Apply fix for CVE-2008-2371 to fix a heap-based buffer overflow.
[glib.git] / glib / grand.c
blob55f89700263fc6898d92992809748d23570ba3bc
1 /* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
20 /* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi.
29 * Modified by the GLib Team and others 1997-2000. See the AUTHORS
30 * file for a list of people on the GLib Team. See the ChangeLog
31 * files for a list of changes. These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/.
35 /*
36 * MT safe
39 #include "config.h"
41 #include <math.h>
42 #include <errno.h>
43 #include <stdio.h>
44 #include <string.h>
45 #include <sys/types.h>
46 #ifdef HAVE_UNISTD_H
47 #include <unistd.h>
48 #endif
50 #include "glib.h"
51 #include "gthreadprivate.h"
52 #include "galias.h"
54 #ifdef G_OS_WIN32
55 #include <process.h> /* For getpid() */
56 #endif
58 G_LOCK_DEFINE_STATIC (global_random);
59 static GRand* global_random = NULL;
61 /* Period parameters */
62 #define N 624
63 #define M 397
64 #define MATRIX_A 0x9908b0df /* constant vector a */
65 #define UPPER_MASK 0x80000000 /* most significant w-r bits */
66 #define LOWER_MASK 0x7fffffff /* least significant r bits */
68 /* Tempering parameters */
69 #define TEMPERING_MASK_B 0x9d2c5680
70 #define TEMPERING_MASK_C 0xefc60000
71 #define TEMPERING_SHIFT_U(y) (y >> 11)
72 #define TEMPERING_SHIFT_S(y) (y << 7)
73 #define TEMPERING_SHIFT_T(y) (y << 15)
74 #define TEMPERING_SHIFT_L(y) (y >> 18)
76 static guint
77 get_random_version (void)
79 static gboolean initialized = FALSE;
80 static guint random_version;
82 if (!initialized)
84 const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
85 if (!version_string || version_string[0] == '\000' ||
86 strcmp (version_string, "2.2") == 0)
87 random_version = 22;
88 else if (strcmp (version_string, "2.0") == 0)
89 random_version = 20;
90 else
92 g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
93 version_string);
94 random_version = 22;
96 initialized = TRUE;
99 return random_version;
102 /* This is called from g_thread_init(). It's used to
103 * initialize some static data in a threadsafe way.
105 void
106 _g_rand_thread_init (void)
108 (void)get_random_version ();
111 struct _GRand
113 guint32 mt[N]; /* the array for the state vector */
114 guint mti;
118 * g_rand_new_with_seed:
119 * @seed: a value to initialize the random number generator.
121 * Creates a new random number generator initialized with @seed.
123 * Return value: the new #GRand.
125 GRand*
126 g_rand_new_with_seed (guint32 seed)
128 GRand *rand = g_new0 (GRand, 1);
129 g_rand_set_seed (rand, seed);
130 return rand;
134 * g_rand_new_with_seed_array:
135 * @seed: an array of seeds to initialize the random number generator.
136 * @seed_length: an array of seeds to initialize the random number generator.
138 * Creates a new random number generator initialized with @seed.
140 * Return value: the new #GRand.
142 * Since: 2.4
144 GRand*
145 g_rand_new_with_seed_array (const guint32 *seed, guint seed_length)
147 GRand *rand = g_new0 (GRand, 1);
148 g_rand_set_seed_array (rand, seed, seed_length);
149 return rand;
153 * g_rand_new:
155 * Creates a new random number generator initialized with a seed taken
156 * either from <filename>/dev/urandom</filename> (if existing) or from
157 * the current time (as a fallback).
159 * Return value: the new #GRand.
161 GRand*
162 g_rand_new (void)
164 guint32 seed[4];
165 GTimeVal now;
166 #ifdef G_OS_UNIX
167 static gboolean dev_urandom_exists = TRUE;
169 if (dev_urandom_exists)
171 FILE* dev_urandom;
175 errno = 0;
176 dev_urandom = fopen("/dev/urandom", "rb");
178 while G_UNLIKELY (errno == EINTR);
180 if (dev_urandom)
182 int r;
186 errno = 0;
187 r = fread (seed, sizeof (seed), 1, dev_urandom);
189 while G_UNLIKELY (errno == EINTR);
191 if (r != 1)
192 dev_urandom_exists = FALSE;
194 fclose (dev_urandom);
196 else
197 dev_urandom_exists = FALSE;
199 #else
200 static gboolean dev_urandom_exists = FALSE;
201 #endif
203 if (!dev_urandom_exists)
205 g_get_current_time (&now);
206 seed[0] = now.tv_sec;
207 seed[1] = now.tv_usec;
208 seed[2] = getpid ();
209 #ifdef G_OS_UNIX
210 seed[3] = getppid ();
211 #else
212 seed[3] = 0;
213 #endif
216 return g_rand_new_with_seed_array (seed, 4);
220 * g_rand_free:
221 * @rand_: a #GRand.
223 * Frees the memory allocated for the #GRand.
225 void
226 g_rand_free (GRand* rand)
228 g_return_if_fail (rand != NULL);
230 g_free (rand);
234 * g_rand_copy:
235 * @rand_: a #GRand.
237 * Copies a #GRand into a new one with the same exact state as before.
238 * This way you can take a snapshot of the random number generator for
239 * replaying later.
241 * Return value: the new #GRand.
243 * Since: 2.4
245 GRand *
246 g_rand_copy (GRand* rand)
248 GRand* new_rand;
250 g_return_val_if_fail (rand != NULL, NULL);
252 new_rand = g_new0 (GRand, 1);
253 memcpy (new_rand, rand, sizeof (GRand));
255 return new_rand;
259 * g_rand_set_seed:
260 * @rand_: a #GRand.
261 * @seed: a value to reinitialize the random number generator.
263 * Sets the seed for the random number generator #GRand to @seed.
265 void
266 g_rand_set_seed (GRand* rand, guint32 seed)
268 g_return_if_fail (rand != NULL);
270 switch (get_random_version ())
272 case 20:
273 /* setting initial seeds to mt[N] using */
274 /* the generator Line 25 of Table 1 in */
275 /* [KNUTH 1981, The Art of Computer Programming */
276 /* Vol. 2 (2nd Ed.), pp102] */
278 if (seed == 0) /* This would make the PRNG procude only zeros */
279 seed = 0x6b842128; /* Just set it to another number */
281 rand->mt[0]= seed;
282 for (rand->mti=1; rand->mti<N; rand->mti++)
283 rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
285 break;
286 case 22:
287 /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
288 /* In the previous version (see above), MSBs of the */
289 /* seed affect only MSBs of the array mt[]. */
291 rand->mt[0]= seed;
292 for (rand->mti=1; rand->mti<N; rand->mti++)
293 rand->mt[rand->mti] = 1812433253UL *
294 (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
295 break;
296 default:
297 g_assert_not_reached ();
302 * g_rand_set_seed_array:
303 * @rand_: a #GRand.
304 * @seed: array to initialize with
305 * @seed_length: length of array
307 * Initializes the random number generator by an array of
308 * longs. Array can be of arbitrary size, though only the
309 * first 624 values are taken. This function is useful
310 * if you have many low entropy seeds, or if you require more then
311 * 32bits of actual entropy for your application.
313 * Since: 2.4
315 void
316 g_rand_set_seed_array (GRand* rand, const guint32 *seed, guint seed_length)
318 int i, j, k;
320 g_return_if_fail (rand != NULL);
321 g_return_if_fail (seed_length >= 1);
323 g_rand_set_seed (rand, 19650218UL);
325 i=1; j=0;
326 k = (N>seed_length ? N : seed_length);
327 for (; k; k--)
329 rand->mt[i] = (rand->mt[i] ^
330 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
331 + seed[j] + j; /* non linear */
332 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
333 i++; j++;
334 if (i>=N)
336 rand->mt[0] = rand->mt[N-1];
337 i=1;
339 if (j>=seed_length)
340 j=0;
342 for (k=N-1; k; k--)
344 rand->mt[i] = (rand->mt[i] ^
345 ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
346 - i; /* non linear */
347 rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
348 i++;
349 if (i>=N)
351 rand->mt[0] = rand->mt[N-1];
352 i=1;
356 rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
360 * g_rand_int:
361 * @rand_: a #GRand.
363 * Returns the next random #guint32 from @rand_ equally distributed over
364 * the range [0..2^32-1].
366 * Return value: A random number.
368 guint32
369 g_rand_int (GRand* rand)
371 guint32 y;
372 static const guint32 mag01[2]={0x0, MATRIX_A};
373 /* mag01[x] = x * MATRIX_A for x=0,1 */
375 g_return_val_if_fail (rand != NULL, 0);
377 if (rand->mti >= N) { /* generate N words at one time */
378 int kk;
380 for (kk=0;kk<N-M;kk++) {
381 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
382 rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
384 for (;kk<N-1;kk++) {
385 y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
386 rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
388 y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
389 rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
391 rand->mti = 0;
394 y = rand->mt[rand->mti++];
395 y ^= TEMPERING_SHIFT_U(y);
396 y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
397 y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
398 y ^= TEMPERING_SHIFT_L(y);
400 return y;
403 /* transform [0..2^32] -> [0..1] */
404 #define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
407 * g_rand_int_range:
408 * @rand_: a #GRand.
409 * @begin: lower closed bound of the interval.
410 * @end: upper open bound of the interval.
412 * Returns the next random #gint32 from @rand_ equally distributed over
413 * the range [@begin..@end-1].
415 * Return value: A random number.
417 gint32
418 g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
420 guint32 dist = end - begin;
421 guint32 random;
423 g_return_val_if_fail (rand != NULL, begin);
424 g_return_val_if_fail (end > begin, begin);
426 switch (get_random_version ())
428 case 20:
429 if (dist <= 0x10000L) /* 2^16 */
431 /* This method, which only calls g_rand_int once is only good
432 * for (end - begin) <= 2^16, because we only have 32 bits set
433 * from the one call to g_rand_int (). */
435 /* we are using (trans + trans * trans), because g_rand_int only
436 * covers [0..2^32-1] and thus g_rand_int * trans only covers
437 * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
440 gdouble double_rand = g_rand_int (rand) *
441 (G_RAND_DOUBLE_TRANSFORM +
442 G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
444 random = (gint32) (double_rand * dist);
446 else
448 /* Now we use g_rand_double_range (), which will set 52 bits for
449 us, so that it is safe to round and still get a decent
450 distribution */
451 random = (gint32) g_rand_double_range (rand, 0, dist);
453 break;
454 case 22:
455 if (dist == 0)
456 random = 0;
457 else
459 /* maxvalue is set to the predecessor of the greatest
460 * multiple of dist less or equal 2^32. */
461 guint32 maxvalue;
462 if (dist <= 0x80000000u) /* 2^31 */
464 /* maxvalue = 2^32 - 1 - (2^32 % dist) */
465 guint32 leftover = (0x80000000u % dist) * 2;
466 if (leftover >= dist) leftover -= dist;
467 maxvalue = 0xffffffffu - leftover;
469 else
470 maxvalue = dist - 1;
473 random = g_rand_int (rand);
474 while (random > maxvalue);
476 random %= dist;
478 break;
479 default:
480 random = 0; /* Quiet GCC */
481 g_assert_not_reached ();
484 return begin + random;
488 * g_rand_double:
489 * @rand_: a #GRand.
491 * Returns the next random #gdouble from @rand_ equally distributed over
492 * the range [0..1).
494 * Return value: A random number.
496 gdouble
497 g_rand_double (GRand* rand)
499 /* We set all 52 bits after the point for this, not only the first
500 32. Thats why we need two calls to g_rand_int */
501 gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
502 retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
504 /* The following might happen due to very bad rounding luck, but
505 * actually this should be more than rare, we just try again then */
506 if (retval >= 1.0)
507 return g_rand_double (rand);
509 return retval;
513 * g_rand_double_range:
514 * @rand_: a #GRand.
515 * @begin: lower closed bound of the interval.
516 * @end: upper open bound of the interval.
518 * Returns the next random #gdouble from @rand_ equally distributed over
519 * the range [@begin..@end).
521 * Return value: A random number.
523 gdouble
524 g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
526 return g_rand_double (rand) * (end - begin) + begin;
530 * g_random_int:
532 * Return a random #guint32 equally distributed over the range
533 * [0..2^32-1].
535 * Return value: A random number.
537 guint32
538 g_random_int (void)
540 guint32 result;
541 G_LOCK (global_random);
542 if (!global_random)
543 global_random = g_rand_new ();
545 result = g_rand_int (global_random);
546 G_UNLOCK (global_random);
547 return result;
551 * g_random_int_range:
552 * @begin: lower closed bound of the interval.
553 * @end: upper open bound of the interval.
555 * Returns a random #gint32 equally distributed over the range
556 * [@begin..@end-1].
558 * Return value: A random number.
560 gint32
561 g_random_int_range (gint32 begin, gint32 end)
563 gint32 result;
564 G_LOCK (global_random);
565 if (!global_random)
566 global_random = g_rand_new ();
568 result = g_rand_int_range (global_random, begin, end);
569 G_UNLOCK (global_random);
570 return result;
574 * g_random_double:
576 * Returns a random #gdouble equally distributed over the range [0..1).
578 * Return value: A random number.
580 gdouble
581 g_random_double (void)
583 double result;
584 G_LOCK (global_random);
585 if (!global_random)
586 global_random = g_rand_new ();
588 result = g_rand_double (global_random);
589 G_UNLOCK (global_random);
590 return result;
594 * g_random_double_range:
595 * @begin: lower closed bound of the interval.
596 * @end: upper open bound of the interval.
598 * Returns a random #gdouble equally distributed over the range [@begin..@end).
600 * Return value: A random number.
602 gdouble
603 g_random_double_range (gdouble begin, gdouble end)
605 double result;
606 G_LOCK (global_random);
607 if (!global_random)
608 global_random = g_rand_new ();
610 result = g_rand_double_range (global_random, begin, end);
611 G_UNLOCK (global_random);
612 return result;
616 * g_random_set_seed:
617 * @seed: a value to reinitialize the global random number generator.
619 * Sets the seed for the global random number generator, which is used
620 * by the <function>g_random_*</function> functions, to @seed.
622 void
623 g_random_set_seed (guint32 seed)
625 G_LOCK (global_random);
626 if (!global_random)
627 global_random = g_rand_new_with_seed (seed);
628 else
629 g_rand_set_seed (global_random, seed);
630 G_UNLOCK (global_random);
634 #define __G_RAND_C__
635 #include "galiasdef.c"