1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
8 This file is part of the GNU C Library. Its master source is NOT part of
9 the C library, however. The master source lives in /gd/gnu/lib.
11 The GNU C Library is free software; you can redistribute it and/or
12 modify it under the terms of the GNU Library General Public License as
13 published by the Free Software Foundation; either version 2 of the
14 License, or (at your option) any later version.
16 The GNU C Library is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 Library General Public License for more details.
21 You should have received a copy of the GNU Library General Public
22 License along with the GNU C Library; see the file COPYING.LIB. If not,
23 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
26 /* AIX requires this to be the first thing in the file. */
27 #if defined (_AIX) && !defined (REGEX_MALLOC)
38 #if defined(STDC_HEADERS) && !defined(emacs)
41 /* We need this for `regex.h', and perhaps for the Emacs include files. */
42 #include <sys/types.h>
45 /* For platform which support the ISO C amendement 1 functionality we
46 support user defined character classes. */
47 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
52 /* This is for other GNU distributions with internationalized messages. */
53 #if HAVE_LIBINTL_H || defined (_LIBC)
56 # define gettext(msgid) (msgid)
60 /* This define is so xgettext can find the internationalizable
62 #define gettext_noop(String) String
65 /* The `emacs' switch turns on certain matching commands
66 that make sense only in Emacs. */
75 /* If we are not linking with Emacs proper,
76 we can't use the relocating allocator
77 even if config.h says that we can. */
80 #if defined (STDC_HEADERS) || defined (_LIBC)
87 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
88 If nothing else has been done, use the method below. */
89 #ifdef INHIBIT_STRING_HEADER
90 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
91 #if !defined (bzero) && !defined (bcopy)
92 #undef INHIBIT_STRING_HEADER
97 /* This is the normal way of making sure we have a bcopy and a bzero.
98 This is used in most programs--a few other programs avoid this
99 by defining INHIBIT_STRING_HEADER. */
100 #ifndef INHIBIT_STRING_HEADER
101 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
104 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
107 #define bcopy(s, d, n) memcpy ((d), (s), (n))
110 #define bzero(s, n) memset ((s), 0, (n))
117 /* Define the syntax stuff for \<, \>, etc. */
119 /* This must be nonzero for the wordchar and notwordchar pattern
120 commands in re_match_2. */
125 #ifdef SWITCH_ENUM_BUG
126 #define SWITCH_ENUM_CAST(x) ((int)(x))
128 #define SWITCH_ENUM_CAST(x) (x)
131 /* How many characters in the character set. */
132 #define CHAR_SET_SIZE 256
136 extern char *re_syntax_table
;
138 #else /* not SYNTAX_TABLE */
140 static char re_syntax_table
[CHAR_SET_SIZE
];
151 bzero (re_syntax_table
, sizeof re_syntax_table
);
153 for (c
= 'a'; c
<= 'z'; c
++)
154 re_syntax_table
[c
] = Sword
;
156 for (c
= 'A'; c
<= 'Z'; c
++)
157 re_syntax_table
[c
] = Sword
;
159 for (c
= '0'; c
<= '9'; c
++)
160 re_syntax_table
[c
] = Sword
;
162 re_syntax_table
['_'] = Sword
;
167 #endif /* not SYNTAX_TABLE */
169 #define SYNTAX(c) re_syntax_table[c]
171 #endif /* not emacs */
173 /* Get the interface, including the syntax bits. */
176 /* isalpha etc. are used for the character classes. */
179 /* Jim Meyering writes:
181 "... Some ctype macros are valid only for character codes that
182 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
183 using /bin/cc or gcc but without giving an ansi option). So, all
184 ctype uses should be through macros like ISPRINT... If
185 STDC_HEADERS is defined, then autoconf has verified that the ctype
186 macros don't need to be guarded with references to isascii. ...
187 Defining isascii to 1 should let any compiler worth its salt
188 eliminate the && through constant folding." */
190 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
193 #define ISASCII(c) isascii(c)
197 #define ISBLANK(c) (ISASCII (c) && isblank (c))
199 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
202 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
204 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
207 #define ISPRINT(c) (ISASCII (c) && isprint (c))
208 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
209 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
210 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
211 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
212 #define ISLOWER(c) (ISASCII (c) && islower (c))
213 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
214 #define ISSPACE(c) (ISASCII (c) && isspace (c))
215 #define ISUPPER(c) (ISASCII (c) && isupper (c))
216 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
219 #define NULL (void *)0
222 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
223 since ours (we hope) works properly with all combinations of
224 machines, compilers, `char' and `unsigned char' argument types.
225 (Per Bothner suggested the basic approach.) */
226 #undef SIGN_EXTEND_CHAR
228 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
229 #else /* not __STDC__ */
230 /* As in Harbison and Steele. */
231 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
234 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
235 use `alloca' instead of `malloc'. This is because using malloc in
236 re_search* or re_match* could cause memory leaks when C-g is used in
237 Emacs; also, malloc is slower and causes storage fragmentation. On
238 the other hand, malloc is more portable, and easier to debug.
240 Because we sometimes use alloca, some routines have to be macros,
241 not functions -- `alloca'-allocated space disappears at the end of the
242 function it is called in. */
246 #define REGEX_ALLOCATE malloc
247 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
248 #define REGEX_FREE free
250 #else /* not REGEX_MALLOC */
252 /* Emacs already defines alloca, sometimes. */
255 /* Make alloca work the best possible way. */
257 #define alloca __builtin_alloca
258 #else /* not __GNUC__ */
261 #else /* not __GNUC__ or HAVE_ALLOCA_H */
262 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
263 #ifndef _AIX /* Already did AIX, up at the top. */
265 #endif /* not _AIX */
267 #endif /* not HAVE_ALLOCA_H */
268 #endif /* not __GNUC__ */
270 #endif /* not alloca */
272 #define REGEX_ALLOCATE alloca
274 /* Assumes a `char *destination' variable. */
275 #define REGEX_REALLOCATE(source, osize, nsize) \
276 (destination = (char *) alloca (nsize), \
277 bcopy (source, destination, osize), \
280 /* No need to do anything to free, after alloca. */
281 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
283 #endif /* not REGEX_MALLOC */
285 /* Define how to allocate the failure stack. */
287 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
289 #define REGEX_ALLOCATE_STACK(size) \
290 r_alloc (&failure_stack_ptr, (size))
291 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
292 r_re_alloc (&failure_stack_ptr, (nsize))
293 #define REGEX_FREE_STACK(ptr) \
294 r_alloc_free (&failure_stack_ptr)
296 #else /* not using relocating allocator */
300 #define REGEX_ALLOCATE_STACK malloc
301 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
302 #define REGEX_FREE_STACK free
304 #else /* not REGEX_MALLOC */
306 #define REGEX_ALLOCATE_STACK alloca
308 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
309 REGEX_REALLOCATE (source, osize, nsize)
310 /* No need to explicitly free anything. */
311 #define REGEX_FREE_STACK(arg)
313 #endif /* not REGEX_MALLOC */
314 #endif /* not using relocating allocator */
317 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
318 `string1' or just past its end. This works if PTR is NULL, which is
320 #define FIRST_STRING_P(ptr) \
321 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
323 /* (Re)Allocate N items of type T using malloc, or fail. */
324 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
325 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
326 #define RETALLOC_IF(addr, n, t) \
327 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
328 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
330 #define BYTEWIDTH 8 /* In bits. */
332 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
336 #define MAX(a, b) ((a) > (b) ? (a) : (b))
337 #define MIN(a, b) ((a) < (b) ? (a) : (b))
339 typedef char boolean
;
343 static int re_match_2_internal ();
345 /* These are the command codes that appear in compiled regular
346 expressions. Some opcodes are followed by argument bytes. A
347 command code can specify any interpretation whatsoever for its
348 arguments. Zero bytes may appear in the compiled regular expression. */
354 /* Succeed right away--no more backtracking. */
357 /* Followed by one byte giving n, then by n literal bytes. */
360 /* Matches any (more or less) character. */
363 /* Matches any one char belonging to specified set. First
364 following byte is number of bitmap bytes. Then come bytes
365 for a bitmap saying which chars are in. Bits in each byte
366 are ordered low-bit-first. A character is in the set if its
367 bit is 1. A character too large to have a bit in the map is
368 automatically not in the set. */
371 /* Same parameters as charset, but match any character that is
372 not one of those specified. */
375 /* Start remembering the text that is matched, for storing in a
376 register. Followed by one byte with the register number, in
377 the range 0 to one less than the pattern buffer's re_nsub
378 field. Then followed by one byte with the number of groups
379 inner to this one. (This last has to be part of the
380 start_memory only because we need it in the on_failure_jump
384 /* Stop remembering the text that is matched and store it in a
385 memory register. Followed by one byte with the register
386 number, in the range 0 to one less than `re_nsub' in the
387 pattern buffer, and one byte with the number of inner groups,
388 just like `start_memory'. (We need the number of inner
389 groups here because we don't have any easy way of finding the
390 corresponding start_memory when we're at a stop_memory.) */
393 /* Match a duplicate of something remembered. Followed by one
394 byte containing the register number. */
397 /* Fail unless at beginning of line. */
400 /* Fail unless at end of line. */
403 /* Succeeds if at beginning of buffer (if emacs) or at beginning
404 of string to be matched (if not). */
407 /* Analogously, for end of buffer/string. */
410 /* Followed by two byte relative address to which to jump. */
413 /* Same as jump, but marks the end of an alternative. */
416 /* Followed by two-byte relative address of place to resume at
417 in case of failure. */
420 /* Like on_failure_jump, but pushes a placeholder instead of the
421 current string position when executed. */
422 on_failure_keep_string_jump
,
424 /* Throw away latest failure point and then jump to following
425 two-byte relative address. */
428 /* Change to pop_failure_jump if know won't have to backtrack to
429 match; otherwise change to jump. This is used to jump
430 back to the beginning of a repeat. If what follows this jump
431 clearly won't match what the repeat does, such that we can be
432 sure that there is no use backtracking out of repetitions
433 already matched, then we change it to a pop_failure_jump.
434 Followed by two-byte address. */
437 /* Jump to following two-byte address, and push a dummy failure
438 point. This failure point will be thrown away if an attempt
439 is made to use it for a failure. A `+' construct makes this
440 before the first repeat. Also used as an intermediary kind
441 of jump when compiling an alternative. */
444 /* Push a dummy failure point and continue. Used at the end of
448 /* Followed by two-byte relative address and two-byte number n.
449 After matching N times, jump to the address upon failure. */
452 /* Followed by two-byte relative address, and two-byte number n.
453 Jump to the address N times, then fail. */
456 /* Set the following two-byte relative address to the
457 subsequent two-byte number. The address *includes* the two
461 wordchar
, /* Matches any word-constituent character. */
462 notwordchar
, /* Matches any char that is not a word-constituent. */
464 wordbeg
, /* Succeeds if at word beginning. */
465 wordend
, /* Succeeds if at word end. */
467 wordbound
, /* Succeeds if at a word boundary. */
468 notwordbound
/* Succeeds if not at a word boundary. */
471 ,before_dot
, /* Succeeds if before point. */
472 at_dot
, /* Succeeds if at point. */
473 after_dot
, /* Succeeds if after point. */
475 /* Matches any character whose syntax is specified. Followed by
476 a byte which contains a syntax code, e.g., Sword. */
479 /* Matches any character whose syntax is not that specified. */
484 /* Common operations on the compiled pattern. */
486 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
488 #define STORE_NUMBER(destination, number) \
490 (destination)[0] = (number) & 0377; \
491 (destination)[1] = (number) >> 8; \
494 /* Same as STORE_NUMBER, except increment DESTINATION to
495 the byte after where the number is stored. Therefore, DESTINATION
496 must be an lvalue. */
498 #define STORE_NUMBER_AND_INCR(destination, number) \
500 STORE_NUMBER (destination, number); \
501 (destination) += 2; \
504 /* Put into DESTINATION a number stored in two contiguous bytes starting
507 #define EXTRACT_NUMBER(destination, source) \
509 (destination) = *(source) & 0377; \
510 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
514 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
516 extract_number (dest
, source
)
518 unsigned char *source
;
520 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
521 *dest
= *source
& 0377;
525 #ifndef EXTRACT_MACROS /* To debug the macros. */
526 #undef EXTRACT_NUMBER
527 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
528 #endif /* not EXTRACT_MACROS */
532 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
533 SOURCE must be an lvalue. */
535 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
537 EXTRACT_NUMBER (destination, source); \
542 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
543 unsigned char **source
));
545 extract_number_and_incr (destination
, source
)
547 unsigned char **source
;
549 extract_number (destination
, *source
);
553 #ifndef EXTRACT_MACROS
554 #undef EXTRACT_NUMBER_AND_INCR
555 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
556 extract_number_and_incr (&dest, &src)
557 #endif /* not EXTRACT_MACROS */
561 /* If DEBUG is defined, Regex prints many voluminous messages about what
562 it is doing (if the variable `debug' is nonzero). If linked with the
563 main program in `iregex.c', you can enter patterns and strings
564 interactively. And if linked with the main program in `main.c' and
565 the other test files, you can run the already-written tests. */
569 /* We use standard I/O for debugging. */
572 /* It is useful to test things that ``must'' be true when debugging. */
575 static int debug
= 0;
577 #define DEBUG_STATEMENT(e) e
578 #define DEBUG_PRINT1(x) if (debug) printf (x)
579 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
580 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
581 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
582 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
583 if (debug) print_partial_compiled_pattern (s, e)
584 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
585 if (debug) print_double_string (w, s1, sz1, s2, sz2)
588 /* Print the fastmap in human-readable form. */
591 print_fastmap (fastmap
)
594 unsigned was_a_range
= 0;
597 while (i
< (1 << BYTEWIDTH
))
603 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
619 /* Print a compiled pattern string in human-readable form, starting at
620 the START pointer into it and ending just before the pointer END. */
623 print_partial_compiled_pattern (start
, end
)
624 unsigned char *start
;
629 unsigned char *p
= start
;
630 unsigned char *pend
= end
;
638 /* Loop over pattern commands. */
641 printf ("%d:\t", p
- start
);
643 switch ((re_opcode_t
) *p
++)
651 printf ("/exactn/%d", mcnt
);
662 printf ("/start_memory/%d/%d", mcnt
, *p
++);
667 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
671 printf ("/duplicate/%d", *p
++);
681 register int c
, last
= -100;
682 register int in_range
= 0;
684 printf ("/charset [%s",
685 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
687 assert (p
+ *p
< pend
);
689 for (c
= 0; c
< 256; c
++)
691 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
693 /* Are we starting a range? */
694 if (last
+ 1 == c
&& ! in_range
)
699 /* Have we broken a range? */
700 else if (last
+ 1 != c
&& in_range
)
729 case on_failure_jump
:
730 extract_number_and_incr (&mcnt
, &p
);
731 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
734 case on_failure_keep_string_jump
:
735 extract_number_and_incr (&mcnt
, &p
);
736 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
739 case dummy_failure_jump
:
740 extract_number_and_incr (&mcnt
, &p
);
741 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
744 case push_dummy_failure
:
745 printf ("/push_dummy_failure");
749 extract_number_and_incr (&mcnt
, &p
);
750 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
753 case pop_failure_jump
:
754 extract_number_and_incr (&mcnt
, &p
);
755 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
759 extract_number_and_incr (&mcnt
, &p
);
760 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
764 extract_number_and_incr (&mcnt
, &p
);
765 printf ("/jump to %d", p
+ mcnt
- start
);
769 extract_number_and_incr (&mcnt
, &p
);
771 extract_number_and_incr (&mcnt2
, &p
);
772 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
776 extract_number_and_incr (&mcnt
, &p
);
778 extract_number_and_incr (&mcnt2
, &p
);
779 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
783 extract_number_and_incr (&mcnt
, &p
);
785 extract_number_and_incr (&mcnt2
, &p
);
786 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
790 printf ("/wordbound");
794 printf ("/notwordbound");
806 printf ("/before_dot");
814 printf ("/after_dot");
818 printf ("/syntaxspec");
820 printf ("/%d", mcnt
);
824 printf ("/notsyntaxspec");
826 printf ("/%d", mcnt
);
831 printf ("/wordchar");
835 printf ("/notwordchar");
847 printf ("?%d", *(p
-1));
853 printf ("%d:\tend of pattern.\n", p
- start
);
858 print_compiled_pattern (bufp
)
859 struct re_pattern_buffer
*bufp
;
861 unsigned char *buffer
= bufp
->buffer
;
863 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
864 printf ("%ld bytes used/%ld bytes allocated.\n",
865 bufp
->used
, bufp
->allocated
);
867 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
869 printf ("fastmap: ");
870 print_fastmap (bufp
->fastmap
);
873 printf ("re_nsub: %d\t", bufp
->re_nsub
);
874 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
875 printf ("can_be_null: %d\t", bufp
->can_be_null
);
876 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
877 printf ("no_sub: %d\t", bufp
->no_sub
);
878 printf ("not_bol: %d\t", bufp
->not_bol
);
879 printf ("not_eol: %d\t", bufp
->not_eol
);
880 printf ("syntax: %lx\n", bufp
->syntax
);
881 /* Perhaps we should print the translate table? */
886 print_double_string (where
, string1
, size1
, string2
, size2
)
899 if (FIRST_STRING_P (where
))
901 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
902 putchar (string1
[this_char
]);
907 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
908 putchar (string2
[this_char
]);
919 #else /* not DEBUG */
924 #define DEBUG_STATEMENT(e)
925 #define DEBUG_PRINT1(x)
926 #define DEBUG_PRINT2(x1, x2)
927 #define DEBUG_PRINT3(x1, x2, x3)
928 #define DEBUG_PRINT4(x1, x2, x3, x4)
929 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
930 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
932 #endif /* not DEBUG */
934 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
935 also be assigned to arbitrarily: each pattern buffer stores its own
936 syntax, so it can be changed between regex compilations. */
937 /* This has no initializer because initialized variables in Emacs
938 become read-only after dumping. */
939 reg_syntax_t re_syntax_options
;
942 /* Specify the precise syntax of regexps for compilation. This provides
943 for compatibility for various utilities which historically have
944 different, incompatible syntaxes.
946 The argument SYNTAX is a bit mask comprised of the various bits
947 defined in regex.h. We return the old syntax. */
950 re_set_syntax (syntax
)
953 reg_syntax_t ret
= re_syntax_options
;
955 re_syntax_options
= syntax
;
957 if (syntax
& RE_DEBUG
)
959 else if (debug
) /* was on but now is not */
965 /* This table gives an error message for each of the error codes listed
966 in regex.h. Obviously the order here has to be same as there.
967 POSIX doesn't require that we do anything for REG_NOERROR,
968 but why not be nice? */
970 static const char *re_error_msgid
[] =
972 gettext_noop ("Success"), /* REG_NOERROR */
973 gettext_noop ("No match"), /* REG_NOMATCH */
974 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
975 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
976 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
977 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
978 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
979 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
980 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
981 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
982 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
983 gettext_noop ("Invalid range end"), /* REG_ERANGE */
984 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
985 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
986 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
987 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
988 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
991 /* Avoiding alloca during matching, to placate r_alloc. */
993 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
994 searching and matching functions should not call alloca. On some
995 systems, alloca is implemented in terms of malloc, and if we're
996 using the relocating allocator routines, then malloc could cause a
997 relocation, which might (if the strings being searched are in the
998 ralloc heap) shift the data out from underneath the regexp
1001 Here's another reason to avoid allocation: Emacs
1002 processes input from X in a signal handler; processing X input may
1003 call malloc; if input arrives while a matching routine is calling
1004 malloc, then we're scrod. But Emacs can't just block input while
1005 calling matching routines; then we don't notice interrupts when
1006 they come in. So, Emacs blocks input around all regexp calls
1007 except the matching calls, which it leaves unprotected, in the
1008 faith that they will not malloc. */
1010 /* Normally, this is fine. */
1011 #define MATCH_MAY_ALLOCATE
1013 /* When using GNU C, we are not REALLY using the C alloca, no matter
1014 what config.h may say. So don't take precautions for it. */
1019 /* The match routines may not allocate if (1) they would do it with malloc
1020 and (2) it's not safe for them to use malloc.
1021 Note that if REL_ALLOC is defined, matching would not use malloc for the
1022 failure stack, but we would still use it for the register vectors;
1023 so REL_ALLOC should not affect this. */
1024 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1025 #undef MATCH_MAY_ALLOCATE
1029 /* Failure stack declarations and macros; both re_compile_fastmap and
1030 re_match_2 use a failure stack. These have to be macros because of
1031 REGEX_ALLOCATE_STACK. */
1034 /* Number of failure points for which to initially allocate space
1035 when matching. If this number is exceeded, we allocate more
1036 space, so it is not a hard limit. */
1037 #ifndef INIT_FAILURE_ALLOC
1038 #define INIT_FAILURE_ALLOC 5
1041 /* Roughly the maximum number of failure points on the stack. Would be
1042 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1043 This is a variable only so users of regex can assign to it; we never
1044 change it ourselves. */
1048 #if defined (MATCH_MAY_ALLOCATE)
1049 /* 4400 was enough to cause a crash on Alpha OSF/1,
1050 whose default stack limit is 2mb. */
1051 long int re_max_failures
= 4000;
1053 long int re_max_failures
= 2000;
1056 union fail_stack_elt
1058 unsigned char *pointer
;
1062 typedef union fail_stack_elt fail_stack_elt_t
;
1066 fail_stack_elt_t
*stack
;
1067 unsigned long int size
;
1068 unsigned long int avail
; /* Offset of next open position. */
1071 #else /* not INT_IS_16BIT */
1073 #if defined (MATCH_MAY_ALLOCATE)
1074 /* 4400 was enough to cause a crash on Alpha OSF/1,
1075 whose default stack limit is 2mb. */
1076 int re_max_failures
= 20000;
1078 int re_max_failures
= 2000;
1081 union fail_stack_elt
1083 unsigned char *pointer
;
1087 typedef union fail_stack_elt fail_stack_elt_t
;
1091 fail_stack_elt_t
*stack
;
1093 unsigned avail
; /* Offset of next open position. */
1096 #endif /* INT_IS_16BIT */
1098 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1099 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1100 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1103 /* Define macros to initialize and free the failure stack.
1104 Do `return -2' if the alloc fails. */
1106 #ifdef MATCH_MAY_ALLOCATE
1107 #define INIT_FAIL_STACK() \
1109 fail_stack.stack = (fail_stack_elt_t *) \
1110 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1112 if (fail_stack.stack == NULL) \
1115 fail_stack.size = INIT_FAILURE_ALLOC; \
1116 fail_stack.avail = 0; \
1119 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1121 #define INIT_FAIL_STACK() \
1123 fail_stack.avail = 0; \
1126 #define RESET_FAIL_STACK()
1130 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1132 Return 1 if succeeds, and 0 if either ran out of memory
1133 allocating space for it or it was already too large.
1135 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1137 #define DOUBLE_FAIL_STACK(fail_stack) \
1138 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1140 : ((fail_stack).stack = (fail_stack_elt_t *) \
1141 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1142 (fail_stack).size * sizeof (fail_stack_elt_t), \
1143 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1145 (fail_stack).stack == NULL \
1147 : ((fail_stack).size <<= 1, \
1151 /* Push pointer POINTER on FAIL_STACK.
1152 Return 1 if was able to do so and 0 if ran out of memory allocating
1154 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1155 ((FAIL_STACK_FULL () \
1156 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1158 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1161 /* Push a pointer value onto the failure stack.
1162 Assumes the variable `fail_stack'. Probably should only
1163 be called from within `PUSH_FAILURE_POINT'. */
1164 #define PUSH_FAILURE_POINTER(item) \
1165 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1167 /* This pushes an integer-valued item onto the failure stack.
1168 Assumes the variable `fail_stack'. Probably should only
1169 be called from within `PUSH_FAILURE_POINT'. */
1170 #define PUSH_FAILURE_INT(item) \
1171 fail_stack.stack[fail_stack.avail++].integer = (item)
1173 /* Push a fail_stack_elt_t value onto the failure stack.
1174 Assumes the variable `fail_stack'. Probably should only
1175 be called from within `PUSH_FAILURE_POINT'. */
1176 #define PUSH_FAILURE_ELT(item) \
1177 fail_stack.stack[fail_stack.avail++] = (item)
1179 /* These three POP... operations complement the three PUSH... operations.
1180 All assume that `fail_stack' is nonempty. */
1181 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1182 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1183 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1185 /* Used to omit pushing failure point id's when we're not debugging. */
1187 #define DEBUG_PUSH PUSH_FAILURE_INT
1188 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1190 #define DEBUG_PUSH(item)
1191 #define DEBUG_POP(item_addr)
1195 /* Push the information about the state we will need
1196 if we ever fail back to it.
1198 Requires variables fail_stack, regstart, regend, reg_info, and
1199 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1202 Does `return FAILURE_CODE' if runs out of memory. */
1204 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1206 char *destination; \
1207 /* Must be int, so when we don't save any registers, the arithmetic \
1208 of 0 + -1 isn't done as unsigned. */ \
1209 /* Can't be int, since there is not a shred of a guarantee that int \
1210 is wide enough to hold a value of something to which pointer can \
1212 active_reg_t this_reg; \
1214 DEBUG_STATEMENT (failure_id++); \
1215 DEBUG_STATEMENT (nfailure_points_pushed++); \
1216 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1217 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1218 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1220 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1221 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1223 /* Ensure we have enough space allocated for what we will push. */ \
1224 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1226 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1227 return failure_code; \
1229 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1230 (fail_stack).size); \
1231 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1234 /* Push the info, starting with the registers. */ \
1235 DEBUG_PRINT1 ("\n"); \
1238 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1241 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1242 DEBUG_STATEMENT (num_regs_pushed++); \
1244 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1245 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1247 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1248 PUSH_FAILURE_POINTER (regend[this_reg]); \
1250 DEBUG_PRINT2 (" info: %p\n ", \
1251 reg_info[this_reg].word.pointer); \
1252 DEBUG_PRINT2 (" match_null=%d", \
1253 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1254 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1255 DEBUG_PRINT2 (" matched_something=%d", \
1256 MATCHED_SOMETHING (reg_info[this_reg])); \
1257 DEBUG_PRINT2 (" ever_matched=%d", \
1258 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1259 DEBUG_PRINT1 ("\n"); \
1260 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1263 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1264 PUSH_FAILURE_INT (lowest_active_reg); \
1266 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1267 PUSH_FAILURE_INT (highest_active_reg); \
1269 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1270 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1271 PUSH_FAILURE_POINTER (pattern_place); \
1273 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1274 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1276 DEBUG_PRINT1 ("'\n"); \
1277 PUSH_FAILURE_POINTER (string_place); \
1279 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1280 DEBUG_PUSH (failure_id); \
1283 /* This is the number of items that are pushed and popped on the stack
1284 for each register. */
1285 #define NUM_REG_ITEMS 3
1287 /* Individual items aside from the registers. */
1289 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1291 #define NUM_NONREG_ITEMS 4
1294 /* We push at most this many items on the stack. */
1295 /* We used to use (num_regs - 1), which is the number of registers
1296 this regexp will save; but that was changed to 5
1297 to avoid stack overflow for a regexp with lots of parens. */
1298 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1300 /* We actually push this many items. */
1301 #define NUM_FAILURE_ITEMS \
1303 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1307 /* How many items can still be added to the stack without overflowing it. */
1308 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1311 /* Pops what PUSH_FAIL_STACK pushes.
1313 We restore into the parameters, all of which should be lvalues:
1314 STR -- the saved data position.
1315 PAT -- the saved pattern position.
1316 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1317 REGSTART, REGEND -- arrays of string positions.
1318 REG_INFO -- array of information about each subexpression.
1320 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1321 `pend', `string1', `size1', `string2', and `size2'. */
1323 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1325 DEBUG_STATEMENT (unsigned failure_id;) \
1326 active_reg_t this_reg; \
1327 const unsigned char *string_temp; \
1329 assert (!FAIL_STACK_EMPTY ()); \
1331 /* Remove failure points and point to how many regs pushed. */ \
1332 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1333 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1334 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1336 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1338 DEBUG_POP (&failure_id); \
1339 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1341 /* If the saved string location is NULL, it came from an \
1342 on_failure_keep_string_jump opcode, and we want to throw away the \
1343 saved NULL, thus retaining our current position in the string. */ \
1344 string_temp = POP_FAILURE_POINTER (); \
1345 if (string_temp != NULL) \
1346 str = (const char *) string_temp; \
1348 DEBUG_PRINT2 (" Popping string %p: `", str); \
1349 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1350 DEBUG_PRINT1 ("'\n"); \
1352 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1353 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1354 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1356 /* Restore register info. */ \
1357 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1358 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1360 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1361 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1364 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1366 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1368 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1369 DEBUG_PRINT2 (" info: %p\n", \
1370 reg_info[this_reg].word.pointer); \
1372 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1373 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1375 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1376 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1380 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1382 reg_info[this_reg].word.integer = 0; \
1383 regend[this_reg] = 0; \
1384 regstart[this_reg] = 0; \
1386 highest_active_reg = high_reg; \
1389 set_regs_matched_done = 0; \
1390 DEBUG_STATEMENT (nfailure_points_popped++); \
1391 } /* POP_FAILURE_POINT */
1395 /* Structure for per-register (a.k.a. per-group) information.
1396 Other register information, such as the
1397 starting and ending positions (which are addresses), and the list of
1398 inner groups (which is a bits list) are maintained in separate
1401 We are making a (strictly speaking) nonportable assumption here: that
1402 the compiler will pack our bit fields into something that fits into
1403 the type of `word', i.e., is something that fits into one item on the
1407 /* Declarations and macros for re_match_2. */
1411 fail_stack_elt_t word
;
1414 /* This field is one if this group can match the empty string,
1415 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1416 #define MATCH_NULL_UNSET_VALUE 3
1417 unsigned match_null_string_p
: 2;
1418 unsigned is_active
: 1;
1419 unsigned matched_something
: 1;
1420 unsigned ever_matched_something
: 1;
1422 } register_info_type
;
1424 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1425 #define IS_ACTIVE(R) ((R).bits.is_active)
1426 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1427 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1430 /* Call this when have matched a real character; it sets `matched' flags
1431 for the subexpressions which we are currently inside. Also records
1432 that those subexprs have matched. */
1433 #define SET_REGS_MATCHED() \
1436 if (!set_regs_matched_done) \
1439 set_regs_matched_done = 1; \
1440 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1442 MATCHED_SOMETHING (reg_info[r]) \
1443 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1450 /* Registers are set to a sentinel when they haven't yet matched. */
1451 static char reg_unset_dummy
;
1452 #define REG_UNSET_VALUE (®_unset_dummy)
1453 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1455 /* Subroutine declarations and macros for regex_compile. */
1457 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1458 reg_syntax_t syntax
,
1459 struct re_pattern_buffer
*bufp
));
1460 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1461 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1462 int arg1
, int arg2
));
1463 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1464 int arg
, unsigned char *end
));
1465 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1466 int arg1
, int arg2
, unsigned char *end
));
1467 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1468 reg_syntax_t syntax
));
1469 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1470 reg_syntax_t syntax
));
1471 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1474 reg_syntax_t syntax
,
1477 /* Fetch the next character in the uncompiled pattern---translating it
1478 if necessary. Also cast from a signed character in the constant
1479 string passed to us by the user to an unsigned char that we can use
1480 as an array index (in, e.g., `translate'). */
1482 #define PATFETCH(c) \
1483 do {if (p == pend) return REG_EEND; \
1484 c = (unsigned char) *p++; \
1485 if (translate) c = (unsigned char) translate[c]; \
1489 /* Fetch the next character in the uncompiled pattern, with no
1491 #define PATFETCH_RAW(c) \
1492 do {if (p == pend) return REG_EEND; \
1493 c = (unsigned char) *p++; \
1496 /* Go backwards one character in the pattern. */
1497 #define PATUNFETCH p--
1500 /* If `translate' is non-null, return translate[D], else just D. We
1501 cast the subscript to translate because some data is declared as
1502 `char *', to avoid warnings when a string constant is passed. But
1503 when we use a character as a subscript we must make it unsigned. */
1505 #define TRANSLATE(d) \
1506 (translate ? (char) translate[(unsigned char) (d)] : (d))
1510 /* Macros for outputting the compiled pattern into `buffer'. */
1512 /* If the buffer isn't allocated when it comes in, use this. */
1513 #define INIT_BUF_SIZE 32
1515 /* Make sure we have at least N more bytes of space in buffer. */
1516 #define GET_BUFFER_SPACE(n) \
1517 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1520 /* Make sure we have one more byte of buffer space and then add C to it. */
1521 #define BUF_PUSH(c) \
1523 GET_BUFFER_SPACE (1); \
1524 *b++ = (unsigned char) (c); \
1528 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1529 #define BUF_PUSH_2(c1, c2) \
1531 GET_BUFFER_SPACE (2); \
1532 *b++ = (unsigned char) (c1); \
1533 *b++ = (unsigned char) (c2); \
1537 /* As with BUF_PUSH_2, except for three bytes. */
1538 #define BUF_PUSH_3(c1, c2, c3) \
1540 GET_BUFFER_SPACE (3); \
1541 *b++ = (unsigned char) (c1); \
1542 *b++ = (unsigned char) (c2); \
1543 *b++ = (unsigned char) (c3); \
1547 /* Store a jump with opcode OP at LOC to location TO. We store a
1548 relative address offset by the three bytes the jump itself occupies. */
1549 #define STORE_JUMP(op, loc, to) \
1550 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1552 /* Likewise, for a two-argument jump. */
1553 #define STORE_JUMP2(op, loc, to, arg) \
1554 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1556 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1557 #define INSERT_JUMP(op, loc, to) \
1558 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1560 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1561 #define INSERT_JUMP2(op, loc, to, arg) \
1562 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1565 /* This is not an arbitrary limit: the arguments which represent offsets
1566 into the pattern are two bytes long. So if 2^16 bytes turns out to
1567 be too small, many things would have to change. */
1568 /* Any other compiler which, like MSC, has allocation limit below 2^16
1569 bytes will have to use approach similar to what was done below for
1570 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1571 reallocating to 0 bytes. Such thing is not going to work too well.
1572 You have been warned!! */
1573 #if defined(_MSC_VER) && !defined(WIN32)
1574 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1575 The REALLOC define eliminates a flurry of conversion warnings,
1576 but is not required. */
1577 #define MAX_BUF_SIZE 65500L
1578 #define REALLOC(p,s) realloc ((p), (size_t) (s))
1580 #define MAX_BUF_SIZE (1L << 16)
1581 #define REALLOC(p,s) realloc ((p), (s))
1584 /* Extend the buffer by twice its current size via realloc and
1585 reset the pointers that pointed into the old block to point to the
1586 correct places in the new one. If extending the buffer results in it
1587 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1588 #define EXTEND_BUFFER() \
1590 unsigned char *old_buffer = bufp->buffer; \
1591 if (bufp->allocated == MAX_BUF_SIZE) \
1593 bufp->allocated <<= 1; \
1594 if (bufp->allocated > MAX_BUF_SIZE) \
1595 bufp->allocated = MAX_BUF_SIZE; \
1596 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1597 if (bufp->buffer == NULL) \
1598 return REG_ESPACE; \
1599 /* If the buffer moved, move all the pointers into it. */ \
1600 if (old_buffer != bufp->buffer) \
1602 b = (b - old_buffer) + bufp->buffer; \
1603 begalt = (begalt - old_buffer) + bufp->buffer; \
1604 if (fixup_alt_jump) \
1605 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1607 laststart = (laststart - old_buffer) + bufp->buffer; \
1608 if (pending_exact) \
1609 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1614 /* Since we have one byte reserved for the register number argument to
1615 {start,stop}_memory, the maximum number of groups we can report
1616 things about is what fits in that byte. */
1617 #define MAX_REGNUM 255
1619 /* But patterns can have more than `MAX_REGNUM' registers. We just
1620 ignore the excess. */
1621 typedef unsigned regnum_t
;
1624 /* Macros for the compile stack. */
1626 /* Since offsets can go either forwards or backwards, this type needs to
1627 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1628 /* int may be not enough when sizeof(int) == 2. */
1629 typedef long pattern_offset_t
;
1633 pattern_offset_t begalt_offset
;
1634 pattern_offset_t fixup_alt_jump
;
1635 pattern_offset_t inner_group_offset
;
1636 pattern_offset_t laststart_offset
;
1638 } compile_stack_elt_t
;
1643 compile_stack_elt_t
*stack
;
1645 unsigned avail
; /* Offset of next open position. */
1646 } compile_stack_type
;
1649 #define INIT_COMPILE_STACK_SIZE 32
1651 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1652 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1654 /* The next available element. */
1655 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1658 /* Set the bit for character C in a list. */
1659 #define SET_LIST_BIT(c) \
1660 (b[((unsigned char) (c)) / BYTEWIDTH] \
1661 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1664 /* Get the next unsigned number in the uncompiled pattern. */
1665 #define GET_UNSIGNED_NUMBER(num) \
1669 while (ISDIGIT (c)) \
1673 num = num * 10 + c - '0'; \
1681 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1682 /* The GNU C library provides support for user-defined character classes
1683 and the functions from ISO C amendement 1. */
1684 # ifdef CHARCLASS_NAME_MAX
1685 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1687 /* This shouldn't happen but some implementation might still have this
1688 problem. Use a reasonable default value. */
1689 # define CHAR_CLASS_MAX_LENGTH 256
1692 # define IS_CHAR_CLASS(string) wctype (string)
1694 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1696 # define IS_CHAR_CLASS(string) \
1697 (STREQ (string, "alpha") || STREQ (string, "upper") \
1698 || STREQ (string, "lower") || STREQ (string, "digit") \
1699 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1700 || STREQ (string, "space") || STREQ (string, "print") \
1701 || STREQ (string, "punct") || STREQ (string, "graph") \
1702 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1705 #ifndef MATCH_MAY_ALLOCATE
1707 /* If we cannot allocate large objects within re_match_2_internal,
1708 we make the fail stack and register vectors global.
1709 The fail stack, we grow to the maximum size when a regexp
1711 The register vectors, we adjust in size each time we
1712 compile a regexp, according to the number of registers it needs. */
1714 static fail_stack_type fail_stack
;
1716 /* Size with which the following vectors are currently allocated.
1717 That is so we can make them bigger as needed,
1718 but never make them smaller. */
1719 static int regs_allocated_size
;
1721 static const char ** regstart
, ** regend
;
1722 static const char ** old_regstart
, ** old_regend
;
1723 static const char **best_regstart
, **best_regend
;
1724 static register_info_type
*reg_info
;
1725 static const char **reg_dummy
;
1726 static register_info_type
*reg_info_dummy
;
1728 /* Make the register vectors big enough for NUM_REGS registers,
1729 but don't make them smaller. */
1732 regex_grow_registers (num_regs
)
1735 if (num_regs
> regs_allocated_size
)
1737 RETALLOC_IF (regstart
, num_regs
, const char *);
1738 RETALLOC_IF (regend
, num_regs
, const char *);
1739 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1740 RETALLOC_IF (old_regend
, num_regs
, const char *);
1741 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1742 RETALLOC_IF (best_regend
, num_regs
, const char *);
1743 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1744 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1745 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1747 regs_allocated_size
= num_regs
;
1751 #endif /* not MATCH_MAY_ALLOCATE */
1753 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1757 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1758 Returns one of error codes defined in `regex.h', or zero for success.
1760 Assumes the `allocated' (and perhaps `buffer') and `translate'
1761 fields are set in BUFP on entry.
1763 If it succeeds, results are put in BUFP (if it returns an error, the
1764 contents of BUFP are undefined):
1765 `buffer' is the compiled pattern;
1766 `syntax' is set to SYNTAX;
1767 `used' is set to the length of the compiled pattern;
1768 `fastmap_accurate' is zero;
1769 `re_nsub' is the number of subexpressions in PATTERN;
1770 `not_bol' and `not_eol' are zero;
1772 The `fastmap' and `newline_anchor' fields are neither
1773 examined nor set. */
1775 /* Return, freeing storage we allocated. */
1776 #define FREE_STACK_RETURN(value) \
1777 return (free (compile_stack.stack), value)
1779 static reg_errcode_t
1780 regex_compile (pattern
, size
, syntax
, bufp
)
1781 const char *pattern
;
1783 reg_syntax_t syntax
;
1784 struct re_pattern_buffer
*bufp
;
1786 /* We fetch characters from PATTERN here. Even though PATTERN is
1787 `char *' (i.e., signed), we declare these variables as unsigned, so
1788 they can be reliably used as array indices. */
1789 register unsigned char c
, c1
;
1791 /* A random temporary spot in PATTERN. */
1794 /* Points to the end of the buffer, where we should append. */
1795 register unsigned char *b
;
1797 /* Keeps track of unclosed groups. */
1798 compile_stack_type compile_stack
;
1800 /* Points to the current (ending) position in the pattern. */
1801 const char *p
= pattern
;
1802 const char *pend
= pattern
+ size
;
1804 /* How to translate the characters in the pattern. */
1805 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1807 /* Address of the count-byte of the most recently inserted `exactn'
1808 command. This makes it possible to tell if a new exact-match
1809 character can be added to that command or if the character requires
1810 a new `exactn' command. */
1811 unsigned char *pending_exact
= 0;
1813 /* Address of start of the most recently finished expression.
1814 This tells, e.g., postfix * where to find the start of its
1815 operand. Reset at the beginning of groups and alternatives. */
1816 unsigned char *laststart
= 0;
1818 /* Address of beginning of regexp, or inside of last group. */
1819 unsigned char *begalt
;
1821 /* Place in the uncompiled pattern (i.e., the {) to
1822 which to go back if the interval is invalid. */
1823 const char *beg_interval
;
1825 /* Address of the place where a forward jump should go to the end of
1826 the containing expression. Each alternative of an `or' -- except the
1827 last -- ends with a forward jump of this sort. */
1828 unsigned char *fixup_alt_jump
= 0;
1830 /* Counts open-groups as they are encountered. Remembered for the
1831 matching close-group on the compile stack, so the same register
1832 number is put in the stop_memory as the start_memory. */
1833 regnum_t regnum
= 0;
1836 DEBUG_PRINT1 ("\nCompiling pattern: ");
1839 unsigned debug_count
;
1841 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1842 putchar (pattern
[debug_count
]);
1847 /* Initialize the compile stack. */
1848 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1849 if (compile_stack
.stack
== NULL
)
1852 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1853 compile_stack
.avail
= 0;
1855 /* Initialize the pattern buffer. */
1856 bufp
->syntax
= syntax
;
1857 bufp
->fastmap_accurate
= 0;
1858 bufp
->not_bol
= bufp
->not_eol
= 0;
1860 /* Set `used' to zero, so that if we return an error, the pattern
1861 printer (for debugging) will think there's no pattern. We reset it
1865 /* Always count groups, whether or not bufp->no_sub is set. */
1868 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1869 /* Initialize the syntax table. */
1870 init_syntax_once ();
1873 if (bufp
->allocated
== 0)
1876 { /* If zero allocated, but buffer is non-null, try to realloc
1877 enough space. This loses if buffer's address is bogus, but
1878 that is the user's responsibility. */
1879 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1882 { /* Caller did not allocate a buffer. Do it for them. */
1883 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1885 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1887 bufp
->allocated
= INIT_BUF_SIZE
;
1890 begalt
= b
= bufp
->buffer
;
1892 /* Loop through the uncompiled pattern until we're at the end. */
1901 if ( /* If at start of pattern, it's an operator. */
1903 /* If context independent, it's an operator. */
1904 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1905 /* Otherwise, depends on what's come before. */
1906 || at_begline_loc_p (pattern
, p
, syntax
))
1916 if ( /* If at end of pattern, it's an operator. */
1918 /* If context independent, it's an operator. */
1919 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1920 /* Otherwise, depends on what's next. */
1921 || at_endline_loc_p (p
, pend
, syntax
))
1931 if ((syntax
& RE_BK_PLUS_QM
)
1932 || (syntax
& RE_LIMITED_OPS
))
1936 /* If there is no previous pattern... */
1939 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1940 FREE_STACK_RETURN (REG_BADRPT
);
1941 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1946 /* Are we optimizing this jump? */
1947 boolean keep_string_p
= false;
1949 /* 1 means zero (many) matches is allowed. */
1950 char zero_times_ok
= 0, many_times_ok
= 0;
1952 /* If there is a sequence of repetition chars, collapse it
1953 down to just one (the right one). We can't combine
1954 interval operators with these because of, e.g., `a{2}*',
1955 which should only match an even number of `a's. */
1959 zero_times_ok
|= c
!= '+';
1960 many_times_ok
|= c
!= '?';
1968 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1971 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1973 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
1976 if (!(c1
== '+' || c1
== '?'))
1991 /* If we get here, we found another repeat character. */
1994 /* Star, etc. applied to an empty pattern is equivalent
1995 to an empty pattern. */
1999 /* Now we know whether or not zero matches is allowed
2000 and also whether or not two or more matches is allowed. */
2002 { /* More than one repetition is allowed, so put in at the
2003 end a backward relative jump from `b' to before the next
2004 jump we're going to put in below (which jumps from
2005 laststart to after this jump).
2007 But if we are at the `*' in the exact sequence `.*\n',
2008 insert an unconditional jump backwards to the .,
2009 instead of the beginning of the loop. This way we only
2010 push a failure point once, instead of every time
2011 through the loop. */
2012 assert (p
- 1 > pattern
);
2014 /* Allocate the space for the jump. */
2015 GET_BUFFER_SPACE (3);
2017 /* We know we are not at the first character of the pattern,
2018 because laststart was nonzero. And we've already
2019 incremented `p', by the way, to be the character after
2020 the `*'. Do we have to do something analogous here
2021 for null bytes, because of RE_DOT_NOT_NULL? */
2022 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2024 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2025 && !(syntax
& RE_DOT_NEWLINE
))
2026 { /* We have .*\n. */
2027 STORE_JUMP (jump
, b
, laststart
);
2028 keep_string_p
= true;
2031 /* Anything else. */
2032 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2034 /* We've added more stuff to the buffer. */
2038 /* On failure, jump from laststart to b + 3, which will be the
2039 end of the buffer after this jump is inserted. */
2040 GET_BUFFER_SPACE (3);
2041 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2049 /* At least one repetition is required, so insert a
2050 `dummy_failure_jump' before the initial
2051 `on_failure_jump' instruction of the loop. This
2052 effects a skip over that instruction the first time
2053 we hit that loop. */
2054 GET_BUFFER_SPACE (3);
2055 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2070 boolean had_char_class
= false;
2072 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2074 /* Ensure that we have enough space to push a charset: the
2075 opcode, the length count, and the bitset; 34 bytes in all. */
2076 GET_BUFFER_SPACE (34);
2080 /* We test `*p == '^' twice, instead of using an if
2081 statement, so we only need one BUF_PUSH. */
2082 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2086 /* Remember the first position in the bracket expression. */
2089 /* Push the number of bytes in the bitmap. */
2090 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2092 /* Clear the whole map. */
2093 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2095 /* charset_not matches newline according to a syntax bit. */
2096 if ((re_opcode_t
) b
[-2] == charset_not
2097 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2098 SET_LIST_BIT ('\n');
2100 /* Read in characters and ranges, setting map bits. */
2103 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2107 /* \ might escape characters inside [...] and [^...]. */
2108 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2110 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2117 /* Could be the end of the bracket expression. If it's
2118 not (i.e., when the bracket expression is `[]' so
2119 far), the ']' character bit gets set way below. */
2120 if (c
== ']' && p
!= p1
+ 1)
2123 /* Look ahead to see if it's a range when the last thing
2124 was a character class. */
2125 if (had_char_class
&& c
== '-' && *p
!= ']')
2126 FREE_STACK_RETURN (REG_ERANGE
);
2128 /* Look ahead to see if it's a range when the last thing
2129 was a character: if this is a hyphen not at the
2130 beginning or the end of a list, then it's the range
2133 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2134 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2138 = compile_range (&p
, pend
, translate
, syntax
, b
);
2139 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2142 else if (p
[0] == '-' && p
[1] != ']')
2143 { /* This handles ranges made up of characters only. */
2146 /* Move past the `-'. */
2149 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2150 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2153 /* See if we're at the beginning of a possible character
2156 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2157 { /* Leave room for the null. */
2158 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2163 /* If pattern is `[[:'. */
2164 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2169 if (c
== ':' || c
== ']' || p
== pend
2170 || c1
== CHAR_CLASS_MAX_LENGTH
)
2176 /* If isn't a word bracketed by `[:' and:`]':
2177 undo the ending character, the letters, and leave
2178 the leading `:' and `[' (but set bits for them). */
2179 if (c
== ':' && *p
== ']')
2181 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2182 boolean is_lower
= STREQ (str
, "lower");
2183 boolean is_upper
= STREQ (str
, "upper");
2189 FREE_STACK_RETURN (REG_ECTYPE
);
2191 /* Throw away the ] at the end of the character
2195 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2197 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2199 if (iswctype (btowc (ch
), wt
))
2202 if (translate
&& (is_upper
|| is_lower
)
2203 && (ISUPPER (ch
) || ISLOWER (ch
)))
2207 had_char_class
= true;
2210 boolean is_alnum
= STREQ (str
, "alnum");
2211 boolean is_alpha
= STREQ (str
, "alpha");
2212 boolean is_blank
= STREQ (str
, "blank");
2213 boolean is_cntrl
= STREQ (str
, "cntrl");
2214 boolean is_digit
= STREQ (str
, "digit");
2215 boolean is_graph
= STREQ (str
, "graph");
2216 boolean is_lower
= STREQ (str
, "lower");
2217 boolean is_print
= STREQ (str
, "print");
2218 boolean is_punct
= STREQ (str
, "punct");
2219 boolean is_space
= STREQ (str
, "space");
2220 boolean is_upper
= STREQ (str
, "upper");
2221 boolean is_xdigit
= STREQ (str
, "xdigit");
2223 if (!IS_CHAR_CLASS (str
))
2224 FREE_STACK_RETURN (REG_ECTYPE
);
2226 /* Throw away the ] at the end of the character
2230 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2232 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2234 /* This was split into 3 if's to
2235 avoid an arbitrary limit in some compiler. */
2236 if ( (is_alnum
&& ISALNUM (ch
))
2237 || (is_alpha
&& ISALPHA (ch
))
2238 || (is_blank
&& ISBLANK (ch
))
2239 || (is_cntrl
&& ISCNTRL (ch
)))
2241 if ( (is_digit
&& ISDIGIT (ch
))
2242 || (is_graph
&& ISGRAPH (ch
))
2243 || (is_lower
&& ISLOWER (ch
))
2244 || (is_print
&& ISPRINT (ch
)))
2246 if ( (is_punct
&& ISPUNCT (ch
))
2247 || (is_space
&& ISSPACE (ch
))
2248 || (is_upper
&& ISUPPER (ch
))
2249 || (is_xdigit
&& ISXDIGIT (ch
)))
2251 if ( translate
&& (is_upper
|| is_lower
)
2252 && (ISUPPER (ch
) || ISLOWER (ch
)))
2255 had_char_class
= true;
2256 #endif /* libc || wctype.h */
2265 had_char_class
= false;
2270 had_char_class
= false;
2275 /* Discard any (non)matching list bytes that are all 0 at the
2276 end of the map. Decrease the map-length byte too. */
2277 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2285 if (syntax
& RE_NO_BK_PARENS
)
2292 if (syntax
& RE_NO_BK_PARENS
)
2299 if (syntax
& RE_NEWLINE_ALT
)
2306 if (syntax
& RE_NO_BK_VBAR
)
2313 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2314 goto handle_interval
;
2320 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2322 /* Do not translate the character after the \, so that we can
2323 distinguish, e.g., \B from \b, even if we normally would
2324 translate, e.g., B to b. */
2330 if (syntax
& RE_NO_BK_PARENS
)
2331 goto normal_backslash
;
2337 if (COMPILE_STACK_FULL
)
2339 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2340 compile_stack_elt_t
);
2341 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2343 compile_stack
.size
<<= 1;
2346 /* These are the values to restore when we hit end of this
2347 group. They are all relative offsets, so that if the
2348 whole pattern moves because of realloc, they will still
2350 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2351 COMPILE_STACK_TOP
.fixup_alt_jump
2352 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2353 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2354 COMPILE_STACK_TOP
.regnum
= regnum
;
2356 /* We will eventually replace the 0 with the number of
2357 groups inner to this one. But do not push a
2358 start_memory for groups beyond the last one we can
2359 represent in the compiled pattern. */
2360 if (regnum
<= MAX_REGNUM
)
2362 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2363 BUF_PUSH_3 (start_memory
, regnum
, 0);
2366 compile_stack
.avail
++;
2371 /* If we've reached MAX_REGNUM groups, then this open
2372 won't actually generate any code, so we'll have to
2373 clear pending_exact explicitly. */
2379 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2381 if (COMPILE_STACK_EMPTY
)
2382 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2383 goto normal_backslash
;
2385 FREE_STACK_RETURN (REG_ERPAREN
);
2389 { /* Push a dummy failure point at the end of the
2390 alternative for a possible future
2391 `pop_failure_jump' to pop. See comments at
2392 `push_dummy_failure' in `re_match_2'. */
2393 BUF_PUSH (push_dummy_failure
);
2395 /* We allocated space for this jump when we assigned
2396 to `fixup_alt_jump', in the `handle_alt' case below. */
2397 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2400 /* See similar code for backslashed left paren above. */
2401 if (COMPILE_STACK_EMPTY
)
2402 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2405 FREE_STACK_RETURN (REG_ERPAREN
);
2407 /* Since we just checked for an empty stack above, this
2408 ``can't happen''. */
2409 assert (compile_stack
.avail
!= 0);
2411 /* We don't just want to restore into `regnum', because
2412 later groups should continue to be numbered higher,
2413 as in `(ab)c(de)' -- the second group is #2. */
2414 regnum_t this_group_regnum
;
2416 compile_stack
.avail
--;
2417 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2419 = COMPILE_STACK_TOP
.fixup_alt_jump
2420 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2422 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2423 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2424 /* If we've reached MAX_REGNUM groups, then this open
2425 won't actually generate any code, so we'll have to
2426 clear pending_exact explicitly. */
2429 /* We're at the end of the group, so now we know how many
2430 groups were inside this one. */
2431 if (this_group_regnum
<= MAX_REGNUM
)
2433 unsigned char *inner_group_loc
2434 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2436 *inner_group_loc
= regnum
- this_group_regnum
;
2437 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2438 regnum
- this_group_regnum
);
2444 case '|': /* `\|'. */
2445 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2446 goto normal_backslash
;
2448 if (syntax
& RE_LIMITED_OPS
)
2451 /* Insert before the previous alternative a jump which
2452 jumps to this alternative if the former fails. */
2453 GET_BUFFER_SPACE (3);
2454 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2458 /* The alternative before this one has a jump after it
2459 which gets executed if it gets matched. Adjust that
2460 jump so it will jump to this alternative's analogous
2461 jump (put in below, which in turn will jump to the next
2462 (if any) alternative's such jump, etc.). The last such
2463 jump jumps to the correct final destination. A picture:
2469 If we are at `b', then fixup_alt_jump right now points to a
2470 three-byte space after `a'. We'll put in the jump, set
2471 fixup_alt_jump to right after `b', and leave behind three
2472 bytes which we'll fill in when we get to after `c'. */
2475 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2477 /* Mark and leave space for a jump after this alternative,
2478 to be filled in later either by next alternative or
2479 when know we're at the end of a series of alternatives. */
2481 GET_BUFFER_SPACE (3);
2490 /* If \{ is a literal. */
2491 if (!(syntax
& RE_INTERVALS
)
2492 /* If we're at `\{' and it's not the open-interval
2494 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2495 || (p
- 2 == pattern
&& p
== pend
))
2496 goto normal_backslash
;
2500 /* If got here, then the syntax allows intervals. */
2502 /* At least (most) this many matches must be made. */
2503 int lower_bound
= -1, upper_bound
= -1;
2505 beg_interval
= p
- 1;
2509 if (syntax
& RE_NO_BK_BRACES
)
2510 goto unfetch_interval
;
2512 FREE_STACK_RETURN (REG_EBRACE
);
2515 GET_UNSIGNED_NUMBER (lower_bound
);
2519 GET_UNSIGNED_NUMBER (upper_bound
);
2520 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2523 /* Interval such as `{1}' => match exactly once. */
2524 upper_bound
= lower_bound
;
2526 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2527 || lower_bound
> upper_bound
)
2529 if (syntax
& RE_NO_BK_BRACES
)
2530 goto unfetch_interval
;
2532 FREE_STACK_RETURN (REG_BADBR
);
2535 if (!(syntax
& RE_NO_BK_BRACES
))
2537 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2544 if (syntax
& RE_NO_BK_BRACES
)
2545 goto unfetch_interval
;
2547 FREE_STACK_RETURN (REG_BADBR
);
2550 /* We just parsed a valid interval. */
2552 /* If it's invalid to have no preceding re. */
2555 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2556 FREE_STACK_RETURN (REG_BADRPT
);
2557 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2560 goto unfetch_interval
;
2563 /* If the upper bound is zero, don't want to succeed at
2564 all; jump from `laststart' to `b + 3', which will be
2565 the end of the buffer after we insert the jump. */
2566 if (upper_bound
== 0)
2568 GET_BUFFER_SPACE (3);
2569 INSERT_JUMP (jump
, laststart
, b
+ 3);
2573 /* Otherwise, we have a nontrivial interval. When
2574 we're all done, the pattern will look like:
2575 set_number_at <jump count> <upper bound>
2576 set_number_at <succeed_n count> <lower bound>
2577 succeed_n <after jump addr> <succeed_n count>
2579 jump_n <succeed_n addr> <jump count>
2580 (The upper bound and `jump_n' are omitted if
2581 `upper_bound' is 1, though.) */
2583 { /* If the upper bound is > 1, we need to insert
2584 more at the end of the loop. */
2585 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2587 GET_BUFFER_SPACE (nbytes
);
2589 /* Initialize lower bound of the `succeed_n', even
2590 though it will be set during matching by its
2591 attendant `set_number_at' (inserted next),
2592 because `re_compile_fastmap' needs to know.
2593 Jump to the `jump_n' we might insert below. */
2594 INSERT_JUMP2 (succeed_n
, laststart
,
2595 b
+ 5 + (upper_bound
> 1) * 5,
2599 /* Code to initialize the lower bound. Insert
2600 before the `succeed_n'. The `5' is the last two
2601 bytes of this `set_number_at', plus 3 bytes of
2602 the following `succeed_n'. */
2603 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2606 if (upper_bound
> 1)
2607 { /* More than one repetition is allowed, so
2608 append a backward jump to the `succeed_n'
2609 that starts this interval.
2611 When we've reached this during matching,
2612 we'll have matched the interval once, so
2613 jump back only `upper_bound - 1' times. */
2614 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2618 /* The location we want to set is the second
2619 parameter of the `jump_n'; that is `b-2' as
2620 an absolute address. `laststart' will be
2621 the `set_number_at' we're about to insert;
2622 `laststart+3' the number to set, the source
2623 for the relative address. But we are
2624 inserting into the middle of the pattern --
2625 so everything is getting moved up by 5.
2626 Conclusion: (b - 2) - (laststart + 3) + 5,
2627 i.e., b - laststart.
2629 We insert this at the beginning of the loop
2630 so that if we fail during matching, we'll
2631 reinitialize the bounds. */
2632 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2633 upper_bound
- 1, b
);
2638 beg_interval
= NULL
;
2643 /* If an invalid interval, match the characters as literals. */
2644 assert (beg_interval
);
2646 beg_interval
= NULL
;
2648 /* normal_char and normal_backslash need `c'. */
2651 if (!(syntax
& RE_NO_BK_BRACES
))
2653 if (p
> pattern
&& p
[-1] == '\\')
2654 goto normal_backslash
;
2659 /* There is no way to specify the before_dot and after_dot
2660 operators. rms says this is ok. --karl */
2668 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2674 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2680 if (re_syntax_options
& RE_NO_GNU_OPS
)
2683 BUF_PUSH (wordchar
);
2688 if (re_syntax_options
& RE_NO_GNU_OPS
)
2691 BUF_PUSH (notwordchar
);
2696 if (re_syntax_options
& RE_NO_GNU_OPS
)
2702 if (re_syntax_options
& RE_NO_GNU_OPS
)
2708 if (re_syntax_options
& RE_NO_GNU_OPS
)
2710 BUF_PUSH (wordbound
);
2714 if (re_syntax_options
& RE_NO_GNU_OPS
)
2716 BUF_PUSH (notwordbound
);
2720 if (re_syntax_options
& RE_NO_GNU_OPS
)
2726 if (re_syntax_options
& RE_NO_GNU_OPS
)
2731 case '1': case '2': case '3': case '4': case '5':
2732 case '6': case '7': case '8': case '9':
2733 if (syntax
& RE_NO_BK_REFS
)
2739 FREE_STACK_RETURN (REG_ESUBREG
);
2741 /* Can't back reference to a subexpression if inside of it. */
2742 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2746 BUF_PUSH_2 (duplicate
, c1
);
2752 if (syntax
& RE_BK_PLUS_QM
)
2755 goto normal_backslash
;
2759 /* You might think it would be useful for \ to mean
2760 not to translate; but if we don't translate it
2761 it will never match anything. */
2769 /* Expects the character in `c'. */
2771 /* If no exactn currently being built. */
2774 /* If last exactn not at current position. */
2775 || pending_exact
+ *pending_exact
+ 1 != b
2777 /* We have only one byte following the exactn for the count. */
2778 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2780 /* If followed by a repetition operator. */
2781 || *p
== '*' || *p
== '^'
2782 || ((syntax
& RE_BK_PLUS_QM
)
2783 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2784 : (*p
== '+' || *p
== '?'))
2785 || ((syntax
& RE_INTERVALS
)
2786 && ((syntax
& RE_NO_BK_BRACES
)
2788 : (p
[0] == '\\' && p
[1] == '{'))))
2790 /* Start building a new exactn. */
2794 BUF_PUSH_2 (exactn
, 0);
2795 pending_exact
= b
- 1;
2802 } /* while p != pend */
2805 /* Through the pattern now. */
2808 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2810 if (!COMPILE_STACK_EMPTY
)
2811 FREE_STACK_RETURN (REG_EPAREN
);
2813 /* If we don't want backtracking, force success
2814 the first time we reach the end of the compiled pattern. */
2815 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2818 free (compile_stack
.stack
);
2820 /* We have succeeded; set the length of the buffer. */
2821 bufp
->used
= b
- bufp
->buffer
;
2826 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2827 print_compiled_pattern (bufp
);
2831 #ifndef MATCH_MAY_ALLOCATE
2832 /* Initialize the failure stack to the largest possible stack. This
2833 isn't necessary unless we're trying to avoid calling alloca in
2834 the search and match routines. */
2836 int num_regs
= bufp
->re_nsub
+ 1;
2838 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2839 is strictly greater than re_max_failures, the largest possible stack
2840 is 2 * re_max_failures failure points. */
2841 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2843 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2846 if (! fail_stack
.stack
)
2848 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2849 * sizeof (fail_stack_elt_t
));
2852 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2854 * sizeof (fail_stack_elt_t
)));
2855 #else /* not emacs */
2856 if (! fail_stack
.stack
)
2858 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2859 * sizeof (fail_stack_elt_t
));
2862 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2864 * sizeof (fail_stack_elt_t
)));
2865 #endif /* not emacs */
2868 regex_grow_registers (num_regs
);
2870 #endif /* not MATCH_MAY_ALLOCATE */
2873 } /* regex_compile */
2875 /* Subroutines for `regex_compile'. */
2877 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2880 store_op1 (op
, loc
, arg
)
2885 *loc
= (unsigned char) op
;
2886 STORE_NUMBER (loc
+ 1, arg
);
2890 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2893 store_op2 (op
, loc
, arg1
, arg2
)
2898 *loc
= (unsigned char) op
;
2899 STORE_NUMBER (loc
+ 1, arg1
);
2900 STORE_NUMBER (loc
+ 3, arg2
);
2904 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2905 for OP followed by two-byte integer parameter ARG. */
2908 insert_op1 (op
, loc
, arg
, end
)
2914 register unsigned char *pfrom
= end
;
2915 register unsigned char *pto
= end
+ 3;
2917 while (pfrom
!= loc
)
2920 store_op1 (op
, loc
, arg
);
2924 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2927 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2933 register unsigned char *pfrom
= end
;
2934 register unsigned char *pto
= end
+ 5;
2936 while (pfrom
!= loc
)
2939 store_op2 (op
, loc
, arg1
, arg2
);
2943 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2944 after an alternative or a begin-subexpression. We assume there is at
2945 least one character before the ^. */
2948 at_begline_loc_p (pattern
, p
, syntax
)
2949 const char *pattern
, *p
;
2950 reg_syntax_t syntax
;
2952 const char *prev
= p
- 2;
2953 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2956 /* After a subexpression? */
2957 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2958 /* After an alternative? */
2959 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2963 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2964 at least one character after the $, i.e., `P < PEND'. */
2967 at_endline_loc_p (p
, pend
, syntax
)
2968 const char *p
, *pend
;
2969 reg_syntax_t syntax
;
2971 const char *next
= p
;
2972 boolean next_backslash
= *next
== '\\';
2973 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
2976 /* Before a subexpression? */
2977 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2978 : next_backslash
&& next_next
&& *next_next
== ')')
2979 /* Before an alternative? */
2980 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2981 : next_backslash
&& next_next
&& *next_next
== '|');
2985 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2986 false if it's not. */
2989 group_in_compile_stack (compile_stack
, regnum
)
2990 compile_stack_type compile_stack
;
2995 for (this_element
= compile_stack
.avail
- 1;
2998 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3005 /* Read the ending character of a range (in a bracket expression) from the
3006 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3007 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3008 Then we set the translation of all bits between the starting and
3009 ending characters (inclusive) in the compiled pattern B.
3011 Return an error code.
3013 We use these short variable names so we can use the same macros as
3014 `regex_compile' itself. */
3016 static reg_errcode_t
3017 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3018 const char **p_ptr
, *pend
;
3019 RE_TRANSLATE_TYPE translate
;
3020 reg_syntax_t syntax
;
3025 const char *p
= *p_ptr
;
3026 unsigned int range_start
, range_end
;
3031 /* Even though the pattern is a signed `char *', we need to fetch
3032 with unsigned char *'s; if the high bit of the pattern character
3033 is set, the range endpoints will be negative if we fetch using a
3036 We also want to fetch the endpoints without translating them; the
3037 appropriate translation is done in the bit-setting loop below. */
3038 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3039 range_start
= ((const unsigned char *) p
)[-2];
3040 range_end
= ((const unsigned char *) p
)[0];
3042 /* Have to increment the pointer into the pattern string, so the
3043 caller isn't still at the ending character. */
3046 /* If the start is after the end, the range is empty. */
3047 if (range_start
> range_end
)
3048 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3050 /* Here we see why `this_char' has to be larger than an `unsigned
3051 char' -- the range is inclusive, so if `range_end' == 0xff
3052 (assuming 8-bit characters), we would otherwise go into an infinite
3053 loop, since all characters <= 0xff. */
3054 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3056 SET_LIST_BIT (TRANSLATE (this_char
));
3062 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3063 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3064 characters can start a string that matches the pattern. This fastmap
3065 is used by re_search to skip quickly over impossible starting points.
3067 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3068 area as BUFP->fastmap.
3070 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3073 Returns 0 if we succeed, -2 if an internal error. */
3076 re_compile_fastmap (bufp
)
3077 struct re_pattern_buffer
*bufp
;
3080 #ifdef MATCH_MAY_ALLOCATE
3081 fail_stack_type fail_stack
;
3083 #ifndef REGEX_MALLOC
3086 /* We don't push any register information onto the failure stack. */
3087 unsigned num_regs
= 0;
3089 register char *fastmap
= bufp
->fastmap
;
3090 unsigned char *pattern
= bufp
->buffer
;
3091 unsigned char *p
= pattern
;
3092 register unsigned char *pend
= pattern
+ bufp
->used
;
3095 /* This holds the pointer to the failure stack, when
3096 it is allocated relocatably. */
3097 fail_stack_elt_t
*failure_stack_ptr
;
3100 /* Assume that each path through the pattern can be null until
3101 proven otherwise. We set this false at the bottom of switch
3102 statement, to which we get only if a particular path doesn't
3103 match the empty string. */
3104 boolean path_can_be_null
= true;
3106 /* We aren't doing a `succeed_n' to begin with. */
3107 boolean succeed_n_p
= false;
3109 assert (fastmap
!= NULL
&& p
!= NULL
);
3112 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3113 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3114 bufp
->can_be_null
= 0;
3118 if (p
== pend
|| *p
== succeed
)
3120 /* We have reached the (effective) end of pattern. */
3121 if (!FAIL_STACK_EMPTY ())
3123 bufp
->can_be_null
|= path_can_be_null
;
3125 /* Reset for next path. */
3126 path_can_be_null
= true;
3128 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3136 /* We should never be about to go beyond the end of the pattern. */
3139 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3142 /* I guess the idea here is to simply not bother with a fastmap
3143 if a backreference is used, since it's too hard to figure out
3144 the fastmap for the corresponding group. Setting
3145 `can_be_null' stops `re_search_2' from using the fastmap, so
3146 that is all we do. */
3148 bufp
->can_be_null
= 1;
3152 /* Following are the cases which match a character. These end
3161 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3162 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3168 /* Chars beyond end of map must be allowed. */
3169 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3172 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3173 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3179 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3180 if (SYNTAX (j
) == Sword
)
3186 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3187 if (SYNTAX (j
) != Sword
)
3194 int fastmap_newline
= fastmap
['\n'];
3196 /* `.' matches anything ... */
3197 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3200 /* ... except perhaps newline. */
3201 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3202 fastmap
['\n'] = fastmap_newline
;
3204 /* Return if we have already set `can_be_null'; if we have,
3205 then the fastmap is irrelevant. Something's wrong here. */
3206 else if (bufp
->can_be_null
)
3209 /* Otherwise, have to check alternative paths. */
3216 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3217 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3224 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3225 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3230 /* All cases after this match the empty string. These end with
3250 case push_dummy_failure
:
3255 case pop_failure_jump
:
3256 case maybe_pop_jump
:
3259 case dummy_failure_jump
:
3260 EXTRACT_NUMBER_AND_INCR (j
, p
);
3265 /* Jump backward implies we just went through the body of a
3266 loop and matched nothing. Opcode jumped to should be
3267 `on_failure_jump' or `succeed_n'. Just treat it like an
3268 ordinary jump. For a * loop, it has pushed its failure
3269 point already; if so, discard that as redundant. */
3270 if ((re_opcode_t
) *p
!= on_failure_jump
3271 && (re_opcode_t
) *p
!= succeed_n
)
3275 EXTRACT_NUMBER_AND_INCR (j
, p
);
3278 /* If what's on the stack is where we are now, pop it. */
3279 if (!FAIL_STACK_EMPTY ()
3280 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3286 case on_failure_jump
:
3287 case on_failure_keep_string_jump
:
3288 handle_on_failure_jump
:
3289 EXTRACT_NUMBER_AND_INCR (j
, p
);
3291 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3292 end of the pattern. We don't want to push such a point,
3293 since when we restore it above, entering the switch will
3294 increment `p' past the end of the pattern. We don't need
3295 to push such a point since we obviously won't find any more
3296 fastmap entries beyond `pend'. Such a pattern can match
3297 the null string, though. */
3300 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3302 RESET_FAIL_STACK ();
3307 bufp
->can_be_null
= 1;
3311 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3312 succeed_n_p
= false;
3319 /* Get to the number of times to succeed. */
3322 /* Increment p past the n for when k != 0. */
3323 EXTRACT_NUMBER_AND_INCR (k
, p
);
3327 succeed_n_p
= true; /* Spaghetti code alert. */
3328 goto handle_on_failure_jump
;
3345 abort (); /* We have listed all the cases. */
3348 /* Getting here means we have found the possible starting
3349 characters for one path of the pattern -- and that the empty
3350 string does not match. We need not follow this path further.
3351 Instead, look at the next alternative (remembered on the
3352 stack), or quit if no more. The test at the top of the loop
3353 does these things. */
3354 path_can_be_null
= false;
3358 /* Set `can_be_null' for the last path (also the first path, if the
3359 pattern is empty). */
3360 bufp
->can_be_null
|= path_can_be_null
;
3363 RESET_FAIL_STACK ();
3365 } /* re_compile_fastmap */
3367 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3368 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3369 this memory for recording register information. STARTS and ENDS
3370 must be allocated using the malloc library routine, and must each
3371 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3373 If NUM_REGS == 0, then subsequent matches should allocate their own
3376 Unless this function is called, the first search or match using
3377 PATTERN_BUFFER will allocate its own register data, without
3378 freeing the old data. */
3381 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3382 struct re_pattern_buffer
*bufp
;
3383 struct re_registers
*regs
;
3385 regoff_t
*starts
, *ends
;
3389 bufp
->regs_allocated
= REGS_REALLOCATE
;
3390 regs
->num_regs
= num_regs
;
3391 regs
->start
= starts
;
3396 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3398 regs
->start
= regs
->end
= (regoff_t
*) 0;
3402 /* Searching routines. */
3404 /* Like re_search_2, below, but only one string is specified, and
3405 doesn't let you say where to stop matching. */
3408 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3409 struct re_pattern_buffer
*bufp
;
3411 int size
, startpos
, range
;
3412 struct re_registers
*regs
;
3414 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3419 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3420 virtual concatenation of STRING1 and STRING2, starting first at index
3421 STARTPOS, then at STARTPOS + 1, and so on.
3423 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3425 RANGE is how far to scan while trying to match. RANGE = 0 means try
3426 only at STARTPOS; in general, the last start tried is STARTPOS +
3429 In REGS, return the indices of the virtual concatenation of STRING1
3430 and STRING2 that matched the entire BUFP->buffer and its contained
3433 Do not consider matching one past the index STOP in the virtual
3434 concatenation of STRING1 and STRING2.
3436 We return either the position in the strings at which the match was
3437 found, -1 if no match, or -2 if error (such as failure
3441 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3442 struct re_pattern_buffer
*bufp
;
3443 const char *string1
, *string2
;
3447 struct re_registers
*regs
;
3451 register char *fastmap
= bufp
->fastmap
;
3452 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3453 int total_size
= size1
+ size2
;
3454 int endpos
= startpos
+ range
;
3456 /* Check for out-of-range STARTPOS. */
3457 if (startpos
< 0 || startpos
> total_size
)
3460 /* Fix up RANGE if it might eventually take us outside
3461 the virtual concatenation of STRING1 and STRING2.
3462 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3464 range
= 0 - startpos
;
3465 else if (endpos
> total_size
)
3466 range
= total_size
- startpos
;
3468 /* If the search isn't to be a backwards one, don't waste time in a
3469 search for a pattern that must be anchored. */
3470 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3479 /* In a forward search for something that starts with \=.
3480 don't keep searching past point. */
3481 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3483 range
= PT
- startpos
;
3489 /* Update the fastmap now if not correct already. */
3490 if (fastmap
&& !bufp
->fastmap_accurate
)
3491 if (re_compile_fastmap (bufp
) == -2)
3494 /* Loop through the string, looking for a place to start matching. */
3497 /* If a fastmap is supplied, skip quickly over characters that
3498 cannot be the start of a match. If the pattern can match the
3499 null string, however, we don't need to skip characters; we want
3500 the first null string. */
3501 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3503 if (range
> 0) /* Searching forwards. */
3505 register const char *d
;
3506 register int lim
= 0;
3509 if (startpos
< size1
&& startpos
+ range
>= size1
)
3510 lim
= range
- (size1
- startpos
);
3512 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3514 /* Written out as an if-else to avoid testing `translate'
3518 && !fastmap
[(unsigned char)
3519 translate
[(unsigned char) *d
++]])
3522 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3525 startpos
+= irange
- range
;
3527 else /* Searching backwards. */
3529 register char c
= (size1
== 0 || startpos
>= size1
3530 ? string2
[startpos
- size1
]
3531 : string1
[startpos
]);
3533 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3538 /* If can't match the null string, and that's all we have left, fail. */
3539 if (range
>= 0 && startpos
== total_size
&& fastmap
3540 && !bufp
->can_be_null
)
3543 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3544 startpos
, regs
, stop
);
3545 #ifndef REGEX_MALLOC
3574 /* This converts PTR, a pointer into one of the search strings `string1'
3575 and `string2' into an offset from the beginning of that string. */
3576 #define POINTER_TO_OFFSET(ptr) \
3577 (FIRST_STRING_P (ptr) \
3578 ? ((regoff_t) ((ptr) - string1)) \
3579 : ((regoff_t) ((ptr) - string2 + size1)))
3581 /* Macros for dealing with the split strings in re_match_2. */
3583 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3585 /* Call before fetching a character with *d. This switches over to
3586 string2 if necessary. */
3587 #define PREFETCH() \
3590 /* End of string2 => fail. */ \
3591 if (dend == end_match_2) \
3593 /* End of string1 => advance to string2. */ \
3595 dend = end_match_2; \
3599 /* Test if at very beginning or at very end of the virtual concatenation
3600 of `string1' and `string2'. If only one string, it's `string2'. */
3601 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3602 #define AT_STRINGS_END(d) ((d) == end2)
3605 /* Test if D points to a character which is word-constituent. We have
3606 two special cases to check for: if past the end of string1, look at
3607 the first character in string2; and if before the beginning of
3608 string2, look at the last character in string1. */
3609 #define WORDCHAR_P(d) \
3610 (SYNTAX ((d) == end1 ? *string2 \
3611 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3614 /* Disabled due to a compiler bug -- see comment at case wordbound */
3616 /* Test if the character before D and the one at D differ with respect
3617 to being word-constituent. */
3618 #define AT_WORD_BOUNDARY(d) \
3619 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3620 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3623 /* Free everything we malloc. */
3624 #ifdef MATCH_MAY_ALLOCATE
3625 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3626 #define FREE_VARIABLES() \
3628 REGEX_FREE_STACK (fail_stack.stack); \
3629 FREE_VAR (regstart); \
3630 FREE_VAR (regend); \
3631 FREE_VAR (old_regstart); \
3632 FREE_VAR (old_regend); \
3633 FREE_VAR (best_regstart); \
3634 FREE_VAR (best_regend); \
3635 FREE_VAR (reg_info); \
3636 FREE_VAR (reg_dummy); \
3637 FREE_VAR (reg_info_dummy); \
3640 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3641 #endif /* not MATCH_MAY_ALLOCATE */
3643 /* These values must meet several constraints. They must not be valid
3644 register values; since we have a limit of 255 registers (because
3645 we use only one byte in the pattern for the register number), we can
3646 use numbers larger than 255. They must differ by 1, because of
3647 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3648 be larger than the value for the highest register, so we do not try
3649 to actually save any registers when none are active. */
3650 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3651 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3653 /* Matching routines. */
3655 #ifndef emacs /* Emacs never uses this. */
3656 /* re_match is like re_match_2 except it takes only a single string. */
3659 re_match (bufp
, string
, size
, pos
, regs
)
3660 struct re_pattern_buffer
*bufp
;
3663 struct re_registers
*regs
;
3665 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3667 #ifndef REGEX_MALLOC
3674 #endif /* not emacs */
3676 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3678 register_info_type
*reg_info
));
3679 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3681 register_info_type
*reg_info
));
3682 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3684 register_info_type
*reg_info
));
3685 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3686 int len
, char *translate
));
3688 /* re_match_2 matches the compiled pattern in BUFP against the
3689 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3690 and SIZE2, respectively). We start matching at POS, and stop
3693 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3694 store offsets for the substring each group matched in REGS. See the
3695 documentation for exactly how many groups we fill.
3697 We return -1 if no match, -2 if an internal error (such as the
3698 failure stack overflowing). Otherwise, we return the length of the
3699 matched substring. */
3702 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3703 struct re_pattern_buffer
*bufp
;
3704 const char *string1
, *string2
;
3707 struct re_registers
*regs
;
3710 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3712 #ifndef REGEX_MALLOC
3720 /* This is a separate function so that we can force an alloca cleanup
3723 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3724 struct re_pattern_buffer
*bufp
;
3725 const char *string1
, *string2
;
3728 struct re_registers
*regs
;
3731 /* General temporaries. */
3735 /* Just past the end of the corresponding string. */
3736 const char *end1
, *end2
;
3738 /* Pointers into string1 and string2, just past the last characters in
3739 each to consider matching. */
3740 const char *end_match_1
, *end_match_2
;
3742 /* Where we are in the data, and the end of the current string. */
3743 const char *d
, *dend
;
3745 /* Where we are in the pattern, and the end of the pattern. */
3746 unsigned char *p
= bufp
->buffer
;
3747 register unsigned char *pend
= p
+ bufp
->used
;
3749 /* Mark the opcode just after a start_memory, so we can test for an
3750 empty subpattern when we get to the stop_memory. */
3751 unsigned char *just_past_start_mem
= 0;
3753 /* We use this to map every character in the string. */
3754 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3756 /* Failure point stack. Each place that can handle a failure further
3757 down the line pushes a failure point on this stack. It consists of
3758 restart, regend, and reg_info for all registers corresponding to
3759 the subexpressions we're currently inside, plus the number of such
3760 registers, and, finally, two char *'s. The first char * is where
3761 to resume scanning the pattern; the second one is where to resume
3762 scanning the strings. If the latter is zero, the failure point is
3763 a ``dummy''; if a failure happens and the failure point is a dummy,
3764 it gets discarded and the next next one is tried. */
3765 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3766 fail_stack_type fail_stack
;
3769 static unsigned failure_id
= 0;
3770 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3774 /* This holds the pointer to the failure stack, when
3775 it is allocated relocatably. */
3776 fail_stack_elt_t
*failure_stack_ptr
;
3779 /* We fill all the registers internally, independent of what we
3780 return, for use in backreferences. The number here includes
3781 an element for register zero. */
3782 size_t num_regs
= bufp
->re_nsub
+ 1;
3784 /* The currently active registers. */
3785 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3786 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3788 /* Information on the contents of registers. These are pointers into
3789 the input strings; they record just what was matched (on this
3790 attempt) by a subexpression part of the pattern, that is, the
3791 regnum-th regstart pointer points to where in the pattern we began
3792 matching and the regnum-th regend points to right after where we
3793 stopped matching the regnum-th subexpression. (The zeroth register
3794 keeps track of what the whole pattern matches.) */
3795 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3796 const char **regstart
, **regend
;
3799 /* If a group that's operated upon by a repetition operator fails to
3800 match anything, then the register for its start will need to be
3801 restored because it will have been set to wherever in the string we
3802 are when we last see its open-group operator. Similarly for a
3804 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3805 const char **old_regstart
, **old_regend
;
3808 /* The is_active field of reg_info helps us keep track of which (possibly
3809 nested) subexpressions we are currently in. The matched_something
3810 field of reg_info[reg_num] helps us tell whether or not we have
3811 matched any of the pattern so far this time through the reg_num-th
3812 subexpression. These two fields get reset each time through any
3813 loop their register is in. */
3814 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3815 register_info_type
*reg_info
;
3818 /* The following record the register info as found in the above
3819 variables when we find a match better than any we've seen before.
3820 This happens as we backtrack through the failure points, which in
3821 turn happens only if we have not yet matched the entire string. */
3822 unsigned best_regs_set
= false;
3823 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3824 const char **best_regstart
, **best_regend
;
3827 /* Logically, this is `best_regend[0]'. But we don't want to have to
3828 allocate space for that if we're not allocating space for anything
3829 else (see below). Also, we never need info about register 0 for
3830 any of the other register vectors, and it seems rather a kludge to
3831 treat `best_regend' differently than the rest. So we keep track of
3832 the end of the best match so far in a separate variable. We
3833 initialize this to NULL so that when we backtrack the first time
3834 and need to test it, it's not garbage. */
3835 const char *match_end
= NULL
;
3837 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3838 int set_regs_matched_done
= 0;
3840 /* Used when we pop values we don't care about. */
3841 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3842 const char **reg_dummy
;
3843 register_info_type
*reg_info_dummy
;
3847 /* Counts the total number of registers pushed. */
3848 unsigned num_regs_pushed
= 0;
3851 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3855 #ifdef MATCH_MAY_ALLOCATE
3856 /* Do not bother to initialize all the register variables if there are
3857 no groups in the pattern, as it takes a fair amount of time. If
3858 there are groups, we include space for register 0 (the whole
3859 pattern), even though we never use it, since it simplifies the
3860 array indexing. We should fix this. */
3863 regstart
= REGEX_TALLOC (num_regs
, const char *);
3864 regend
= REGEX_TALLOC (num_regs
, const char *);
3865 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3866 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3867 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3868 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3869 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3870 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3871 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3873 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3874 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3882 /* We must initialize all our variables to NULL, so that
3883 `FREE_VARIABLES' doesn't try to free them. */
3884 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3885 = best_regend
= reg_dummy
= NULL
;
3886 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3888 #endif /* MATCH_MAY_ALLOCATE */
3890 /* The starting position is bogus. */
3891 if (pos
< 0 || pos
> size1
+ size2
)
3897 /* Initialize subexpression text positions to -1 to mark ones that no
3898 start_memory/stop_memory has been seen for. Also initialize the
3899 register information struct. */
3900 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3902 regstart
[mcnt
] = regend
[mcnt
]
3903 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3905 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3906 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3907 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3908 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3911 /* We move `string1' into `string2' if the latter's empty -- but not if
3912 `string1' is null. */
3913 if (size2
== 0 && string1
!= NULL
)
3920 end1
= string1
+ size1
;
3921 end2
= string2
+ size2
;
3923 /* Compute where to stop matching, within the two strings. */
3926 end_match_1
= string1
+ stop
;
3927 end_match_2
= string2
;
3932 end_match_2
= string2
+ stop
- size1
;
3935 /* `p' scans through the pattern as `d' scans through the data.
3936 `dend' is the end of the input string that `d' points within. `d'
3937 is advanced into the following input string whenever necessary, but
3938 this happens before fetching; therefore, at the beginning of the
3939 loop, `d' can be pointing at the end of a string, but it cannot
3941 if (size1
> 0 && pos
<= size1
)
3948 d
= string2
+ pos
- size1
;
3952 DEBUG_PRINT1 ("The compiled pattern is:\n");
3953 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3954 DEBUG_PRINT1 ("The string to match is: `");
3955 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3956 DEBUG_PRINT1 ("'\n");
3958 /* This loops over pattern commands. It exits by returning from the
3959 function if the match is complete, or it drops through if the match
3960 fails at this starting point in the input data. */
3964 DEBUG_PRINT2 ("\n%p: ", p
);
3966 DEBUG_PRINT2 ("\n0x%x: ", p
);
3970 { /* End of pattern means we might have succeeded. */
3971 DEBUG_PRINT1 ("end of pattern ... ");
3973 /* If we haven't matched the entire string, and we want the
3974 longest match, try backtracking. */
3975 if (d
!= end_match_2
)
3977 /* 1 if this match ends in the same string (string1 or string2)
3978 as the best previous match. */
3979 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3980 == MATCHING_IN_FIRST_STRING
);
3981 /* 1 if this match is the best seen so far. */
3982 boolean best_match_p
;
3984 /* AIX compiler got confused when this was combined
3985 with the previous declaration. */
3987 best_match_p
= d
> match_end
;
3989 best_match_p
= !MATCHING_IN_FIRST_STRING
;
3991 DEBUG_PRINT1 ("backtracking.\n");
3993 if (!FAIL_STACK_EMPTY ())
3994 { /* More failure points to try. */
3996 /* If exceeds best match so far, save it. */
3997 if (!best_regs_set
|| best_match_p
)
3999 best_regs_set
= true;
4002 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4004 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4006 best_regstart
[mcnt
] = regstart
[mcnt
];
4007 best_regend
[mcnt
] = regend
[mcnt
];
4013 /* If no failure points, don't restore garbage. And if
4014 last match is real best match, don't restore second
4016 else if (best_regs_set
&& !best_match_p
)
4019 /* Restore best match. It may happen that `dend ==
4020 end_match_1' while the restored d is in string2.
4021 For example, the pattern `x.*y.*z' against the
4022 strings `x-' and `y-z-', if the two strings are
4023 not consecutive in memory. */
4024 DEBUG_PRINT1 ("Restoring best registers.\n");
4027 dend
= ((d
>= string1
&& d
<= end1
)
4028 ? end_match_1
: end_match_2
);
4030 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4032 regstart
[mcnt
] = best_regstart
[mcnt
];
4033 regend
[mcnt
] = best_regend
[mcnt
];
4036 } /* d != end_match_2 */
4039 DEBUG_PRINT1 ("Accepting match.\n");
4041 /* If caller wants register contents data back, do it. */
4042 if (regs
&& !bufp
->no_sub
)
4044 /* Have the register data arrays been allocated? */
4045 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4046 { /* No. So allocate them with malloc. We need one
4047 extra element beyond `num_regs' for the `-1' marker
4049 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4050 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4051 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4052 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4057 bufp
->regs_allocated
= REGS_REALLOCATE
;
4059 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4060 { /* Yes. If we need more elements than were already
4061 allocated, reallocate them. If we need fewer, just
4063 if (regs
->num_regs
< num_regs
+ 1)
4065 regs
->num_regs
= num_regs
+ 1;
4066 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4067 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4068 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4077 /* These braces fend off a "empty body in an else-statement"
4078 warning under GCC when assert expands to nothing. */
4079 assert (bufp
->regs_allocated
== REGS_FIXED
);
4082 /* Convert the pointer data in `regstart' and `regend' to
4083 indices. Register zero has to be set differently,
4084 since we haven't kept track of any info for it. */
4085 if (regs
->num_regs
> 0)
4087 regs
->start
[0] = pos
;
4088 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4089 ? ((regoff_t
) (d
- string1
))
4090 : ((regoff_t
) (d
- string2
+ size1
)));
4093 /* Go through the first `min (num_regs, regs->num_regs)'
4094 registers, since that is all we initialized. */
4095 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4098 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4099 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4103 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4105 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4109 /* If the regs structure we return has more elements than
4110 were in the pattern, set the extra elements to -1. If
4111 we (re)allocated the registers, this is the case,
4112 because we always allocate enough to have at least one
4114 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4115 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4116 } /* regs && !bufp->no_sub */
4118 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4119 nfailure_points_pushed
, nfailure_points_popped
,
4120 nfailure_points_pushed
- nfailure_points_popped
);
4121 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4123 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4127 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4133 /* Otherwise match next pattern command. */
4134 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4136 /* Ignore these. Used to ignore the n of succeed_n's which
4137 currently have n == 0. */
4139 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4143 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4146 /* Match the next n pattern characters exactly. The following
4147 byte in the pattern defines n, and the n bytes after that
4148 are the characters to match. */
4151 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4153 /* This is written out as an if-else so we don't waste time
4154 testing `translate' inside the loop. */
4160 if ((unsigned char) translate
[(unsigned char) *d
++]
4161 != (unsigned char) *p
++)
4171 if (*d
++ != (char) *p
++) goto fail
;
4175 SET_REGS_MATCHED ();
4179 /* Match any character except possibly a newline or a null. */
4181 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4185 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4186 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4189 SET_REGS_MATCHED ();
4190 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4198 register unsigned char c
;
4199 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4201 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4204 c
= TRANSLATE (*d
); /* The character to match. */
4206 /* Cast to `unsigned' instead of `unsigned char' in case the
4207 bit list is a full 32 bytes long. */
4208 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4209 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4214 if (!not) goto fail
;
4216 SET_REGS_MATCHED ();
4222 /* The beginning of a group is represented by start_memory.
4223 The arguments are the register number in the next byte, and the
4224 number of groups inner to this one in the next. The text
4225 matched within the group is recorded (in the internal
4226 registers data structure) under the register number. */
4228 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4230 /* Find out if this group can match the empty string. */
4231 p1
= p
; /* To send to group_match_null_string_p. */
4233 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4234 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4235 = group_match_null_string_p (&p1
, pend
, reg_info
);
4237 /* Save the position in the string where we were the last time
4238 we were at this open-group operator in case the group is
4239 operated upon by a repetition operator, e.g., with `(a*)*b'
4240 against `ab'; then we want to ignore where we are now in
4241 the string in case this attempt to match fails. */
4242 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4243 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4245 DEBUG_PRINT2 (" old_regstart: %d\n",
4246 POINTER_TO_OFFSET (old_regstart
[*p
]));
4249 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4251 IS_ACTIVE (reg_info
[*p
]) = 1;
4252 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4254 /* Clear this whenever we change the register activity status. */
4255 set_regs_matched_done
= 0;
4257 /* This is the new highest active register. */
4258 highest_active_reg
= *p
;
4260 /* If nothing was active before, this is the new lowest active
4262 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4263 lowest_active_reg
= *p
;
4265 /* Move past the register number and inner group count. */
4267 just_past_start_mem
= p
;
4272 /* The stop_memory opcode represents the end of a group. Its
4273 arguments are the same as start_memory's: the register
4274 number, and the number of inner groups. */
4276 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4278 /* We need to save the string position the last time we were at
4279 this close-group operator in case the group is operated
4280 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4281 against `aba'; then we want to ignore where we are now in
4282 the string in case this attempt to match fails. */
4283 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4284 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4286 DEBUG_PRINT2 (" old_regend: %d\n",
4287 POINTER_TO_OFFSET (old_regend
[*p
]));
4290 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4292 /* This register isn't active anymore. */
4293 IS_ACTIVE (reg_info
[*p
]) = 0;
4295 /* Clear this whenever we change the register activity status. */
4296 set_regs_matched_done
= 0;
4298 /* If this was the only register active, nothing is active
4300 if (lowest_active_reg
== highest_active_reg
)
4302 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4303 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4306 { /* We must scan for the new highest active register, since
4307 it isn't necessarily one less than now: consider
4308 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4309 new highest active register is 1. */
4310 unsigned char r
= *p
- 1;
4311 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4314 /* If we end up at register zero, that means that we saved
4315 the registers as the result of an `on_failure_jump', not
4316 a `start_memory', and we jumped to past the innermost
4317 `stop_memory'. For example, in ((.)*) we save
4318 registers 1 and 2 as a result of the *, but when we pop
4319 back to the second ), we are at the stop_memory 1.
4320 Thus, nothing is active. */
4323 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4324 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4327 highest_active_reg
= r
;
4330 /* If just failed to match something this time around with a
4331 group that's operated on by a repetition operator, try to
4332 force exit from the ``loop'', and restore the register
4333 information for this group that we had before trying this
4335 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4336 || just_past_start_mem
== p
- 1)
4339 boolean is_a_jump_n
= false;
4343 switch ((re_opcode_t
) *p1
++)
4347 case pop_failure_jump
:
4348 case maybe_pop_jump
:
4350 case dummy_failure_jump
:
4351 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4361 /* If the next operation is a jump backwards in the pattern
4362 to an on_failure_jump right before the start_memory
4363 corresponding to this stop_memory, exit from the loop
4364 by forcing a failure after pushing on the stack the
4365 on_failure_jump's jump in the pattern, and d. */
4366 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4367 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4369 /* If this group ever matched anything, then restore
4370 what its registers were before trying this last
4371 failed match, e.g., with `(a*)*b' against `ab' for
4372 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4373 against `aba' for regend[3].
4375 Also restore the registers for inner groups for,
4376 e.g., `((a*)(b*))*' against `aba' (register 3 would
4377 otherwise get trashed). */
4379 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4383 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4385 /* Restore this and inner groups' (if any) registers. */
4386 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4389 regstart
[r
] = old_regstart
[r
];
4391 /* xx why this test? */
4392 if (old_regend
[r
] >= regstart
[r
])
4393 regend
[r
] = old_regend
[r
];
4397 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4398 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4404 /* Move past the register number and the inner group count. */
4409 /* \<digit> has been turned into a `duplicate' command which is
4410 followed by the numeric value of <digit> as the register number. */
4413 register const char *d2
, *dend2
;
4414 int regno
= *p
++; /* Get which register to match against. */
4415 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4417 /* Can't back reference a group which we've never matched. */
4418 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4421 /* Where in input to try to start matching. */
4422 d2
= regstart
[regno
];
4424 /* Where to stop matching; if both the place to start and
4425 the place to stop matching are in the same string, then
4426 set to the place to stop, otherwise, for now have to use
4427 the end of the first string. */
4429 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4430 == FIRST_STRING_P (regend
[regno
]))
4431 ? regend
[regno
] : end_match_1
);
4434 /* If necessary, advance to next segment in register
4438 if (dend2
== end_match_2
) break;
4439 if (dend2
== regend
[regno
]) break;
4441 /* End of string1 => advance to string2. */
4443 dend2
= regend
[regno
];
4445 /* At end of register contents => success */
4446 if (d2
== dend2
) break;
4448 /* If necessary, advance to next segment in data. */
4451 /* How many characters left in this segment to match. */
4454 /* Want how many consecutive characters we can match in
4455 one shot, so, if necessary, adjust the count. */
4456 if (mcnt
> dend2
- d2
)
4459 /* Compare that many; failure if mismatch, else move
4462 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4463 : bcmp (d
, d2
, mcnt
))
4465 d
+= mcnt
, d2
+= mcnt
;
4467 /* Do this because we've match some characters. */
4468 SET_REGS_MATCHED ();
4474 /* begline matches the empty string at the beginning of the string
4475 (unless `not_bol' is set in `bufp'), and, if
4476 `newline_anchor' is set, after newlines. */
4478 DEBUG_PRINT1 ("EXECUTING begline.\n");
4480 if (AT_STRINGS_BEG (d
))
4482 if (!bufp
->not_bol
) break;
4484 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4488 /* In all other cases, we fail. */
4492 /* endline is the dual of begline. */
4494 DEBUG_PRINT1 ("EXECUTING endline.\n");
4496 if (AT_STRINGS_END (d
))
4498 if (!bufp
->not_eol
) break;
4501 /* We have to ``prefetch'' the next character. */
4502 else if ((d
== end1
? *string2
: *d
) == '\n'
4503 && bufp
->newline_anchor
)
4510 /* Match at the very beginning of the data. */
4512 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4513 if (AT_STRINGS_BEG (d
))
4518 /* Match at the very end of the data. */
4520 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4521 if (AT_STRINGS_END (d
))
4526 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4527 pushes NULL as the value for the string on the stack. Then
4528 `pop_failure_point' will keep the current value for the
4529 string, instead of restoring it. To see why, consider
4530 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4531 then the . fails against the \n. But the next thing we want
4532 to do is match the \n against the \n; if we restored the
4533 string value, we would be back at the foo.
4535 Because this is used only in specific cases, we don't need to
4536 check all the things that `on_failure_jump' does, to make
4537 sure the right things get saved on the stack. Hence we don't
4538 share its code. The only reason to push anything on the
4539 stack at all is that otherwise we would have to change
4540 `anychar's code to do something besides goto fail in this
4541 case; that seems worse than this. */
4542 case on_failure_keep_string_jump
:
4543 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4545 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4547 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4549 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4552 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4556 /* Uses of on_failure_jump:
4558 Each alternative starts with an on_failure_jump that points
4559 to the beginning of the next alternative. Each alternative
4560 except the last ends with a jump that in effect jumps past
4561 the rest of the alternatives. (They really jump to the
4562 ending jump of the following alternative, because tensioning
4563 these jumps is a hassle.)
4565 Repeats start with an on_failure_jump that points past both
4566 the repetition text and either the following jump or
4567 pop_failure_jump back to this on_failure_jump. */
4568 case on_failure_jump
:
4570 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4572 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4574 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4576 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4579 /* If this on_failure_jump comes right before a group (i.e.,
4580 the original * applied to a group), save the information
4581 for that group and all inner ones, so that if we fail back
4582 to this point, the group's information will be correct.
4583 For example, in \(a*\)*\1, we need the preceding group,
4584 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4586 /* We can't use `p' to check ahead because we push
4587 a failure point to `p + mcnt' after we do this. */
4590 /* We need to skip no_op's before we look for the
4591 start_memory in case this on_failure_jump is happening as
4592 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4594 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4597 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4599 /* We have a new highest active register now. This will
4600 get reset at the start_memory we are about to get to,
4601 but we will have saved all the registers relevant to
4602 this repetition op, as described above. */
4603 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4604 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4605 lowest_active_reg
= *(p1
+ 1);
4608 DEBUG_PRINT1 (":\n");
4609 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4613 /* A smart repeat ends with `maybe_pop_jump'.
4614 We change it to either `pop_failure_jump' or `jump'. */
4615 case maybe_pop_jump
:
4616 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4617 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4619 register unsigned char *p2
= p
;
4621 /* Compare the beginning of the repeat with what in the
4622 pattern follows its end. If we can establish that there
4623 is nothing that they would both match, i.e., that we
4624 would have to backtrack because of (as in, e.g., `a*a')
4625 then we can change to pop_failure_jump, because we'll
4626 never have to backtrack.
4628 This is not true in the case of alternatives: in
4629 `(a|ab)*' we do need to backtrack to the `ab' alternative
4630 (e.g., if the string was `ab'). But instead of trying to
4631 detect that here, the alternative has put on a dummy
4632 failure point which is what we will end up popping. */
4634 /* Skip over open/close-group commands.
4635 If what follows this loop is a ...+ construct,
4636 look at what begins its body, since we will have to
4637 match at least one of that. */
4641 && ((re_opcode_t
) *p2
== stop_memory
4642 || (re_opcode_t
) *p2
== start_memory
))
4644 else if (p2
+ 6 < pend
4645 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4652 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4653 to the `maybe_finalize_jump' of this case. Examine what
4656 /* If we're at the end of the pattern, we can change. */
4659 /* Consider what happens when matching ":\(.*\)"
4660 against ":/". I don't really understand this code
4662 p
[-3] = (unsigned char) pop_failure_jump
;
4664 (" End of pattern: change to `pop_failure_jump'.\n");
4667 else if ((re_opcode_t
) *p2
== exactn
4668 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4670 register unsigned char c
4671 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4673 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4675 p
[-3] = (unsigned char) pop_failure_jump
;
4676 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4680 else if ((re_opcode_t
) p1
[3] == charset
4681 || (re_opcode_t
) p1
[3] == charset_not
)
4683 int not = (re_opcode_t
) p1
[3] == charset_not
;
4685 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4686 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4689 /* `not' is equal to 1 if c would match, which means
4690 that we can't change to pop_failure_jump. */
4693 p
[-3] = (unsigned char) pop_failure_jump
;
4694 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4698 else if ((re_opcode_t
) *p2
== charset
)
4701 register unsigned char c
4702 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4706 if ((re_opcode_t
) p1
[3] == exactn
4707 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4708 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4709 & (1 << (p1
[5] % BYTEWIDTH
)))))
4711 if ((re_opcode_t
) p1
[3] == exactn
4712 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4713 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4714 & (1 << (p1
[4] % BYTEWIDTH
)))))
4717 p
[-3] = (unsigned char) pop_failure_jump
;
4718 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4722 else if ((re_opcode_t
) p1
[3] == charset_not
)
4725 /* We win if the charset_not inside the loop
4726 lists every character listed in the charset after. */
4727 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4728 if (! (p2
[2 + idx
] == 0
4729 || (idx
< (int) p1
[4]
4730 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4735 p
[-3] = (unsigned char) pop_failure_jump
;
4736 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4739 else if ((re_opcode_t
) p1
[3] == charset
)
4742 /* We win if the charset inside the loop
4743 has no overlap with the one after the loop. */
4745 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4747 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4750 if (idx
== p2
[1] || idx
== p1
[4])
4752 p
[-3] = (unsigned char) pop_failure_jump
;
4753 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4758 p
-= 2; /* Point at relative address again. */
4759 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4761 p
[-1] = (unsigned char) jump
;
4762 DEBUG_PRINT1 (" Match => jump.\n");
4763 goto unconditional_jump
;
4765 /* Note fall through. */
4768 /* The end of a simple repeat has a pop_failure_jump back to
4769 its matching on_failure_jump, where the latter will push a
4770 failure point. The pop_failure_jump takes off failure
4771 points put on by this pop_failure_jump's matching
4772 on_failure_jump; we got through the pattern to here from the
4773 matching on_failure_jump, so didn't fail. */
4774 case pop_failure_jump
:
4776 /* We need to pass separate storage for the lowest and
4777 highest registers, even though we don't care about the
4778 actual values. Otherwise, we will restore only one
4779 register from the stack, since lowest will == highest in
4780 `pop_failure_point'. */
4781 active_reg_t dummy_low_reg
, dummy_high_reg
;
4782 unsigned char *pdummy
;
4785 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4786 POP_FAILURE_POINT (sdummy
, pdummy
,
4787 dummy_low_reg
, dummy_high_reg
,
4788 reg_dummy
, reg_dummy
, reg_info_dummy
);
4790 /* Note fall through. */
4794 DEBUG_PRINT2 ("\n%p: ", p
);
4796 DEBUG_PRINT2 ("\n0x%x: ", p
);
4798 /* Note fall through. */
4800 /* Unconditionally jump (without popping any failure points). */
4802 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4803 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4804 p
+= mcnt
; /* Do the jump. */
4806 DEBUG_PRINT2 ("(to %p).\n", p
);
4808 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4813 /* We need this opcode so we can detect where alternatives end
4814 in `group_match_null_string_p' et al. */
4816 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4817 goto unconditional_jump
;
4820 /* Normally, the on_failure_jump pushes a failure point, which
4821 then gets popped at pop_failure_jump. We will end up at
4822 pop_failure_jump, also, and with a pattern of, say, `a+', we
4823 are skipping over the on_failure_jump, so we have to push
4824 something meaningless for pop_failure_jump to pop. */
4825 case dummy_failure_jump
:
4826 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4827 /* It doesn't matter what we push for the string here. What
4828 the code at `fail' tests is the value for the pattern. */
4829 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4830 goto unconditional_jump
;
4833 /* At the end of an alternative, we need to push a dummy failure
4834 point in case we are followed by a `pop_failure_jump', because
4835 we don't want the failure point for the alternative to be
4836 popped. For example, matching `(a|ab)*' against `aab'
4837 requires that we match the `ab' alternative. */
4838 case push_dummy_failure
:
4839 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4840 /* See comments just above at `dummy_failure_jump' about the
4842 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
4845 /* Have to succeed matching what follows at least n times.
4846 After that, handle like `on_failure_jump'. */
4848 EXTRACT_NUMBER (mcnt
, p
+ 2);
4849 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4852 /* Originally, this is how many times we HAVE to succeed. */
4857 STORE_NUMBER_AND_INCR (p
, mcnt
);
4859 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4861 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4867 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4869 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4871 p
[2] = (unsigned char) no_op
;
4872 p
[3] = (unsigned char) no_op
;
4878 EXTRACT_NUMBER (mcnt
, p
+ 2);
4879 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4881 /* Originally, this is how many times we CAN jump. */
4885 STORE_NUMBER (p
+ 2, mcnt
);
4887 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4889 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4891 goto unconditional_jump
;
4893 /* If don't have to jump any more, skip over the rest of command. */
4900 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4902 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4904 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4906 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4908 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4910 STORE_NUMBER (p1
, mcnt
);
4915 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4916 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4917 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4918 macro and introducing temporary variables works around the bug. */
4921 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4922 if (AT_WORD_BOUNDARY (d
))
4927 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4928 if (AT_WORD_BOUNDARY (d
))
4934 boolean prevchar
, thischar
;
4936 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4937 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4940 prevchar
= WORDCHAR_P (d
- 1);
4941 thischar
= WORDCHAR_P (d
);
4942 if (prevchar
!= thischar
)
4949 boolean prevchar
, thischar
;
4951 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4952 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4955 prevchar
= WORDCHAR_P (d
- 1);
4956 thischar
= WORDCHAR_P (d
);
4957 if (prevchar
!= thischar
)
4964 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4965 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4970 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4971 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4972 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4978 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4979 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4984 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4985 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4990 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4991 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4996 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
5001 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5005 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5007 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5009 SET_REGS_MATCHED ();
5013 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5015 goto matchnotsyntax
;
5018 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5022 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5024 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5026 SET_REGS_MATCHED ();
5029 #else /* not emacs */
5031 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5033 if (!WORDCHAR_P (d
))
5035 SET_REGS_MATCHED ();
5040 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5044 SET_REGS_MATCHED ();
5047 #endif /* not emacs */
5052 continue; /* Successfully executed one pattern command; keep going. */
5055 /* We goto here if a matching operation fails. */
5057 if (!FAIL_STACK_EMPTY ())
5058 { /* A restart point is known. Restore to that state. */
5059 DEBUG_PRINT1 ("\nFAIL:\n");
5060 POP_FAILURE_POINT (d
, p
,
5061 lowest_active_reg
, highest_active_reg
,
5062 regstart
, regend
, reg_info
);
5064 /* If this failure point is a dummy, try the next one. */
5068 /* If we failed to the end of the pattern, don't examine *p. */
5072 boolean is_a_jump_n
= false;
5074 /* If failed to a backwards jump that's part of a repetition
5075 loop, need to pop this failure point and use the next one. */
5076 switch ((re_opcode_t
) *p
)
5080 case maybe_pop_jump
:
5081 case pop_failure_jump
:
5084 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5087 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5089 && (re_opcode_t
) *p1
== on_failure_jump
))
5097 if (d
>= string1
&& d
<= end1
)
5101 break; /* Matching at this starting point really fails. */
5105 goto restore_best_regs
;
5109 return -1; /* Failure to match. */
5112 /* Subroutine definitions for re_match_2. */
5115 /* We are passed P pointing to a register number after a start_memory.
5117 Return true if the pattern up to the corresponding stop_memory can
5118 match the empty string, and false otherwise.
5120 If we find the matching stop_memory, sets P to point to one past its number.
5121 Otherwise, sets P to an undefined byte less than or equal to END.
5123 We don't handle duplicates properly (yet). */
5126 group_match_null_string_p (p
, end
, reg_info
)
5127 unsigned char **p
, *end
;
5128 register_info_type
*reg_info
;
5131 /* Point to after the args to the start_memory. */
5132 unsigned char *p1
= *p
+ 2;
5136 /* Skip over opcodes that can match nothing, and return true or
5137 false, as appropriate, when we get to one that can't, or to the
5138 matching stop_memory. */
5140 switch ((re_opcode_t
) *p1
)
5142 /* Could be either a loop or a series of alternatives. */
5143 case on_failure_jump
:
5145 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5147 /* If the next operation is not a jump backwards in the
5152 /* Go through the on_failure_jumps of the alternatives,
5153 seeing if any of the alternatives cannot match nothing.
5154 The last alternative starts with only a jump,
5155 whereas the rest start with on_failure_jump and end
5156 with a jump, e.g., here is the pattern for `a|b|c':
5158 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5159 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5162 So, we have to first go through the first (n-1)
5163 alternatives and then deal with the last one separately. */
5166 /* Deal with the first (n-1) alternatives, which start
5167 with an on_failure_jump (see above) that jumps to right
5168 past a jump_past_alt. */
5170 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5172 /* `mcnt' holds how many bytes long the alternative
5173 is, including the ending `jump_past_alt' and
5176 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5180 /* Move to right after this alternative, including the
5184 /* Break if it's the beginning of an n-th alternative
5185 that doesn't begin with an on_failure_jump. */
5186 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5189 /* Still have to check that it's not an n-th
5190 alternative that starts with an on_failure_jump. */
5192 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5193 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5195 /* Get to the beginning of the n-th alternative. */
5201 /* Deal with the last alternative: go back and get number
5202 of the `jump_past_alt' just before it. `mcnt' contains
5203 the length of the alternative. */
5204 EXTRACT_NUMBER (mcnt
, p1
- 2);
5206 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5209 p1
+= mcnt
; /* Get past the n-th alternative. */
5215 assert (p1
[1] == **p
);
5221 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5224 } /* while p1 < end */
5227 } /* group_match_null_string_p */
5230 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5231 It expects P to be the first byte of a single alternative and END one
5232 byte past the last. The alternative can contain groups. */
5235 alt_match_null_string_p (p
, end
, reg_info
)
5236 unsigned char *p
, *end
;
5237 register_info_type
*reg_info
;
5240 unsigned char *p1
= p
;
5244 /* Skip over opcodes that can match nothing, and break when we get
5245 to one that can't. */
5247 switch ((re_opcode_t
) *p1
)
5250 case on_failure_jump
:
5252 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5257 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5260 } /* while p1 < end */
5263 } /* alt_match_null_string_p */
5266 /* Deals with the ops common to group_match_null_string_p and
5267 alt_match_null_string_p.
5269 Sets P to one after the op and its arguments, if any. */
5272 common_op_match_null_string_p (p
, end
, reg_info
)
5273 unsigned char **p
, *end
;
5274 register_info_type
*reg_info
;
5279 unsigned char *p1
= *p
;
5281 switch ((re_opcode_t
) *p1
++)
5301 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5302 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5304 /* Have to set this here in case we're checking a group which
5305 contains a group and a back reference to it. */
5307 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5308 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5314 /* If this is an optimized succeed_n for zero times, make the jump. */
5316 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5324 /* Get to the number of times to succeed. */
5326 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5331 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5339 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5347 /* All other opcodes mean we cannot match the empty string. */
5353 } /* common_op_match_null_string_p */
5356 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5357 bytes; nonzero otherwise. */
5360 bcmp_translate (s1
, s2
, len
, translate
)
5361 const char *s1
, *s2
;
5363 RE_TRANSLATE_TYPE translate
;
5365 register const unsigned char *p1
= (const unsigned char *) s1
;
5366 register const unsigned char *p2
= (const unsigned char *) s2
;
5369 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5375 /* Entry points for GNU code. */
5377 /* re_compile_pattern is the GNU regular expression compiler: it
5378 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5379 Returns 0 if the pattern was valid, otherwise an error string.
5381 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5382 are set in BUFP on entry.
5384 We call regex_compile to do the actual compilation. */
5387 re_compile_pattern (pattern
, length
, bufp
)
5388 const char *pattern
;
5390 struct re_pattern_buffer
*bufp
;
5394 /* GNU code is written to assume at least RE_NREGS registers will be set
5395 (and at least one extra will be -1). */
5396 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5398 /* And GNU code determines whether or not to get register information
5399 by passing null for the REGS argument to re_match, etc., not by
5403 /* Match anchors at newline. */
5404 bufp
->newline_anchor
= 1;
5406 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5410 return gettext (re_error_msgid
[(int) ret
]);
5413 /* Entry points compatible with 4.2 BSD regex library. We don't define
5414 them unless specifically requested. */
5416 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5418 /* BSD has one and only one pattern buffer. */
5419 static struct re_pattern_buffer re_comp_buf
;
5423 /* Make these definitions weak in libc, so POSIX programs can redefine
5424 these names if they don't use our functions, and still use
5425 regcomp/regexec below without link errors. */
5435 if (!re_comp_buf
.buffer
)
5436 return gettext ("No previous regular expression");
5440 if (!re_comp_buf
.buffer
)
5442 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5443 if (re_comp_buf
.buffer
== NULL
)
5444 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5445 re_comp_buf
.allocated
= 200;
5447 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5448 if (re_comp_buf
.fastmap
== NULL
)
5449 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5452 /* Since `re_exec' always passes NULL for the `regs' argument, we
5453 don't need to initialize the pattern buffer fields which affect it. */
5455 /* Match anchors at newlines. */
5456 re_comp_buf
.newline_anchor
= 1;
5458 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5463 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5464 return (char *) gettext (re_error_msgid
[(int) ret
]);
5475 const int len
= strlen (s
);
5477 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5480 #endif /* _REGEX_RE_COMP */
5482 /* POSIX.2 functions. Don't define these for Emacs. */
5486 /* regcomp takes a regular expression as a string and compiles it.
5488 PREG is a regex_t *. We do not expect any fields to be initialized,
5489 since POSIX says we shouldn't. Thus, we set
5491 `buffer' to the compiled pattern;
5492 `used' to the length of the compiled pattern;
5493 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5494 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5495 RE_SYNTAX_POSIX_BASIC;
5496 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5497 `fastmap' and `fastmap_accurate' to zero;
5498 `re_nsub' to the number of subexpressions in PATTERN.
5500 PATTERN is the address of the pattern string.
5502 CFLAGS is a series of bits which affect compilation.
5504 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5505 use POSIX basic syntax.
5507 If REG_NEWLINE is set, then . and [^...] don't match newline.
5508 Also, regexec will try a match beginning after every newline.
5510 If REG_ICASE is set, then we considers upper- and lowercase
5511 versions of letters to be equivalent when matching.
5513 If REG_NOSUB is set, then when PREG is passed to regexec, that
5514 routine will report only success or failure, and nothing about the
5517 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5518 the return codes and their meanings.) */
5521 regcomp (preg
, pattern
, cflags
)
5523 const char *pattern
;
5528 = (cflags
& REG_EXTENDED
) ?
5529 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5531 /* regex_compile will allocate the space for the compiled pattern. */
5533 preg
->allocated
= 0;
5536 /* Don't bother to use a fastmap when searching. This simplifies the
5537 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5538 characters after newlines into the fastmap. This way, we just try
5542 if (cflags
& REG_ICASE
)
5547 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5548 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5549 if (preg
->translate
== NULL
)
5550 return (int) REG_ESPACE
;
5552 /* Map uppercase characters to corresponding lowercase ones. */
5553 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5554 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5557 preg
->translate
= NULL
;
5559 /* If REG_NEWLINE is set, newlines are treated differently. */
5560 if (cflags
& REG_NEWLINE
)
5561 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5562 syntax
&= ~RE_DOT_NEWLINE
;
5563 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5564 /* It also changes the matching behavior. */
5565 preg
->newline_anchor
= 1;
5568 preg
->newline_anchor
= 0;
5570 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5572 /* POSIX says a null character in the pattern terminates it, so we
5573 can use strlen here in compiling the pattern. */
5574 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5576 /* POSIX doesn't distinguish between an unmatched open-group and an
5577 unmatched close-group: both are REG_EPAREN. */
5578 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5584 /* regexec searches for a given pattern, specified by PREG, in the
5587 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5588 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5589 least NMATCH elements, and we set them to the offsets of the
5590 corresponding matched substrings.
5592 EFLAGS specifies `execution flags' which affect matching: if
5593 REG_NOTBOL is set, then ^ does not match at the beginning of the
5594 string; if REG_NOTEOL is set, then $ does not match at the end.
5596 We return 0 if we find a match and REG_NOMATCH if not. */
5599 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5600 const regex_t
*preg
;
5603 regmatch_t pmatch
[];
5607 struct re_registers regs
;
5608 regex_t private_preg
;
5609 int len
= strlen (string
);
5610 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5612 private_preg
= *preg
;
5614 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5615 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5617 /* The user has told us exactly how many registers to return
5618 information about, via `nmatch'. We have to pass that on to the
5619 matching routines. */
5620 private_preg
.regs_allocated
= REGS_FIXED
;
5624 regs
.num_regs
= nmatch
;
5625 regs
.start
= TALLOC (nmatch
, regoff_t
);
5626 regs
.end
= TALLOC (nmatch
, regoff_t
);
5627 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5628 return (int) REG_NOMATCH
;
5631 /* Perform the searching operation. */
5632 ret
= re_search (&private_preg
, string
, len
,
5633 /* start: */ 0, /* range: */ len
,
5634 want_reg_info
? ®s
: (struct re_registers
*) 0);
5636 /* Copy the register information to the POSIX structure. */
5643 for (r
= 0; r
< nmatch
; r
++)
5645 pmatch
[r
].rm_so
= regs
.start
[r
];
5646 pmatch
[r
].rm_eo
= regs
.end
[r
];
5650 /* If we needed the temporary register info, free the space now. */
5655 /* We want zero return to mean success, unlike `re_search'. */
5656 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5660 /* Returns a message corresponding to an error code, ERRCODE, returned
5661 from either regcomp or regexec. We don't use PREG here. */
5664 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5666 const regex_t
*preg
;
5674 || errcode
>= (int) (sizeof (re_error_msgid
)
5675 / sizeof (re_error_msgid
[0])))
5676 /* Only error codes returned by the rest of the code should be passed
5677 to this routine. If we are given anything else, or if other regex
5678 code generates an invalid error code, then the program has a bug.
5679 Dump core so we can fix it. */
5682 msg
= gettext (re_error_msgid
[errcode
]);
5684 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5686 if (errbuf_size
!= 0)
5688 if (msg_size
> errbuf_size
)
5690 strncpy (errbuf
, msg
, errbuf_size
- 1);
5691 errbuf
[errbuf_size
- 1] = 0;
5694 strcpy (errbuf
, msg
);
5701 /* Free dynamically allocated space used by PREG. */
5707 if (preg
->buffer
!= NULL
)
5708 free (preg
->buffer
);
5709 preg
->buffer
= NULL
;
5711 preg
->allocated
= 0;
5714 if (preg
->fastmap
!= NULL
)
5715 free (preg
->fastmap
);
5716 preg
->fastmap
= NULL
;
5717 preg
->fastmap_accurate
= 0;
5719 if (preg
->translate
!= NULL
)
5720 free (preg
->translate
);
5721 preg
->translate
= NULL
;
5724 #endif /* not emacs */