1 /* ix87 specific implementation of complex exponential function for double.
2 Copyright (C) 1997 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
29 ASM_TYPE_DIRECTIVE(huge_nan_null_null,@object)
31 .byte 0, 0, 0x80, 0x7f
32 .byte 0, 0, 0xc0, 0x7f
35 .byte 0, 0, 0x80, 0x7f
36 .byte 0, 0, 0xc0, 0x7f
39 ASM_SIZE_DIRECTIVE(huge_nan_null_null)
41 ASM_TYPE_DIRECTIVE(twopi,@object)
43 .byte 0x35, 0xc2, 0x68, 0x21, 0xa2, 0xda, 0xf, 0xc9, 0x1, 0x40
44 .byte 0, 0, 0, 0, 0, 0
45 ASM_SIZE_DIRECTIVE(twopi)
47 ASM_TYPE_DIRECTIVE(l2e,@object)
49 .byte 0xbc, 0xf0, 0x17, 0x5c, 0x29, 0x3b, 0xaa, 0xb8, 0xff, 0x3f
50 .byte 0, 0, 0, 0, 0, 0
51 ASM_SIZE_DIRECTIVE(l2e)
53 ASM_TYPE_DIRECTIVE(one,@object)
55 ASM_SIZE_DIRECTIVE(one)
59 #define MO(op) op##@GOTOFF(%ecx)
60 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
63 #define MOX(op,x,f) op(,x,f)
71 flds 8(%esp) /* y : x */
75 addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
80 je 1f /* Jump if real part is +-Inf */
82 je 2f /* Jump if real part is NaN */
86 /* If the imaginary part is not finite we return NaN+i NaN, as
87 for the case when the real part is NaN. A test for +-Inf and
88 NaN would be necessary. But since we know the stack register
89 we applied `fxam' to is not empty we can simply use one test.
90 Check your FPU manual for more information. */
95 /* We have finite numbers in the real and imaginary part. Do
98 fldt MO(l2e) /* log2(e) : x : y */
99 fmulp /* x * log2(e) : y */
100 fld %st /* x * log2(e) : x * log2(e) : y */
101 frndint /* int(x * log2(e)) : x * log2(e) : y */
102 fsubr %st, %st(1) /* int(x * log2(e)) : frac(x * log2(e)) : y */
103 fxch /* frac(x * log2(e)) : int(x * log2(e)) : y */
104 f2xm1 /* 2^frac(x * log2(e))-1 : int(x * log2(e)) : y */
105 faddl MO(one) /* 2^frac(x * log2(e)) : int(x * log2(e)) : y */
106 fscale /* e^x : int(x * log2(e)) : y */
107 fst %st(1) /* e^x : e^x : y */
108 fxch %st(2) /* y : e^x : e^x */
109 fsincos /* cos(y) : sin(y) : e^x : e^x */
113 fmulp %st, %st(3) /* sin(y) : e^x : e^x * cos(y) */
114 fmulp %st, %st(1) /* e^x * sin(y) : e^x * cos(y) */
122 /* We have to reduce the argument to fsincos. */
124 7: fldt MO(twopi) /* 2*pi : y : e^x : e^x */
125 fxch /* y : 2*pi : e^x : e^x */
126 8: fprem1 /* y%(2*pi) : 2*pi : e^x : e^x */
130 fstp %st(1) /* y%(2*pi) : e^x : e^x */
131 fsincos /* cos(y) : sin(y) : e^x : e^x */
141 /* The real part is +-inf. We must make further differences. */
146 andb $0x01, %ah /* See above why 0x01 is usable here. */
151 /* The real part is +-Inf and the imaginary part is finite. */
153 cmpb $0x40, %dl /* Imaginary part == 0? */
158 fstp %st(0) /* y */ /* Drop the real part. */
159 andl $8, %edx /* This puts the sign bit of the real part
160 in bit 3. So we can use it to index a
161 small array to select 0 or Inf. */
162 fsincos /* cos(y) : sin(y) */
171 andl $0x80000000, %eax
172 orl MOX(huge_nan_null_null,%edx,1), %eax
173 movl MOX(huge_nan_null_null,%edx,1), %ecx
179 andl $0x80000000, %eax
182 /* We must reduce the argument to fsincos. */
197 andl $0x80000000, %eax
198 orl MOX(huge_nan_null_null,%edx,1), %eax
199 movl MOX(huge_nan_null_null,%edx,1), %ecx
205 andl $0x80000000, %eax
209 /* The real part is +-Inf and the imaginary part is +-0. So return
217 movl MOX(huge_nan_null_null,%edx,1), %eax
221 /* The real part is +-Inf, the imaginary is also is not finite. */
224 fstp %st(0) /* <empty> */
232 movl MOX(huge_nan_null_null,%edx,1), %eax
233 movl MOX(huge_nan_null_null+4,%edx,1), %edx
236 /* The real part is NaN. */
240 movl MO(huge_nan_null_null+4), %eax
245 weak_alias (__cexpf, cexpf)