2005-07-08 Carlos O'Donell <carlos@systemhalted.org>
[glibc-ports.git] / sysdeps / m88k / m88100 / mul_1.s
blob77242778d7e8841e62d8200f95463a2b8f85dd3f
1 ; mc88100 __mpn_mul_1 -- Multiply a limb vector with a single limb and
2 ; store the product in a second limb vector.
4 ; Copyright (C) 1992, 1994 Free Software Foundation, Inc.
6 ; This file is part of the GNU MP Library.
8 ; The GNU MP Library is free software; you can redistribute it and/or modify
9 ; it under the terms of the GNU Lesser General Public License as published by
10 ; the Free Software Foundation; either version 2.1 of the License, or (at your
11 ; option) any later version.
13 ; The GNU MP Library is distributed in the hope that it will be useful, but
14 ; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 ; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 ; License for more details.
18 ; You should have received a copy of the GNU Lesser General Public License
19 ; along with the GNU MP Library; see the file COPYING.LIB. If not, write to
20 ; the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 ; INPUT PARAMETERS
24 ; res_ptr r2
25 ; s1_ptr r3
26 ; size r4
27 ; s2_limb r5
29 ; Common overhead is about 11 cycles/invocation.
31 ; The speed for S2_LIMB >= 0x10000 is approximately 21 cycles/limb. (The
32 ; pipeline stalls 2 cycles due to WB contention.)
34 ; The speed for S2_LIMB < 0x10000 is approximately 16 cycles/limb. (The
35 ; pipeline stalls 2 cycles due to WB contention and 1 cycle due to latency.)
37 ; To enhance speed:
38 ; 1. Unroll main loop 4-8 times.
39 ; 2. Schedule code to avoid WB contention. It might be tempting to move the
40 ; ld instruction in the loops down to save 2 cycles (less WB contention),
41 ; but that looses because the ultimate value will be read from outside
42 ; the allocated space. But if we handle the ultimate multiplication in
43 ; the tail, we can do this.
44 ; 3. Make the multiplication with less instructions. I think the code for
45 ; (S2_LIMB >= 0x10000) is not minimal.
46 ; With these techniques the (S2_LIMB >= 0x10000) case would run in 17 or
47 ; less cycles/limb; the (S2_LIMB < 0x10000) case would run in 11
48 ; cycles/limb. (Assuming infinite unrolling.)
50 text
51 align 16
52 global ___mpn_mul_1
53 ___mpn_mul_1:
55 ; Make S1_PTR and RES_PTR point at the end of their blocks
56 ; and negate SIZE.
57 lda r3,r3[r4]
58 lda r6,r2[r4] ; RES_PTR in r6 since r2 is retval
59 subu r4,r0,r4
61 addu.co r2,r0,r0 ; r2 = cy = 0
62 ld r9,r3[r4]
63 mask r7,r5,0xffff ; r7 = lo(S2_LIMB)
64 extu r8,r5,16 ; r8 = hi(S2_LIMB)
65 bcnd.n eq0,r8,Lsmall ; jump if (hi(S2_LIMB) == 0)
66 subu r6,r6,4
68 ; General code for any value of S2_LIMB.
70 ; Make a stack frame and save r25 and r26
71 subu r31,r31,16
72 st.d r25,r31,8
74 ; Enter the loop in the middle
75 br.n L1
76 addu r4,r4,1
78 Loop:
79 ld r9,r3[r4]
80 st r26,r6[r4]
81 ; bcnd ne0,r0,0 ; bubble
82 addu r4,r4,1
83 L1: mul r26,r9,r5 ; low word of product mul_1 WB ld
84 mask r12,r9,0xffff ; r12 = lo(s1_limb) mask_1
85 mul r11,r12,r7 ; r11 = prod_0 mul_2 WB mask_1
86 mul r10,r12,r8 ; r10 = prod_1a mul_3
87 extu r13,r9,16 ; r13 = hi(s1_limb) extu_1 WB mul_1
88 mul r12,r13,r7 ; r12 = prod_1b mul_4 WB extu_1
89 mul r25,r13,r8 ; r25 = prod_2 mul_5 WB mul_2
90 extu r11,r11,16 ; r11 = hi(prod_0) extu_2 WB mul_3
91 addu r10,r10,r11 ; addu_1 WB extu_2
92 ; bcnd ne0,r0,0 ; bubble WB addu_1
93 addu.co r10,r10,r12 ; WB mul_4
94 mask.u r10,r10,0xffff ; move the 16 most significant bits...
95 addu.ci r10,r10,r0 ; ...to the low half of the word...
96 rot r10,r10,16 ; ...and put carry in pos 16.
97 addu.co r26,r26,r2 ; add old carry limb
98 bcnd.n ne0,r4,Loop
99 addu.ci r2,r25,r10 ; compute new carry limb
101 st r26,r6[r4]
102 ld.d r25,r31,8
103 jmp.n r1
104 addu r31,r31,16
106 ; Fast code for S2_LIMB < 0x10000
107 Lsmall:
108 ; Enter the loop in the middle
109 br.n SL1
110 addu r4,r4,1
112 SLoop:
113 ld r9,r3[r4] ;
114 st r8,r6[r4] ;
115 addu r4,r4,1 ;
116 SL1: mul r8,r9,r5 ; low word of product
117 mask r12,r9,0xffff ; r12 = lo(s1_limb)
118 extu r13,r9,16 ; r13 = hi(s1_limb)
119 mul r11,r12,r7 ; r11 = prod_0
120 mul r12,r13,r7 ; r12 = prod_1b
121 addu.cio r8,r8,r2 ; add old carry limb
122 extu r10,r11,16 ; r11 = hi(prod_0)
123 addu r10,r10,r12 ;
124 bcnd.n ne0,r4,SLoop
125 extu r2,r10,16 ; r2 = new carry limb
127 jmp.n r1
128 st r8,r6[r4]