1 /* Copyright (C) 1996,1997,1998,2002,2003 Free Software Foundation, Inc.
2 Contributed by David Mosberger (davidm@cs.arizona.edu).
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, write to the Free
17 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
22 #if !defined(_IEEE_FP_INEXACT)
25 * This version is much faster than generic sqrt implementation, but
26 * it doesn't handle the inexact flag. It doesn't handle exceptional
27 * values either, but will defer to the full ieee754_sqrt routine which
31 /* Careful with rearranging this without consulting the assembly below. */
32 const static struct sqrt_data_struct
{
33 unsigned long dn
, up
, half
, almost_three_half
;
34 unsigned long one_and_a_half
, two_to_minus_30
, one
, nan
;
36 } sqrt_data
__attribute__((used
)) = {
37 0x3fefffffffffffff, /* __dn = nextafter(1,-Inf) */
38 0x3ff0000000000001, /* __up = nextafter(1,+Inf) */
39 0x3fe0000000000000, /* half */
40 0x3ff7ffffffc00000, /* almost_three_half = 1.5-2^-30 */
41 0x3ff8000000000000, /* one_and_a_half */
42 0x3e10000000000000, /* two_to_minus_30 */
43 0x3ff0000000000000, /* one */
44 0xffffffffffffffff, /* nan */
46 { 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
47 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
48 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
49 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
50 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
51 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
52 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
53 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd }
57 /* Define offsets into the structure defined in C above. */ \n\
61 $ALMOST_THREE_HALF = 3*8 \n\
65 /* Stack variables. */ \n\
71 .globl __ieee754_sqrt \n\
72 .ent __ieee754_sqrt \n\
76 .frame $sp, 16, $26, 0\n"
78 " lda $28, _mcount \n\
79 jsr $28, ($28), _mcount\n"
84 stt $f16, $K($sp) # e0 : \n\
85 mult $f31, $f31, $f31 # .. fm : \n\
86 lda $4, sqrt_data # e0 : \n\
87 fblt $f16, $fixup # .. fa : \n\
89 ldah $2, 0x5fe8 # e0 : \n\
90 ldq $3, $K($sp) # .. e1 : \n\
91 ldt $f12, $HALF($4) # e0 : \n\
92 ldt $f18, $ALMOST_THREE_HALF($4) # .. e1 : \n\
94 sll $3, 52, $5 # e0 : \n\
95 lda $6, 0x7fd # .. e1 : \n\
99 subq $5, 1, $5 # e1 : \n\
100 srl $3, 33, $1 # .. e0 : \n\
101 cmpule $5, $6, $5 # e0 : \n\
102 beq $5, $fixup # .. e1 : \n\
104 mult $f16, $f12, $f11 # fm : $f11 = x * 0.5 \n\
105 subl $2, $1, $2 # .. e0 : \n\
106 addt $f12, $f12, $f17 # .. fa : $f17 = 1.0 \n\
107 srl $2, 12, $1 # e0 : \n\
109 and $1, 0xfc, $1 # e0 : \n\
110 addq $1, $4, $1 # e1 : \n\
111 ldl $1, $T2($1) # e0 : \n\
112 addt $f12, $f17, $f15 # .. fa : $f15 = 1.5 \n\
114 subl $2, $1, $2 # e0 : \n\
115 ldt $f14, $DN($4) # .. e1 : \n\
116 sll $2, 32, $2 # e0 : \n\
117 stq $2, $Y($sp) # e0 : \n\
119 ldt $f13, $Y($sp) # e0 : \n\
120 mult/su $f11, $f13, $f10 # fm 2: $f10 = (x * 0.5) * y \n\
121 mult $f10, $f13, $f10 # fm 4: $f10 = ((x*0.5)*y)*y \n\
122 subt $f15, $f10, $f1 # fa 4: $f1 = (1.5-0.5*x*y*y) \n\
124 mult $f13, $f1, $f13 # fm 4: yp = y*(1.5-0.5*x*y^2)\n\
125 mult/su $f11, $f13, $f1 # fm 4: $f11 = x * 0.5 * yp \n\
126 mult $f1, $f13, $f11 # fm 4: $f11 = (x*0.5*yp)*yp \n\
127 subt $f18, $f11, $f1 # fa 4: $f1=(1.5-2^-30)-x/2*yp^2\n\
129 mult $f13, $f1, $f13 # fm 4: ypp = $f13 = yp*$f1 \n\
130 subt $f15, $f12, $f1 # .. fa : $f1 = (1.5 - 0.5) \n\
131 ldt $f15, $UP($4) # .. e0 : \n\
132 mult/su $f16, $f13, $f10 # fm 4: z = $f10 = x * ypp \n\
134 mult $f10, $f13, $f11 # fm 4: $f11 = z*ypp \n\
135 mult $f10, $f12, $f12 # fm : $f12 = z*0.5 \n\
136 subt $f1, $f11, $f1 # fa 4: $f1 = 1 - z*ypp \n\
137 mult $f12, $f1, $f12 # fm 4: $f12 = z/2*(1 - z*ypp)\n\
139 addt $f10, $f12, $f0 # fa 4: zp=res= z+z/2*(1-z*ypp)\n\
140 mult/c $f0, $f14, $f12 # fm 4: zmi = zp * DN \n\
141 mult/c $f0, $f15, $f11 # fm : zpl = zp * UP \n\
142 mult/c $f0, $f12, $f1 # fm : $f1 = zp * zmi \n\
144 mult/c $f0, $f11, $f15 # fm : $f15 = zp * zpl \n\
145 subt/su $f1, $f16, $f13 # .. fa : y1 = zp*zmi - x \n\
146 subt/su $f15, $f16, $f14 # fa 4: y2 = zp*zpl - x \n\
147 fcmovge $f13, $f12, $f0 # fa 3: res = (y1>=0)?zmi:res \n\
149 fcmovlt $f14, $f11, $f0 # fa 4: res = (y2<0)?zpl:res \n\
150 addq $sp, 16, $sp # .. e0 : \n\
155 addq $sp, 16, $sp \n\
156 br __full_ieee754_sqrt !samegp \n\
158 .end __ieee754_sqrt");
160 static double __full_ieee754_sqrt(double) __attribute_used__
;
161 #define __ieee754_sqrt __full_ieee754_sqrt
163 #endif /* _IEEE_FP_INEXACT */
165 #include <sysdeps/ieee754/dbl-64/e_sqrt.c>