1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid
[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
18 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
19 * double x[],y[]; int e0,nx,prec; int ipio2[];
21 * __kernel_rem_pio2 return the last three digits of N with
25 * The method is to compute the integer (mod 8) and fraction parts of
26 * (2/pi)*x without doing the full multiplication. In general we
27 * skip the part of the product that are known to be a huge integer (
28 * more accurately, = 0 mod 8 ). Thus the number of operations are
29 * independent of the exponent of the input.
31 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
34 * x[] The input value (must be positive) is broken into nx
35 * pieces of 24-bit integers in double precision format.
36 * x[i] will be the i-th 24 bit of x. The scaled exponent
37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
38 * match x's up to 24 bits.
40 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
48 * y[] ouput result in an array of double precision numbers.
49 * The dimension of y[] is:
54 * The actual value is the sum of them. Thus for 113-bit
55 * precison, one may have to do something like:
57 * long double t,w,r_head, r_tail;
58 * t = (long double)y[2] + (long double)y[1];
59 * w = (long double)y[0];
61 * r_tail = w - (r_head - t);
63 * e0 The exponent of x[0]
67 * prec an integer indicating the precision:
70 * 2 64 bits (extended)
74 * integer array, contains the (24*i)-th to (24*i+23)-th
75 * bit of 2/pi after binary point. The corresponding
78 * ipio2[i] * 2^(-24(i+1)).
81 * double scalbn(), floor();
84 * Here is the description of some local variables:
86 * jk jk+1 is the initial number of terms of ipio2[] needed
87 * in the computation. The recommended value is 2,3,4,
88 * 6 for single, double, extended,and quad.
90 * jz local integer variable indicating the number of
91 * terms of ipio2[] used.
95 * jv index for pointing to the suitable ipio2[] for the
96 * computation. In general, we want
97 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
100 * Hence jv = max(0,(e0-3)/24).
102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
104 * q[] double array with integral value, representing the
105 * 24-bits chunk of the product of x and 2/pi.
107 * q0 the corresponding exponent of q[0]. Note that the
108 * exponent for q[i] would be q0-24*i.
110 * PIo2[] double precision array, obtained by cutting pi/2
111 * into 24 bits chunks.
113 * f[] ipio2[] in floating point
115 * iq[] integer array by breaking up q[] in 24-bits chunk.
117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
119 * ih integer. If >0 it indicates q[] is >= 0.5, hence
120 * it also indicates the *sign* of the result.
127 * The hexadecimal values are the intended ones for the following
128 * constants. The decimal values may be used, provided that the
129 * compiler will convert from decimal to binary accurately enough
130 * to produce the hexadecimal values shown.
134 #include "math_private.h"
137 static const int init_jk
[] = {2,3,4,6}; /* initial value for jk */
139 static int init_jk
[] = {2,3,4,6};
143 static const double PIo2
[] = {
145 static double PIo2
[] = {
147 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
148 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
149 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
150 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
151 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
152 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
153 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
154 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
164 two24
= 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
165 twon24
= 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
168 int __kernel_rem_pio2(double *x
, double *y
, int e0
, int nx
, int prec
, const int32_t *ipio2
)
170 int __kernel_rem_pio2(x
,y
,e0
,nx
,prec
,ipio2
)
171 double x
[], y
[]; int e0
,nx
,prec
; int32_t ipio2
[];
174 int32_t jz
,jx
,jv
,jp
,jk
,carry
,n
,iq
[20],i
,j
,k
,m
,q0
,ih
;
175 double z
,fw
,f
[20],fq
[20],q
[20];
181 /* determine jx,jv,q0, note that 3>q0 */
183 jv
= (e0
-3)/24; if(jv
<0) jv
=0;
186 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
187 j
= jv
-jx
; m
= jx
+jk
;
188 for(i
=0;i
<=m
;i
++,j
++) f
[i
] = (j
<0)? zero
: (double) ipio2
[j
];
190 /* compute q[0],q[1],...q[jk] */
191 for (i
=0;i
<=jk
;i
++) {
192 for(j
=0,fw
=0.0;j
<=jx
;j
++) fw
+= x
[j
]*f
[jx
+i
-j
]; q
[i
] = fw
;
197 /* distill q[] into iq[] reversingly */
198 for(i
=0,j
=jz
,z
=q
[jz
];j
>0;i
++,j
--) {
199 fw
= (double)((int32_t)(twon24
* z
));
200 iq
[i
] = (int32_t)(z
-two24
*fw
);
205 z
= __scalbn(z
,q0
); /* actual value of z */
206 z
-= 8.0*__floor(z
*0.125); /* trim off integer >= 8 */
210 if(q0
>0) { /* need iq[jz-1] to determine n */
211 i
= (iq
[jz
-1]>>(24-q0
)); n
+= i
;
212 iq
[jz
-1] -= i
<<(24-q0
);
213 ih
= iq
[jz
-1]>>(23-q0
);
215 else if(q0
==0) ih
= iq
[jz
-1]>>23;
216 else if(z
>=0.5) ih
=2;
218 if(ih
>0) { /* q > 0.5 */
220 for(i
=0;i
<jz
;i
++) { /* compute 1-q */
224 carry
= 1; iq
[i
] = 0x1000000- j
;
226 } else iq
[i
] = 0xffffff - j
;
228 if(q0
>0) { /* rare case: chance is 1 in 12 */
231 iq
[jz
-1] &= 0x7fffff; break;
233 iq
[jz
-1] &= 0x3fffff; break;
238 if(carry
!=0) z
-= __scalbn(one
,q0
);
242 /* check if recomputation is needed */
245 for (i
=jz
-1;i
>=jk
;i
--) j
|= iq
[i
];
246 if(j
==0) { /* need recomputation */
247 for(k
=1;iq
[jk
-k
]==0;k
++); /* k = no. of terms needed */
249 for(i
=jz
+1;i
<=jz
+k
;i
++) { /* add q[jz+1] to q[jz+k] */
250 f
[jx
+i
] = (double) ipio2
[jv
+i
];
251 for(j
=0,fw
=0.0;j
<=jx
;j
++) fw
+= x
[j
]*f
[jx
+i
-j
];
259 /* chop off zero terms */
262 while(iq
[jz
]==0) { jz
--; q0
-=24;}
263 } else { /* break z into 24-bit if necessary */
266 fw
= (double)((int32_t)(twon24
*z
));
267 iq
[jz
] = (int32_t)(z
-two24
*fw
);
269 iq
[jz
] = (int32_t) fw
;
270 } else iq
[jz
] = (int32_t) z
;
273 /* convert integer "bit" chunk to floating-point value */
274 fw
= __scalbn(one
,q0
);
276 q
[i
] = fw
*(double)iq
[i
]; fw
*=twon24
;
279 /* compute PIo2[0,...,jp]*q[jz,...,0] */
281 for(fw
=0.0,k
=0;k
<=jp
&&k
<=jz
-i
;k
++) fw
+= PIo2
[k
]*q
[i
+k
];
285 /* compress fq[] into y[] */
289 for (i
=jz
;i
>=0;i
--) fw
+= fq
[i
];
290 y
[0] = (ih
==0)? fw
: -fw
;
295 for (i
=jz
;i
>=0;i
--) fw
+= fq
[i
];
296 y
[0] = (ih
==0)? fw
: -fw
;
298 for (i
=1;i
<=jz
;i
++) fw
+= fq
[i
];
299 y
[1] = (ih
==0)? fw
: -fw
;
301 case 3: /* painful */
312 for (fw
=0.0,i
=jz
;i
>=2;i
--) fw
+= fq
[i
];
314 y
[0] = fq
[0]; y
[1] = fq
[1]; y
[2] = fw
;
316 y
[0] = -fq
[0]; y
[1] = -fq
[1]; y
[2] = -fw
;