (or replaces) a key in a #GVariantDict.
3970 * @value is consumed if it is floating.
3972 * Since: 2.40
3974 void
3975 g_variant_dict_insert_value (GVariantDict *dict,
3976 const gchar *key,
3977 GVariant *value)
3979 g_return_if_fail (is_valid_dict (dict));
3980 g_return_if_fail (key != NULL);
3981 g_return_if_fail (value != NULL);
3983 g_hash_table_insert (GVSD(dict)->values, g_strdup (key), g_variant_ref_sink (value));
3987 * g_variant_dict_remove:
3988 * @dict: a #GVariantDict
3989 * @key: the key to remove
3991 * Removes a key and its associated value from a #GVariantDict.
3993 * Returns: %TRUE if the key was found and removed
3995 * Since: 2.40
3997 gboolean
3998 g_variant_dict_remove (GVariantDict *dict,
3999 const gchar *key)
4001 g_return_val_if_fail (is_valid_dict (dict), FALSE);
4002 g_return_val_if_fail (key != NULL, FALSE);
4004 return g_hash_table_remove (GVSD(dict)->values, key);
4008 * g_variant_dict_clear:
4009 * @dict: a #GVariantDict
4011 * Releases all memory associated with a #GVariantDict without freeing
4012 * the #GVariantDict structure itself.
4014 * It typically only makes sense to do this on a stack-allocated
4015 * #GVariantDict if you want to abort building the value part-way
4016 * through. This function need not be called if you call
4017 * g_variant_dict_end() and it also doesn't need to be called on dicts
4018 * allocated with g_variant_dict_new (see g_variant_dict_unref() for
4019 * that).
4021 * It is valid to call this function on either an initialised
4022 * #GVariantDict or one that was previously cleared by an earlier call
4023 * to g_variant_dict_clear() but it is not valid to call this function
4024 * on uninitialised memory.
4026 * Since: 2.40
4028 void
4029 g_variant_dict_clear (GVariantDict *dict)
4031 if (GVSD(dict)->magic == 0)
4032 /* all-zeros case */
4033 return;
4035 g_return_if_fail (is_valid_dict (dict));
4037 g_hash_table_unref (GVSD(dict)->values);
4038 GVSD(dict)->values = NULL;
4040 GVSD(dict)->magic = 0;
4044 * g_variant_dict_end:
4045 * @dict: a #GVariantDict
4047 * Returns the current value of @dict as a #GVariant of type
4048 * %G_VARIANT_TYPE_VARDICT, clearing it in the process.
4050 * It is not permissible to use @dict in any way after this call except
4051 * for reference counting operations (in the case of a heap-allocated
4052 * #GVariantDict) or by reinitialising it with g_variant_dict_init() (in
4053 * the case of stack-allocated).
4055 * Returns: (transfer none): a new, floating, #GVariant
4057 * Since: 2.40
4059 GVariant *
4060 g_variant_dict_end (GVariantDict *dict)
4062 GVariantBuilder builder;
4063 GHashTableIter iter;
4064 gpointer key, value;
4066 g_return_val_if_fail (is_valid_dict (dict), NULL);
4068 g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
4070 g_hash_table_iter_init (&iter, GVSD(dict)->values);
4071 while (g_hash_table_iter_next (&iter, &key, &value))
4072 g_variant_builder_add (&builder, "{sv}", (const gchar *) key, (GVariant *) value);
4074 g_variant_dict_clear (dict);
4076 return g_variant_builder_end (&builder);
4080 * g_variant_dict_ref:
4081 * @dict: a heap-allocated #GVariantDict
4083 * Increases the reference count on @dict.
4085 * Don't call this on stack-allocated #GVariantDict instances or bad
4086 * things will happen.
4088 * Returns: (transfer full): a new reference to @dict
4090 * Since: 2.40
4092 GVariantDict *
4093 g_variant_dict_ref (GVariantDict *dict)
4095 g_return_val_if_fail (is_valid_heap_dict (dict), NULL);
4097 GVHD(dict)->ref_count++;
4099 return dict;
4103 * g_variant_dict_unref:
4104 * @dict: (transfer full): a heap-allocated #GVariantDict
4106 * Decreases the reference count on @dict.
4108 * In the event that there are no more references, releases all memory
4109 * associated with the #GVariantDict.
4111 * Don't call this on stack-allocated #GVariantDict instances or bad
4112 * things will happen.
4114 * Since: 2.40
4116 void
4117 g_variant_dict_unref (GVariantDict *dict)
4119 g_return_if_fail (is_valid_heap_dict (dict));
4121 if (--GVHD(dict)->ref_count == 0)
4123 g_variant_dict_clear (dict);
4124 g_slice_free (struct heap_dict, (struct heap_dict *) dict);
4129 /* Format strings {{{1 */
4130 /*< private >
4131 * g_variant_format_string_scan:
4132 * @string: a string that may be prefixed with a format string
4133 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
4134 * or %NULL
4135 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4136 * or %NULL
4138 * Checks the string pointed to by @string for starting with a properly
4139 * formed #GVariant varargs format string. If no valid format string is
4140 * found then %FALSE is returned.
4142 * If @string does start with a valid format string then %TRUE is
4143 * returned. If @endptr is non-%NULL then it is updated to point to the
4144 * first character after the format string.
4146 * If @limit is non-%NULL then @limit (and any charater after it) will
4147 * not be accessed and the effect is otherwise equivalent to if the
4148 * character at @limit were nul.
4150 * See the section on [GVariant format strings][gvariant-format-strings].
4152 * Returns: %TRUE if there was a valid format string
4154 * Since: 2.24
4156 gboolean
4157 g_variant_format_string_scan (const gchar *string,
4158 const gchar *limit,
4159 const gchar **endptr)
4161 #define next_char() (string == limit ? '\0' : *string++)
4162 #define peek_char() (string == limit ? '\0' : *string)
4163 char c;
4165 switch (next_char())
4167 case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
4168 case 'x': case 't': case 'h': case 'd': case 's': case 'o':
4169 case 'g': case 'v': case '*': case '?': case 'r':
4170 break;
4172 case 'm':
4173 return g_variant_format_string_scan (string, limit, endptr);
4175 case 'a':
4176 case '@':
4177 return g_variant_type_string_scan (string, limit, endptr);
4179 case '(':
4180 while (peek_char() != ')')
4181 if (!g_variant_format_string_scan (string, limit, &string))
4182 return FALSE;
4184 next_char(); /* consume ')' */
4185 break;
4187 case '{':
4188 c = next_char();
4190 if (c == '&')
4192 c = next_char ();
4194 if (c != 's' && c != 'o' && c != 'g')
4195 return FALSE;
4197 else
4199 if (c == '@')
4200 c = next_char ();
4202 /* ISO/IEC 9899:1999 (C99) §7.21.5.2:
4203 * The terminating null character is considered to be
4204 * part of the string.
4206 if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
4207 return FALSE;
4210 if (!g_variant_format_string_scan (string, limit, &string))
4211 return FALSE;
4213 if (next_char() != '}')
4214 return FALSE;
4216 break;
4218 case '^':
4219 if ((c = next_char()) == 'a')
4221 if ((c = next_char()) == '&')
4223 if ((c = next_char()) == 'a')
4225 if ((c = next_char()) == 'y')
4226 break; /* '^a&ay' */
4229 else if (c == 's' || c == 'o')
4230 break; /* '^a&s', '^a&o' */
4233 else if (c == 'a')
4235 if ((c = next_char()) == 'y')
4236 break; /* '^aay' */
4239 else if (c == 's' || c == 'o')
4240 break; /* '^as', '^ao' */
4242 else if (c == 'y')
4243 break; /* '^ay' */
4245 else if (c == '&')
4247 if ((c = next_char()) == 'a')
4249 if ((c = next_char()) == 'y')
4250 break; /* '^&ay' */
4254 return FALSE;
4256 case '&':
4257 c = next_char();
4259 if (c != 's' && c != 'o' && c != 'g')
4260 return FALSE;
4262 break;
4264 default:
4265 return FALSE;
4268 if (endptr != NULL)
4269 *endptr = string;
4271 #undef next_char
4272 #undef peek_char
4274 return TRUE;
4278 * g_variant_check_format_string:
4279 * @value: a #GVariant
4280 * @format_string: a valid #GVariant format string
4281 * @copy_only: %TRUE to ensure the format string makes deep copies
4283 * Checks if calling g_variant_get() with @format_string on @value would
4284 * be valid from a type-compatibility standpoint. @format_string is
4285 * assumed to be a valid format string (from a syntactic standpoint).
4287 * If @copy_only is %TRUE then this function additionally checks that it
4288 * would be safe to call g_variant_unref() on @value immediately after
4289 * the call to g_variant_get() without invalidating the result. This is
4290 * only possible if deep copies are made (ie: there are no pointers to
4291 * the data inside of the soon-to-be-freed #GVariant instance). If this
4292 * check fails then a g_critical() is printed and %FALSE is returned.
4294 * This function is meant to be used by functions that wish to provide
4295 * varargs accessors to #GVariant values of uncertain values (eg:
4296 * g_variant_lookup() or g_menu_model_get_item_attribute()).
4298 * Returns: %TRUE if @format_string is safe to use
4300 * Since: 2.34
4302 gboolean
4303 g_variant_check_format_string (GVariant *value,
4304 const gchar *format_string,
4305 gboolean copy_only)
4307 const gchar *original_format = format_string;
4308 const gchar *type_string;
4310 /* Interesting factoid: assuming a format string is valid, it can be
4311 * converted to a type string by removing all '@' '&' and '^'
4312 * characters.
4314 * Instead of doing that, we can just skip those characters when
4315 * comparing it to the type string of @value.
4317 * For the copy-only case we can just drop the '&' from the list of
4318 * characters to skip over. A '&' will never appear in a type string
4319 * so we know that it won't be possible to return %TRUE if it is in a
4320 * format string.
4322 type_string = g_variant_get_type_string (value);
4324 while (*type_string || *format_string)
4326 gchar format = *format_string++;
4328 switch (format)
4330 case '&':
4331 if G_UNLIKELY (copy_only)
4333 /* for the love of all that is good, please don't mark this string for translation... */
4334 g_critical ("g_variant_check_format_string() is being called by a function with a GVariant varargs "
4335 "interface to validate the passed format string for type safety. The passed format "
4336 "(%s) contains a '&' character which would result in a pointer being returned to the "
4337 "data inside of a GVariant instance that may no longer exist by the time the function "
4338 "returns. Modify your code to use a format string without '&'.", original_format);
4339 return FALSE;
4342 /* fall through */
4343 case '^':
4344 case '@':
4345 /* ignore these 2 (or 3) */
4346 continue;
4348 case '?':
4349 /* attempt to consume one of 'bynqiuxthdsog' */
4351 char s = *type_string++;
4353 if (s == '\0' || strchr ("bynqiuxthdsog", s) == NULL)
4354 return FALSE;
4356 continue;
4358 case 'r':
4359 /* ensure it's a tuple */
4360 if (*type_string != '(')
4361 return FALSE;
4363 /* fall through */
4364 case '*':
4365 /* consume a full type string for the '*' or 'r' */
4366 if (!g_variant_type_string_scan (type_string, NULL, &type_string))
4367 return FALSE;
4369 continue;
4371 default:
4372 /* attempt to consume exactly one character equal to the format */
4373 if (format != *type_string++)
4374 return FALSE;
4378 return TRUE;
4381 /*< private >
4382 * g_variant_format_string_scan_type:
4383 * @string: a string that may be prefixed with a format string
4384 * @limit: (allow-none) (default NULL): a pointer to the end of @string,
4385 * or %NULL
4386 * @endptr: (allow-none) (default NULL): location to store the end pointer,
4387 * or %NULL
4389 * If @string starts with a valid format string then this function will
4390 * return the type that the format string corresponds to. Otherwise
4391 * this function returns %NULL.
4393 * Use g_variant_type_free() to free the return value when you no longer
4394 * need it.
4396 * This function is otherwise exactly like
4397 * g_variant_format_string_scan().
4399 * Returns: (allow-none): a #GVariantType if there was a valid format string
4401 * Since: 2.24
4403 GVariantType *
4404 g_variant_format_string_scan_type (const gchar *string,
4405 const gchar *limit,
4406 const gchar **endptr)
4408 const gchar *my_end;
4409 gchar *dest;
4410 gchar *new;
4412 if (endptr == NULL)
4413 endptr = &my_end;
4415 if (!g_variant_format_string_scan (string, limit, endptr))
4416 return NULL;
4418 dest = new = g_malloc (*endptr - string + 1);
4419 while (string != *endptr)
4421 if (*string != '@' && *string != '&' && *string != '^')
4422 *dest++ = *string;
4423 string++;
4425 *dest = '\0';
4427 return (GVariantType *) G_VARIANT_TYPE (new);
4430 static gboolean
4431 valid_format_string (const gchar *format_string,
4432 gboolean single,
4433 GVariant *value)
4435 const gchar *endptr;
4436 GVariantType *type;
4438 type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
4440 if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
4442 if (single)
4443 g_critical ("'%s' is not a valid GVariant format string",
4444 format_string);
4445 else
4446 g_critical ("'%s' does not have a valid GVariant format "
4447 "string as a prefix", format_string);
4449 if (type != NULL)
4450 g_variant_type_free (type);
4452 return FALSE;
4455 if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
4457 gchar *fragment;
4458 gchar *typestr;
4460 fragment = g_strndup (format_string, endptr - format_string);
4461 typestr = g_variant_type_dup_string (type);
4463 g_critical ("the GVariant format string '%s' has a type of "
4464 "'%s' but the given value has a type of '%s'",
4465 fragment, typestr, g_variant_get_type_string (value));
4467 g_variant_type_free (type);
4468 g_free (fragment);
4469 g_free (typestr);
4471 return FALSE;
4474 g_variant_type_free (type);
4476 return TRUE;
4479 /* Variable Arguments {{{1 */
4480 /* We consider 2 main classes of format strings:
4482 * - recursive format strings
4483 * these are ones that result in recursion and the collection of
4484 * possibly more than one argument. Maybe types, tuples,
4485 * dictionary entries.
4487 * - leaf format string
4488 * these result in the collection of a single argument.
4490 * Leaf format strings are further subdivided into two categories:
4492 * - single non-null pointer ("nnp")
4493 * these either collect or return a single non-null pointer.
4495 * - other
4496 * these collect or return something else (bool, number, etc).
4498 * Based on the above, the varargs handling code is split into 4 main parts:
4500 * - nnp handling code
4501 * - leaf handling code (which may invoke nnp code)
4502 * - generic handling code (may be recursive, may invoke leaf code)
4503 * - user-facing API (which invokes the generic code)
4505 * Each section implements some of the following functions:
4507 * - skip:
4508 * collect the arguments for the format string as if
4509 * g_variant_new() had been called, but do nothing with them. used
4510 * for skipping over arguments when constructing a Nothing maybe
4511 * type.
4513 * - new:
4514 * create a GVariant *
4516 * - get:
4517 * unpack a GVariant *
4519 * - free (nnp only):
4520 * free a previously allocated item
4523 static gboolean
4524 g_variant_format_string_is_leaf (const gchar *str)
4526 return str[0] != 'm' && str[0] != '(' && str[0] != '{';
4529 static gboolean
4530 g_variant_format_string_is_nnp (const gchar *str)
4532 return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
4533 str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
4534 str[0] == 'r' || str[0] == 'v' || str[0] == '&';
4537 /* Single non-null pointer ("nnp") {{{2 */
4538 static void
4539 g_variant_valist_free_nnp (const gchar *str,
4540 gpointer ptr)
4542 switch (*str)
4544 case 'a':
4545 g_variant_iter_free (ptr);
4546 break;
4548 case '^':
4549 if (str[2] != '&') /* '^as', '^ao' */
4550 g_strfreev (ptr);
4551 else /* '^a&s', '^a&o' */
4552 g_free (ptr);
4553 break;
4555 case 's':
4556 case 'o':
4557 case 'g':
4558 g_free (ptr);
4559 break;
4561 case '@':
4562 case '*':
4563 case '?':
4564 case 'v':
4565 g_variant_unref (ptr);
4566 break;
4568 case '&':
4569 break;
4571 default:
4572 g_assert_not_reached ();
4576 static gchar
4577 g_variant_scan_convenience (const gchar **str,
4578 gboolean *constant,
4579 guint *arrays)
4581 *constant = FALSE;
4582 *arrays = 0;
4584 for (;;)
4586 char c = *(*str)++;
4588 if (c == '&')
4589 *constant = TRUE;
4591 else if (c == 'a')
4592 (*arrays)++;
4594 else
4595 return c;
4599 static GVariant *
4600 g_variant_valist_new_nnp (const gchar **str,
4601 gpointer ptr)
4603 if (**str == '&')
4604 (*str)++;
4606 switch (*(*str)++)
4608 case 'a':
4609 if (ptr != NULL)
4611 const GVariantType *type;
4612 GVariant *value;
4614 value = g_variant_builder_end (ptr);
4615 type = g_variant_get_type (value);
4617 if G_UNLIKELY (!g_variant_type_is_array (type))
4618 g_error ("g_variant_new: expected array GVariantBuilder but "
4619 "the built value has type '%s'",
4620 g_variant_get_type_string (value));
4622 type = g_variant_type_element (type);
4624 if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
4625 g_error ("g_variant_new: expected GVariantBuilder array element "
4626 "type '%s' but the built value has element type '%s'",
4627 g_variant_type_dup_string ((GVariantType *) *str),
4628 g_variant_get_type_string (value) + 1);
4630 g_variant_type_string_scan (*str, NULL, str);
4632 return value;
4634 else
4636 /* special case: NULL pointer for empty array */
4638 const GVariantType *type = (GVariantType *) *str;
4640 g_variant_type_string_scan (*str, NULL, str);
4642 if G_UNLIKELY (!g_variant_type_is_definite (type))
4643 g_error ("g_variant_new: NULL pointer given with indefinite "
4644 "array type; unable to determine which type of empty "
4645 "array to construct.");
4647 return g_variant_new_array (type, NULL, 0);
4650 case 's':
4652 GVariant *value;
4654 value = g_variant_new_string (ptr);
4656 if (value == NULL)
4657 value = g_variant_new_string ("[Invalid UTF-8]");
4659 return value;
4662 case 'o':
4663 return g_variant_new_object_path (ptr);
4665 case 'g':
4666 return g_variant_new_signature (ptr);
4668 case '^':
4670 gboolean constant;
4671 guint arrays;
4672 gchar type;
4674 type = g_variant_scan_convenience (str, &constant, &arrays);
4676 if (type == 's')
4677 return g_variant_new_strv (ptr, -1);
4679 if (type == 'o')
4680 return g_variant_new_objv (ptr, -1);
4682 if (arrays > 1)
4683 return g_variant_new_bytestring_array (ptr, -1);
4685 return g_variant_new_bytestring (ptr);
4688 case '@':
4689 if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
4690 g_error ("g_variant_new: expected GVariant of type '%s' but "
4691 "received value has type '%s'",
4692 g_variant_type_dup_string ((GVariantType *) *str),
4693 g_variant_get_type_string (ptr));
4695 g_variant_type_string_scan (*str, NULL, str);
4697 return ptr;
4699 case '*':
4700 return ptr;
4702 case '?':
4703 if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
4704 g_error ("g_variant_new: format string '?' expects basic-typed "
4705 "GVariant, but received value has type '%s'",
4706 g_variant_get_type_string (ptr));
4708 return ptr;
4710 case 'r':
4711 if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
4712 g_error ("g_variant_new: format string 'r' expects tuple-typed "
4713 "GVariant, but received value has type '%s'",
4714 g_variant_get_type_string (ptr));
4716 return ptr;
4718 case 'v':
4719 return g_variant_new_variant (ptr);
4721 default:
4722 g_assert_not_reached ();
4726 static gpointer
4727 g_variant_valist_get_nnp (const gchar **str,
4728 GVariant *value)
4730 switch (*(*str)++)
4732 case 'a':
4733 g_variant_type_string_scan (*str, NULL, str);
4734 return g_variant_iter_new (value);
4736 case '&':
4737 (*str)++;
4738 return (gchar *) g_variant_get_string (value, NULL);
4740 case 's':
4741 case 'o':
4742 case 'g':
4743 return g_variant_dup_string (value, NULL);
4745 case '^':
4747 gboolean constant;
4748 guint arrays;
4749 gchar type;
4751 type = g_variant_scan_convenience (str, &constant, &arrays);
4753 if (type == 's')
4755 if (constant)
4756 return g_variant_get_strv (value, NULL);
4757 else
4758 return g_variant_dup_strv (value, NULL);
4761 else if (type == 'o')
4763 if (constant)
4764 return g_variant_get_objv (value, NULL);
4765 else
4766 return g_variant_dup_objv (value, NULL);
4769 else if (arrays > 1)
4771 if (constant)
4772 return g_variant_get_bytestring_array (value, NULL);
4773 else
4774 return g_variant_dup_bytestring_array (value, NULL);
4777 else
4779 if (constant)
4780 return (gchar *) g_variant_get_bytestring (value);
4781 else
4782 return g_variant_dup_bytestring (value, NULL);
4786 case '@':
4787 g_variant_type_string_scan (*str, NULL, str);
4788 /* fall through */
4790 case '*':
4791 case '?':
4792 case 'r':
4793 return g_variant_ref (value);
4795 case 'v':
4796 return g_variant_get_variant (value);
4798 default:
4799 g_assert_not_reached ();
4803 /* Leaves {{{2 */
4804 static void
4805 g_variant_valist_skip_leaf (const gchar **str,
4806 va_list *app)
4808 if (g_variant_format_string_is_nnp (*str))
4810 g_variant_format_string_scan (*str, NULL, str);
4811 va_arg (*app, gpointer);
4812 return;
4815 switch (*(*str)++)
4817 case 'b':
4818 case 'y':
4819 case 'n':
4820 case 'q':
4821 case 'i':
4822 case 'u':
4823 case 'h':
4824 va_arg (*app, int);
4825 return;
4827 case 'x':
4828 case 't':
4829 va_arg (*app, guint64);
4830 return;
4832 case 'd':
4833 va_arg (*app, gdouble);
4834 return;
4836 default:
4837 g_assert_not_reached ();
4841 static GVariant *
4842 g_variant_valist_new_leaf (const gchar **str,
4843 va_list *app)
4845 if (g_variant_format_string_is_nnp (*str))
4846 return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
4848 switch (*(*str)++)
4850 case 'b':
4851 return g_variant_new_boolean (va_arg (*app, gboolean));
4853 case 'y':
4854 return g_variant_new_byte (va_arg (*app, guint));
4856 case 'n':
4857 return g_variant_new_int16 (va_arg (*app, gint));
4859 case 'q':
4860 return g_variant_new_uint16 (va_arg (*app, guint));
4862 case 'i':
4863 return g_variant_new_int32 (va_arg (*app, gint));
4865 case 'u':
4866 return g_variant_new_uint32 (va_arg (*app, guint));
4868 case 'x':
4869 return g_variant_new_int64 (va_arg (*app, gint64));
4871 case 't':
4872 return g_variant_new_uint64 (va_arg (*app, guint64));
4874 case 'h':
4875 return g_variant_new_handle (va_arg (*app, gint));
4877 case 'd':
4878 return g_variant_new_double (va_arg (*app, gdouble));
4880 default:
4881 g_assert_not_reached ();
4885 /* The code below assumes this */
4886 G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
4887 G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
4889 static void
4890 g_variant_valist_get_leaf (const gchar **str,
4891 GVariant *value,
4892 gboolean free,
4893 va_list *app)
4895 gpointer ptr = va_arg (*app, gpointer);
4897 if (ptr == NULL)
4899 g_variant_format_string_scan (*str, NULL, str);
4900 return;
4903 if (g_variant_format_string_is_nnp (*str))
4905 gpointer *nnp = (gpointer *) ptr;
4907 if (free && *nnp != NULL)
4908 g_variant_valist_free_nnp (*str, *nnp);
4910 *nnp = NULL;
4912 if (value != NULL)
4913 *nnp = g_variant_valist_get_nnp (str, value);
4914 else
4915 g_variant_format_string_scan (*str, NULL, str);
4917 return;
4920 if (value != NULL)
4922 switch (*(*str)++)
4924 case 'b':
4925 *(gboolean *) ptr = g_variant_get_boolean (value);
4926 return;
4928 case 'y':
4929 *(guchar *) ptr = g_variant_get_byte (value);
4930 return;
4932 case 'n':
4933 *(gint16 *) ptr = g_variant_get_int16 (value);
4934 return;
4936 case 'q':
4937 *(guint16 *) ptr = g_variant_get_uint16 (value);
4938 return;
4940 case 'i':
4941 *(gint32 *) ptr = g_variant_get_int32 (value);
4942 return;
4944 case 'u':
4945 *(guint32 *) ptr = g_variant_get_uint32 (value);
4946 return;
4948 case 'x':
4949 *(gint64 *) ptr = g_variant_get_int64 (value);
4950 return;
4952 case 't':
4953 *(guint64 *) ptr = g_variant_get_uint64 (value);
4954 return;
4956 case 'h':
4957 *(gint32 *) ptr = g_variant_get_handle (value);
4958 return;
4960 case 'd':
4961 *(gdouble *) ptr = g_variant_get_double (value);
4962 return;
4965 else
4967 switch (*(*str)++)
4969 case 'y':
4970 *(guchar *) ptr = 0;
4971 return;
4973 case 'n':
4974 case 'q':
4975 *(guint16 *) ptr = 0;
4976 return;
4978 case 'i':
4979 case 'u':
4980 case 'h':
4981 case 'b':
4982 *(guint32 *) ptr = 0;
4983 return;
4985 case 'x':
4986 case 't':
4987 case 'd':
4988 *(guint64 *) ptr = 0;
4989 return;
4993 g_assert_not_reached ();
4996 /* Generic (recursive) {{{2 */
4997 static void
4998 g_variant_valist_skip (const gchar **str,
4999 va_list *app)
5001 if (g_variant_format_string_is_leaf (*str))
5002 g_variant_valist_skip_leaf (str, app);
5004 else if (**str == 'm') /* maybe */
5006 (*str)++;
5008 if (!g_variant_format_string_is_nnp (*str))
5009 va_arg (*app, gboolean);
5011 g_variant_valist_skip (str, app);
5013 else /* tuple, dictionary entry */
5015 g_assert (**str == '(' || **str == '{');
5016 (*str)++;
5017 while (**str != ')' && **str != '}')
5018 g_variant_valist_skip (str, app);
5019 (*str)++;
5023 static GVariant *
5024 g_variant_valist_new (const gchar **str,
5025 va_list *app)
5027 if (g_variant_format_string_is_leaf (*str))
5028 return g_variant_valist_new_leaf (str, app);
5030 if (**str == 'm') /* maybe */
5032 GVariantType *type = NULL;
5033 GVariant *value = NULL;
5035 (*str)++;
5037 if (g_variant_format_string_is_nnp (*str))
5039 gpointer nnp = va_arg (*app, gpointer);
5041 if (nnp != NULL)
5042 value = g_variant_valist_new_nnp (str, nnp);
5043 else
5044 type = g_variant_format_string_scan_type (*str, NULL, str);
5046 else
5048 gboolean just = va_arg (*app, gboolean);
5050 if (just)
5051 value = g_variant_valist_new (str, app);
5052 else
5054 type = g_variant_format_string_scan_type (*str, NULL, NULL);
5055 g_variant_valist_skip (str, app);
5059 value = g_variant_new_maybe (type, value);
5061 if (type != NULL)
5062 g_variant_type_free (type);
5064 return value;
5066 else /* tuple, dictionary entry */
5068 GVariantBuilder b;
5070 if (**str == '(')
5071 g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
5072 else
5074 g_assert (**str == '{');
5075 g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
5078 (*str)++; /* '(' */
5079 while (**str != ')' && **str != '}')
5080 g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
5081 (*str)++; /* ')' */
5083 return g_variant_builder_end (&b);
5087 static void
5088 g_variant_valist_get (const gchar **str,
5089 GVariant *value,
5090 gboolean free,
5091 va_list *app)
5093 if (g_variant_format_string_is_leaf (*str))
5094 g_variant_valist_get_leaf (str, value, free, app);
5096 else if (**str == 'm')
5098 (*str)++;
5100 if (value != NULL)
5101 value = g_variant_get_maybe (value);
5103 if (!g_variant_format_string_is_nnp (*str))
5105 gboolean *ptr = va_arg (*app, gboolean *);
5107 if (ptr != NULL)
5108 *ptr = value != NULL;
5111 g_variant_valist_get (str, value, free, app);
5113 if (value != NULL)
5114 g_variant_unref (value);
5117 else /* tuple, dictionary entry */
5119 gint index = 0;
5121 g_assert (**str == '(' || **str == '{');
5123 (*str)++;
5124 while (**str != ')' && **str != '}')
5126 if (value != NULL)
5128 GVariant *child = g_variant_get_child_value (value, index++);
5129 g_variant_valist_get (str, child, free, app);
5130 g_variant_unref (child);
5132 else
5133 g_variant_valist_get (str, NULL, free, app);
5135 (*str)++;
5139 /* User-facing API {{{2 */
5141 * g_variant_new: (skip)
5142 * @format_string: a #GVariant format string
5143 * @...: arguments, as per @format_string
5145 * Creates a new #GVariant instance.
5147 * Think of this function as an analogue to g_strdup_printf().
5149 * The type of the created instance and the arguments that are expected
5150 * by this function are determined by @format_string. See the section on
5151 * [GVariant format strings][gvariant-format-strings]. Please note that
5152 * the syntax of the format string is very likely to be extended in the
5153 * future.
5155 * The first character of the format string must not be '*' '?' '@' or
5156 * 'r'; in essence, a new #GVariant must always be constructed by this
5157 * function (and not merely passed through it unmodified).
5159 * Note that the arguments must be of the correct width for their types
5160 * specified in @format_string. This can be achieved by casting them. See
5161 * the [GVariant varargs documentation][gvariant-varargs].
5163 * |[<!-- language="C" -->
5164 * MyFlags some_flags = FLAG_ONE | FLAG_TWO;
5165 * const gchar *some_strings[] = { "a", "b", "c", NULL };
5166 * GVariant *new_variant;
5168 * new_variant = g_variant_new ("(t^as)",
5169 * /<!-- -->* This cast is required. *<!-- -->/
5170 * (guint64) some_flags,
5171 * some_strings);
5172 * ]|
5174 * Returns: a new floating #GVariant instance
5176 * Since: 2.24
5178 GVariant *
5179 g_variant_new (const gchar *format_string,
5180 ...)
5182 GVariant *value;
5183 va_list ap;
5185 g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
5186 format_string[0] != '?' && format_string[0] != '@' &&
5187 format_string[0] != '*' && format_string[0] != 'r',
5188 NULL);
5190 va_start (ap, format_string);
5191 value = g_variant_new_va (format_string, NULL, &ap);
5192 va_end (ap);
5194 return value;
5198 * g_variant_new_va: (skip)
5199 * @format_string: a string that is prefixed with a format string
5200 * @endptr: (allow-none) (default NULL): location to store the end pointer,
5201 * or %NULL
5202 * @app: a pointer to a #va_list
5204 * This function is intended to be used by libraries based on
5205 * #GVariant that want to provide g_variant_new()-like functionality
5206 * to their users.
5208 * The API is more general than g_variant_new() to allow a wider range
5209 * of possible uses.
5211 * @format_string must still point to a valid format string, but it only
5212 * needs to be nul-terminated if @endptr is %NULL. If @endptr is
5213 * non-%NULL then it is updated to point to the first character past the
5214 * end of the format string.
5216 * @app is a pointer to a #va_list. The arguments, according to
5217 * @format_string, are collected from this #va_list and the list is left
5218 * pointing to the argument following the last.
5220 * Note that the arguments in @app must be of the correct width for their
5221 * types specified in @format_string when collected into the #va_list.
5222 * See the [GVariant varargs documentation][gvariant-varargs.
5224 * These two generalisations allow mixing of multiple calls to
5225 * g_variant_new_va() and g_variant_get_va() within a single actual
5226 * varargs call by the user.
5228 * The return value will be floating if it was a newly created GVariant
5229 * instance (for example, if the format string was "(ii)"). In the case
5230 * that the format_string was '*', '?', 'r', or a format starting with
5231 * '@' then the collected #GVariant pointer will be returned unmodified,
5232 * without adding any additional references.
5234 * In order to behave correctly in all cases it is necessary for the
5235 * calling function to g_variant_ref_sink() the return result before
5236 * returning control to the user that originally provided the pointer.
5237 * At this point, the caller will have their own full reference to the
5238 * result. This can also be done by adding the result to a container,
5239 * or by passing it to another g_variant_new() call.
5241 * Returns: a new, usually floating, #GVariant
5243 * Since: 2.24
5245 GVariant *
5246 g_variant_new_va (const gchar *format_string,
5247 const gchar **endptr,
5248 va_list *app)
5250 GVariant *value;
5252 g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
5253 NULL);
5254 g_return_val_if_fail (app != NULL, NULL);
5256 value = g_variant_valist_new (&format_string, app);
5258 if (endptr != NULL)
5259 *endptr = format_string;
5261 return value;
5265 * g_variant_get: (skip)
5266 * @value: a #GVariant instance
5267 * @format_string: a #GVariant format string
5268 * @...: arguments, as per @format_string
5270 * Deconstructs a #GVariant instance.
5272 * Think of this function as an analogue to scanf().
5274 * The arguments that are expected by this function are entirely
5275 * determined by @format_string. @format_string also restricts the
5276 * permissible types of @value. It is an error to give a value with
5277 * an incompatible type. See the section on
5278 * [GVariant format strings][gvariant-format-strings].
5279 * Please note that the syntax of the format string is very likely to be
5280 * extended in the future.
5282 * @format_string determines the C types that are used for unpacking
5283 * the values and also determines if the values are copied or borrowed,
5284 * see the section on
5285 * [GVariant format strings][gvariant-format-strings-pointers].
5287 * Since: 2.24
5289 void
5290 g_variant_get (GVariant *value,
5291 const gchar *format_string,
5292 ...)
5294 va_list ap;
5296 g_return_if_fail (valid_format_string (format_string, TRUE, value));
5298 /* if any direct-pointer-access formats are in use, flatten first */
5299 if (strchr (format_string, '&'))
5300 g_variant_get_data (value);
5302 va_start (ap, format_string);
5303 g_variant_get_va (value, format_string, NULL, &ap);
5304 va_end (ap);
5308 * g_variant_get_va: (skip)
5309 * @value: a #GVariant
5310 * @format_string: a string that is prefixed with a format string
5311 * @endptr: (allow-none) (default NULL): location to store the end pointer,
5312 * or %NULL
5313 * @app: a pointer to a #va_list
5315 * This function is intended to be used by libraries based on #GVariant
5316 * that want to provide g_variant_get()-like functionality to their
5317 * users.
5319 * The API is more general than g_variant_get() to allow a wider range
5320 * of possible uses.
5322 * @format_string must still point to a valid format string, but it only
5323 * need to be nul-terminated if @endptr is %NULL. If @endptr is
5324 * non-%NULL then it is updated to point to the first character past the
5325 * end of the format string.
5327 * @app is a pointer to a #va_list. The arguments, according to
5328 * @format_string, are collected from this #va_list and the list is left
5329 * pointing to the argument following the last.
5331 * These two generalisations allow mixing of multiple calls to
5332 * g_variant_new_va() and g_variant_get_va() within a single actual
5333 * varargs call by the user.
5335 * @format_string determines the C types that are used for unpacking
5336 * the values and also determines if the values are copied or borrowed,
5337 * see the section on
5338 * [GVariant format strings][gvariant-format-strings-pointers].
5340 * Since: 2.24
5342 void
5343 g_variant_get_va (GVariant *value,
5344 const gchar *format_string,
5345 const gchar **endptr,
5346 va_list *app)
5348 g_return_if_fail (valid_format_string (format_string, !endptr, value));
5349 g_return_if_fail (value != NULL);
5350 g_return_if_fail (app != NULL);
5352 /* if any direct-pointer-access formats are in use, flatten first */
5353 if (strchr (format_string, '&'))
5354 g_variant_get_data (value);
5356 g_variant_valist_get (&format_string, value, FALSE, app);
5358 if (endptr != NULL)
5359 *endptr = format_string;
5362 /* Varargs-enabled Utility Functions {{{1 */
5365 * g_variant_builder_add: (skip)
5366 * @builder: a #GVariantBuilder
5367 * @format_string: a #GVariant varargs format string
5368 * @...: arguments, as per @format_string
5370 * Adds to a #GVariantBuilder.
5372 * This call is a convenience wrapper that is exactly equivalent to
5373 * calling g_variant_new() followed by g_variant_builder_add_value().
5375 * Note that the arguments must be of the correct width for their types
5376 * specified in @format_string. This can be achieved by casting them. See
5377 * the [GVariant varargs documentation][gvariant-varargs].
5379 * This function might be used as follows:
5381 * |[<!-- language="C" -->
5382 * GVariant *
5383 * make_pointless_dictionary (void)
5385 * GVariantBuilder builder;
5386 * int i;
5388 * g_variant_builder_init (&builder, G_VARIANT_TYPE_ARRAY);
5389 * for (i = 0; i < 16; i++)
5391 * gchar buf[3];
5393 * sprintf (buf, "%d", i);
5394 * g_variant_builder_add (&builder, "{is}", i, buf);
5397 * return g_variant_builder_end (&builder);
5399 * ]|
5401 * Since: 2.24
5403 void
5404 g_variant_builder_add (GVariantBuilder *builder,
5405 const gchar *format_string,
5406 ...)
5408 GVariant *variant;
5409 va_list ap;
5411 va_start (ap, format_string);
5412 variant = g_variant_new_va (format_string, NULL, &ap);
5413 va_end (ap);
5415 g_variant_builder_add_value (builder, variant);
5419 * g_variant_get_child: (skip)
5420 * @value: a container #GVariant
5421 * @index_: the index of the child to deconstruct
5422 * @format_string: a #GVariant format string
5423 * @...: arguments, as per @format_string
5425 * Reads a child item out of a container #GVariant instance and
5426 * deconstructs it according to @format_string. This call is
5427 * essentially a combination of g_variant_get_child_value() and
5428 * g_variant_get().
5430 * @format_string determines the C types that are used for unpacking
5431 * the values and also determines if the values are copied or borrowed,
5432 * see the section on
5433 * [GVariant format strings][gvariant-format-strings-pointers].
5435 * Since: 2.24
5437 void
5438 g_variant_get_child (GVariant *value,
5439 gsize index_,
5440 const gchar *format_string,
5441 ...)
5443 GVariant *child;
5444 va_list ap;
5446 child = g_variant_get_child_value (value, index_);
5447 g_return_if_fail (valid_format_string (format_string, TRUE, child));
5449 va_start (ap, format_string);
5450 g_variant_get_va (child, format_string, NULL, &ap);
5451 va_end (ap);
5453 g_variant_unref (child);
5457 * g_variant_iter_next: (skip)
5458 * @iter: a #GVariantIter
5459 * @format_string: a GVariant format string
5460 * @...: the arguments to unpack the value into
5462 * Gets the next item in the container and unpacks it into the variable
5463 * argument list according to @format_string, returning %TRUE.
5465 * If no more items remain then %FALSE is returned.
5467 * All of the pointers given on the variable arguments list of this
5468 * function are assumed to point at uninitialised memory. It is the
5469 * responsibility of the caller to free all of the values returned by
5470 * the unpacking process.
5472 * Here is an example for memory management with g_variant_iter_next():
5473 * |[<!-- language="C" -->
5474 * // Iterates a dictionary of type 'a{sv}'
5475 * void
5476 * iterate_dictionary (GVariant *dictionary)
5478 * GVariantIter iter;
5479 * GVariant *value;
5480 * gchar *key;
5482 * g_variant_iter_init (&iter, dictionary);
5483 * while (g_variant_iter_next (&iter, "{sv}", &key, &value))
5485 * g_print ("Item '%s' has type '%s'\n", key,
5486 * g_variant_get_type_string (value));
5488 * // must free data for ourselves
5489 * g_variant_unref (value);
5490 * g_free (key);
5493 * ]|
5495 * For a solution that is likely to be more convenient to C programmers
5496 * when dealing with loops, see g_variant_iter_loop().
5498 * @format_string determines the C types that are used for unpacking
5499 * the values and also determines if the values are copied or borrowed.
5501 * See the section on
5502 * [GVariant format strings][gvariant-format-strings-pointers].
5504 * Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
5506 * Since: 2.24
5508 gboolean
5509 g_variant_iter_next (GVariantIter *iter,
5510 const gchar *format_string,
5511 ...)
5513 GVariant *value;
5515 value = g_variant_iter_next_value (iter);
5517 g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
5518 FALSE);
5520 if (value != NULL)
5522 va_list ap;
5524 va_start (ap, format_string);
5525 g_variant_valist_get (&format_string, value, FALSE, &ap);
5526 va_end (ap);
5528 g_variant_unref (value);
5531 return value != NULL;
5535 * g_variant_iter_loop: (skip)
5536 * @iter: a #GVariantIter
5537 * @format_string: a GVariant format string
5538 * @...: the arguments to unpack the value into
5540 * Gets the next item in the container and unpacks it into the variable
5541 * argument list according to @format_string, returning %TRUE.
5543 * If no more items remain then %FALSE is returned.
5545 * On the first call to this function, the pointers appearing on the
5546 * variable argument list are assumed to point at uninitialised memory.
5547 * On the second and later calls, it is assumed that the same pointers
5548 * will be given and that they will point to the memory as set by the
5549 * previous call to this function. This allows the previous values to
5550 * be freed, as appropriate.
5552 * This function is intended to be used with a while loop as
5553 * demonstrated in the following example. This function can only be
5554 * used when iterating over an array. It is only valid to call this
5555 * function with a string constant for the format string and the same
5556 * string constant must be used each time. Mixing calls to this
5557 * function and g_variant_iter_next() or g_variant_iter_next_value() on
5558 * the same iterator causes undefined behavior.
5560 * If you break out of a such a while loop using g_variant_iter_loop() then
5561 * you must free or unreference all the unpacked values as you would with
5562 * g_variant_get(). Failure to do so will cause a memory leak.
5564 * Here is an example for memory management with g_variant_iter_loop():
5565 * |[<!-- language="C" -->
5566 * // Iterates a dictionary of type 'a{sv}'
5567 * void
5568 * iterate_dictionary (GVariant *dictionary)
5570 * GVariantIter iter;
5571 * GVariant *value;
5572 * gchar *key;
5574 * g_variant_iter_init (&iter, dictionary);
5575 * while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
5577 * g_print ("Item '%s' has type '%s'\n", key,
5578 * g_variant_get_type_string (value));
5580 * // no need to free 'key' and 'value' here
5581 * // unless breaking out of this loop
5584 * ]|
5586 * For most cases you should use g_variant_iter_next().
5588 * This function is really only useful when unpacking into #GVariant or
5589 * #GVariantIter in order to allow you to skip the call to
5590 * g_variant_unref() or g_variant_iter_free().
5592 * For example, if you are only looping over simple integer and string
5593 * types, g_variant_iter_next() is definitely preferred. For string
5594 * types, use the '&' prefix to avoid allocating any memory at all (and
5595 * thereby avoiding the need to free anything as well).
5597 * @format_string determines the C types that are used for unpacking
5598 * the values and also determines if the values are copied or borrowed.
5600 * See the section on
5601 * [GVariant format strings][gvariant-format-strings-pointers].
5603 * Returns: %TRUE if a value was unpacked, or %FALSE if there was no
5604 * value
5606 * Since: 2.24
5608 gboolean
5609 g_variant_iter_loop (GVariantIter *iter,
5610 const gchar *format_string,
5611 ...)
5613 gboolean first_time = GVSI(iter)->loop_format == NULL;
5614 GVariant *value;
5615 va_list ap;
5617 g_return_val_if_fail (first_time ||
5618 format_string == GVSI(iter)->loop_format,
5619 FALSE);
5621 if (first_time)
5623 TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
5624 GVSI(iter)->loop_format = format_string;
5626 if (strchr (format_string, '&'))
5627 g_variant_get_data (GVSI(iter)->value);
5630 value = g_variant_iter_next_value (iter);
5632 g_return_val_if_fail (!first_time ||
5633 valid_format_string (format_string, TRUE, value),
5634 FALSE);
5636 va_start (ap, format_string);
5637 g_variant_valist_get (&format_string, value, !first_time, &ap);
5638 va_end (ap);
5640 if (value != NULL)
5641 g_variant_unref (value);
5643 return value != NULL;
5646 /* Serialised data {{{1 */
5647 static GVariant *
5648 g_variant_deep_copy (GVariant *value)
5650 switch (g_variant_classify (value))
5652 case G_VARIANT_CLASS_MAYBE:
5653 case G_VARIANT_CLASS_ARRAY:
5654 case G_VARIANT_CLASS_TUPLE:
5655 case G_VARIANT_CLASS_DICT_ENTRY:
5656 case G_VARIANT_CLASS_VARIANT:
5658 GVariantBuilder builder;
5659 GVariantIter iter;
5660 GVariant *child;
5662 g_variant_builder_init (&builder, g_variant_get_type (value));
5663 g_variant_iter_init (&iter, value);
5665 while ((child = g_variant_iter_next_value (&iter)))
5667 g_variant_builder_add_value (&builder, g_variant_deep_copy (child));
5668 g_variant_unref (child);
5671 return g_variant_builder_end (&builder);
5674 case G_VARIANT_CLASS_BOOLEAN:
5675 return g_variant_new_boolean (g_variant_get_boolean (value));
5677 case G_VARIANT_CLASS_BYTE:
5678 return g_variant_new_byte (g_variant_get_byte (value));
5680 case G_VARIANT_CLASS_INT16:
5681 return g_variant_new_int16 (g_variant_get_int16 (value));
5683 case G_VARIANT_CLASS_UINT16:
5684 return g_variant_new_uint16 (g_variant_get_uint16 (value));
5686 case G_VARIANT_CLASS_INT32:
5687 return g_variant_new_int32 (g_variant_get_int32 (value));
5689 case G_VARIANT_CLASS_UINT32:
5690 return g_variant_new_uint32 (g_variant_get_uint32 (value));
5692 case G_VARIANT_CLASS_INT64:
5693 return g_variant_new_int64 (g_variant_get_int64 (value));
5695 case G_VARIANT_CLASS_UINT64:
5696 return g_variant_new_uint64 (g_variant_get_uint64 (value));
5698 case G_VARIANT_CLASS_HANDLE:
5699 return g_variant_new_handle (g_variant_get_handle (value));
5701 case G_VARIANT_CLASS_DOUBLE:
5702 return g_variant_new_double (g_variant_get_double (value));
5704 case G_VARIANT_CLASS_STRING:
5705 return g_variant_new_string (g_variant_get_string (value, NULL));
5707 case G_VARIANT_CLASS_OBJECT_PATH:
5708 return g_variant_new_object_path (g_variant_get_string (value, NULL));
5710 case G_VARIANT_CLASS_SIGNATURE:
5711 return g_variant_new_signature (g_variant_get_string (value, NULL));
5714 g_assert_not_reached ();
5718 * g_variant_get_normal_form:
5719 * @value: a #GVariant
5721 * Gets a #GVariant instance that has the same value as @value and is
5722 * trusted to be in normal form.
5724 * If @value is already trusted to be in normal form then a new
5725 * reference to @value is returned.
5727 * If @value is not already trusted, then it is scanned to check if it
5728 * is in normal form. If it is found to be in normal form then it is
5729 * marked as trusted and a new reference to it is returned.
5731 * If @value is found not to be in normal form then a new trusted
5732 * #GVariant is created with the same value as @value.
5734 * It makes sense to call this function if you've received #GVariant
5735 * data from untrusted sources and you want to ensure your serialised
5736 * output is definitely in normal form.
5738 * Returns: (transfer full): a trusted #GVariant
5740 * Since: 2.24
5742 GVariant *
5743 g_variant_get_normal_form (GVariant *value)
5745 GVariant *trusted;
5747 if (g_variant_is_normal_form (value))
5748 return g_variant_ref (value);
5750 trusted = g_variant_deep_copy (value);
5751 g_assert (g_variant_is_trusted (trusted));
5753 return g_variant_ref_sink (trusted);
5757 * g_variant_byteswap:
5758 * @value: a #GVariant
5760 * Performs a byteswapping operation on the contents of @value. The
5761 * result is that all multi-byte numeric data contained in @value is
5762 * byteswapped. That includes 16, 32, and 64bit signed and unsigned
5763 * integers as well as file handles and double precision floating point
5764 * values.
5766 * This function is an identity mapping on any value that does not
5767 * contain multi-byte numeric data. That include strings, booleans,
5768 * bytes and containers containing only these things (recursively).
5770 * The returned value is always in normal form and is marked as trusted.
5772 * Returns: (transfer full): the byteswapped form of @value
5774 * Since: 2.24
5776 GVariant *
5777 g_variant_byteswap (GVariant *value)
5779 GVariantTypeInfo *type_info;
5780 guint alignment;
5781 GVariant *new;
5783 type_info = g_variant_get_type_info (value);
5785 g_variant_type_info_query (type_info, &alignment, NULL);
5787 if (alignment)
5788 /* (potentially) contains multi-byte numeric data */
5790 GVariantSerialised serialised;
5791 GVariant *trusted;
5792 GBytes *bytes;
5794 trusted = g_variant_get_normal_form (value);
5795 serialised.type_info = g_variant_get_type_info (trusted);
5796 serialised.size = g_variant_get_size (trusted);
5797 serialised.data = g_malloc (serialised.size);
5798 g_variant_store (trusted, serialised.data);
5799 g_variant_unref (trusted);
5801 g_variant_serialised_byteswap (serialised);
5803 bytes = g_bytes_new_take (serialised.data, serialised.size);
5804 new = g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE);
5805 g_bytes_unref (bytes);
5807 else
5808 /* contains no multi-byte data */
5809 new = value;
5811 return g_variant_ref_sink (new);
5815 * g_variant_new_from_data:
5816 * @type: a definite #GVariantType
5817 * @data: (array length=size) (element-type guint8): the serialised data
5818 * @size: the size of @data
5819 * @trusted: %TRUE if @data is definitely in normal form
5820 * @notify: (scope async): function to call when @data is no longer needed
5821 * @user_data: data for @notify
5823 * Creates a new #GVariant instance from serialised data.
5825 * @type is the type of #GVariant instance that will be constructed.
5826 * The interpretation of @data depends on knowing the type.
5828 * @data is not modified by this function and must remain valid with an
5829 * unchanging value until such a time as @notify is called with
5830 * @user_data. If the contents of @data change before that time then
5831 * the result is undefined.
5833 * If @data is trusted to be serialised data in normal form then
5834 * @trusted should be %TRUE. This applies to serialised data created
5835 * within this process or read from a trusted location on the disk (such
5836 * as a file installed in /usr/lib alongside your application). You
5837 * should set trusted to %FALSE if @data is read from the network, a
5838 * file in the user's home directory, etc.
5840 * If @data was not stored in this machine's native endianness, any multi-byte
5841 * numeric values in the returned variant will also be in non-native
5842 * endianness. g_variant_byteswap() can be used to recover the original values.
5844 * @notify will be called with @user_data when @data is no longer
5845 * needed. The exact time of this call is unspecified and might even be
5846 * before this function returns.
5848 * Returns: (transfer none): a new floating #GVariant of type @type
5850 * Since: 2.24
5852 GVariant *
5853 g_variant_new_from_data (const GVariantType *type,
5854 gconstpointer data,
5855 gsize size,
5856 gboolean trusted,
5857 GDestroyNotify notify,
5858 gpointer user_data)
5860 GVariant *value;
5861 GBytes *bytes;
5863 g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
5864 g_return_val_if_fail (data != NULL || size == 0, NULL);
5866 if (notify)
5867 bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
5868 else
5869 bytes = g_bytes_new_static (data, size);
5871 value = g_variant_new_from_bytes (type, bytes, trusted);
5872 g_bytes_unref (bytes);
5874 return value;
5877 /* Epilogue {{{1 */
5878 /* vim:set foldmethod=marker: */