(__getline): Define.
[glibc/history.git] / sysdeps / powerpc / fpu / e_sqrtf.c
blobb63d31472b0e52d366bc69556ff94bd53033380f
1 /* Single-precision floating point square root.
2 Copyright (C) 1997, 2003, 2004 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, write to the Free
17 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
18 02111-1307 USA. */
20 #include <math.h>
21 #include <math_private.h>
22 #include <fenv_libc.h>
23 #include <inttypes.h>
25 #include <sysdep.h>
26 #include <ldsodefs.h>
28 static const float almost_half = 0.50000006; /* 0.5 + 2^-24 */
29 static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
30 static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
31 static const float two48 = 281474976710656.0;
32 static const float twom24 = 5.9604644775390625e-8;
33 extern const float __t_sqrt[1024];
35 /* The method is based on a description in
36 Computation of elementary functions on the IBM RISC System/6000 processor,
37 P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
38 Basically, it consists of two interleaved Newton-Rhapson approximations,
39 one to find the actual square root, and one to find its reciprocal
40 without the expense of a division operation. The tricky bit here
41 is the use of the POWER/PowerPC multiply-add operation to get the
42 required accuracy with high speed.
44 The argument reduction works by a combination of table lookup to
45 obtain the initial guesses, and some careful modification of the
46 generated guesses (which mostly runs on the integer unit, while the
47 Newton-Rhapson is running on the FPU). */
49 #ifdef __STDC__
50 float
51 __slow_ieee754_sqrtf (float x)
52 #else
53 float
54 __slow_ieee754_sqrtf (x)
55 float x;
56 #endif
58 const float inf = a_inf.value;
60 if (x > 0)
62 if (x != inf)
64 /* Variables named starting with 's' exist in the
65 argument-reduced space, so that 2 > sx >= 0.5,
66 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
67 Variables named ending with 'i' are integer versions of
68 floating-point values. */
69 float sx; /* The value of which we're trying to find the square
70 root. */
71 float sg, g; /* Guess of the square root of x. */
72 float sd, d; /* Difference between the square of the guess and x. */
73 float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
74 float sy2; /* 2*sy */
75 float e; /* Difference between y*g and 1/2 (note that e==se). */
76 float shx; /* == sx * fsg */
77 float fsg; /* sg*fsg == g. */
78 fenv_t fe; /* Saved floating-point environment (stores rounding
79 mode and whether the inexact exception is
80 enabled). */
81 uint32_t xi, sxi, fsgi;
82 const float *t_sqrt;
84 GET_FLOAT_WORD (xi, x);
85 fe = fegetenv_register ();
86 relax_fenv_state ();
87 sxi = (xi & 0x3fffffff) | 0x3f000000;
88 SET_FLOAT_WORD (sx, sxi);
89 t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
90 sg = t_sqrt[0];
91 sy = t_sqrt[1];
93 /* Here we have three Newton-Rhapson iterations each of a
94 division and a square root and the remainder of the
95 argument reduction, all interleaved. */
96 sd = -(sg * sg - sx);
97 fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
98 sy2 = sy + sy;
99 sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
100 e = -(sy * sg - almost_half);
101 SET_FLOAT_WORD (fsg, fsgi);
102 sd = -(sg * sg - sx);
103 sy = sy + e * sy2;
104 if ((xi & 0x7f800000) == 0)
105 goto denorm;
106 shx = sx * fsg;
107 sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx),
108 but perhaps rounded incorrectly. */
109 sy2 = sy + sy;
110 g = sg * fsg;
111 e = -(sy * sg - almost_half);
112 d = -(g * sg - shx);
113 sy = sy + e * sy2;
114 fesetenv_register (fe);
115 return g + sy * d;
116 denorm:
117 /* For denormalised numbers, we normalise, calculate the
118 square root, and return an adjusted result. */
119 fesetenv_register (fe);
120 return __slow_ieee754_sqrtf (x * two48) * twom24;
123 else if (x < 0)
125 /* For some reason, some PowerPC32 processors don't implement
126 FE_INVALID_SQRT. */
127 #ifdef FE_INVALID_SQRT
128 feraiseexcept (FE_INVALID_SQRT);
129 if (!fetestexcept (FE_INVALID))
130 #endif
131 feraiseexcept (FE_INVALID);
132 x = a_nan.value;
134 return f_washf (x);
138 #ifdef __STDC__
139 float
140 __ieee754_sqrtf (float x)
141 #else
142 float
143 __ieee754_sqrtf (x)
144 float x;
145 #endif
147 double z;
149 /* If the CPU is 64-bit we can use the optional FP instructions. */
150 if (__CPU_HAS_FSQRT)
152 /* Volatile is required to prevent the compiler from moving the
153 fsqrt instruction above the branch. */
154 __asm __volatile (" fsqrts %0,%1\n"
155 :"=f" (z):"f" (x));
157 else
158 z = __slow_ieee754_sqrtf (x);
160 return z;