1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2006, 2007, 2008 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 This is a version (aka ptmalloc2) of malloc/free/realloc written by
24 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
26 * Version ptmalloc2-20011215
28 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
32 In order to compile this implementation, a Makefile is provided with
33 the ptmalloc2 distribution, which has pre-defined targets for some
34 popular systems (e.g. "make posix" for Posix threads). All that is
35 typically required with regard to compiler flags is the selection of
36 the thread package via defining one out of USE_PTHREADS, USE_THR or
37 USE_SPROC. Check the thread-m.h file for what effects this has.
38 Many/most systems will additionally require USE_TSD_DATA_HACK to be
39 defined, so this is the default for "make posix".
41 * Why use this malloc?
43 This is not the fastest, most space-conserving, most portable, or
44 most tunable malloc ever written. However it is among the fastest
45 while also being among the most space-conserving, portable and tunable.
46 Consistent balance across these factors results in a good general-purpose
47 allocator for malloc-intensive programs.
49 The main properties of the algorithms are:
50 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
51 with ties normally decided via FIFO (i.e. least recently used).
52 * For small (<= 64 bytes by default) requests, it is a caching
53 allocator, that maintains pools of quickly recycled chunks.
54 * In between, and for combinations of large and small requests, it does
55 the best it can trying to meet both goals at once.
56 * For very large requests (>= 128KB by default), it relies on system
57 memory mapping facilities, if supported.
59 For a longer but slightly out of date high-level description, see
60 http://gee.cs.oswego.edu/dl/html/malloc.html
62 You may already by default be using a C library containing a malloc
63 that is based on some version of this malloc (for example in
64 linux). You might still want to use the one in this file in order to
65 customize settings or to avoid overheads associated with library
68 * Contents, described in more detail in "description of public routines" below.
70 Standard (ANSI/SVID/...) functions:
72 calloc(size_t n_elements, size_t element_size);
74 realloc(Void_t* p, size_t n);
75 memalign(size_t alignment, size_t n);
78 mallopt(int parameter_number, int parameter_value)
81 independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
82 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
85 malloc_trim(size_t pad);
86 malloc_usable_size(Void_t* p);
91 Supported pointer representation: 4 or 8 bytes
92 Supported size_t representation: 4 or 8 bytes
93 Note that size_t is allowed to be 4 bytes even if pointers are 8.
94 You can adjust this by defining INTERNAL_SIZE_T
96 Alignment: 2 * sizeof(size_t) (default)
97 (i.e., 8 byte alignment with 4byte size_t). This suffices for
98 nearly all current machines and C compilers. However, you can
99 define MALLOC_ALIGNMENT to be wider than this if necessary.
101 Minimum overhead per allocated chunk: 4 or 8 bytes
102 Each malloced chunk has a hidden word of overhead holding size
103 and status information.
105 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
106 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
108 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
109 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
110 needed; 4 (8) for a trailing size field and 8 (16) bytes for
111 free list pointers. Thus, the minimum allocatable size is
114 Even a request for zero bytes (i.e., malloc(0)) returns a
115 pointer to something of the minimum allocatable size.
117 The maximum overhead wastage (i.e., number of extra bytes
118 allocated than were requested in malloc) is less than or equal
119 to the minimum size, except for requests >= mmap_threshold that
120 are serviced via mmap(), where the worst case wastage is 2 *
121 sizeof(size_t) bytes plus the remainder from a system page (the
122 minimal mmap unit); typically 4096 or 8192 bytes.
124 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
125 8-byte size_t: 2^64 minus about two pages
127 It is assumed that (possibly signed) size_t values suffice to
128 represent chunk sizes. `Possibly signed' is due to the fact
129 that `size_t' may be defined on a system as either a signed or
130 an unsigned type. The ISO C standard says that it must be
131 unsigned, but a few systems are known not to adhere to this.
132 Additionally, even when size_t is unsigned, sbrk (which is by
133 default used to obtain memory from system) accepts signed
134 arguments, and may not be able to handle size_t-wide arguments
135 with negative sign bit. Generally, values that would
136 appear as negative after accounting for overhead and alignment
137 are supported only via mmap(), which does not have this
140 Requests for sizes outside the allowed range will perform an optional
141 failure action and then return null. (Requests may also
142 also fail because a system is out of memory.)
144 Thread-safety: thread-safe unless NO_THREADS is defined
146 Compliance: I believe it is compliant with the 1997 Single Unix Specification
147 (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably
150 * Synopsis of compile-time options:
152 People have reported using previous versions of this malloc on all
153 versions of Unix, sometimes by tweaking some of the defines
154 below. It has been tested most extensively on Solaris and
155 Linux. It is also reported to work on WIN32 platforms.
156 People also report using it in stand-alone embedded systems.
158 The implementation is in straight, hand-tuned ANSI C. It is not
159 at all modular. (Sorry!) It uses a lot of macros. To be at all
160 usable, this code should be compiled using an optimizing compiler
161 (for example gcc -O3) that can simplify expressions and control
162 paths. (FAQ: some macros import variables as arguments rather than
163 declare locals because people reported that some debuggers
164 otherwise get confused.)
168 Compilation Environment options:
170 __STD_C derived from C compiler defines
173 USE_MEMCPY 1 if HAVE_MEMCPY is defined
174 HAVE_MMAP defined as 1
176 HAVE_MREMAP 0 unless linux defined
177 USE_ARENAS the same as HAVE_MMAP
178 malloc_getpagesize derived from system #includes, or 4096 if not
179 HAVE_USR_INCLUDE_MALLOC_H NOT defined
180 LACKS_UNISTD_H NOT defined unless WIN32
181 LACKS_SYS_PARAM_H NOT defined unless WIN32
182 LACKS_SYS_MMAN_H NOT defined unless WIN32
184 Changing default word sizes:
186 INTERNAL_SIZE_T size_t
187 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
188 __alignof__ (long double))
190 Configuration and functionality options:
192 USE_DL_PREFIX NOT defined
193 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
194 USE_MALLOC_LOCK NOT defined
195 MALLOC_DEBUG NOT defined
196 REALLOC_ZERO_BYTES_FREES 1
197 MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
200 Options for customizing MORECORE:
204 MORECORE_CONTIGUOUS 1
205 MORECORE_CANNOT_TRIM NOT defined
207 MMAP_AS_MORECORE_SIZE (1024 * 1024)
209 Tuning options that are also dynamically changeable via mallopt:
212 DEFAULT_TRIM_THRESHOLD 128 * 1024
214 DEFAULT_MMAP_THRESHOLD 128 * 1024
215 DEFAULT_MMAP_MAX 65536
217 There are several other #defined constants and macros that you
218 probably don't want to touch unless you are extending or adapting malloc. */
221 __STD_C should be nonzero if using ANSI-standard C compiler, a C++
222 compiler, or a C compiler sufficiently close to ANSI to get away
227 #if defined(__STDC__) || defined(__cplusplus)
236 Void_t* is the pointer type that malloc should say it returns
240 #if (__STD_C || defined(WIN32))
248 #include <stddef.h> /* for size_t */
249 #include <stdlib.h> /* for getenv(), abort() */
251 #include <sys/types.h>
254 #include <malloc-machine.h>
257 #include <stdio-common/_itoa.h>
258 #include <bits/wordsize.h>
265 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
267 /* #define LACKS_UNISTD_H */
269 #ifndef LACKS_UNISTD_H
273 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
275 /* #define LACKS_SYS_PARAM_H */
278 #include <stdio.h> /* needed for malloc_stats */
279 #include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
284 /* For va_arg, va_start, va_end. */
287 /* For writev and struct iovec. */
290 #include <sys/syslog.h>
292 /* For various dynamic linking things. */
299 Because freed chunks may be overwritten with bookkeeping fields, this
300 malloc will often die when freed memory is overwritten by user
301 programs. This can be very effective (albeit in an annoying way)
302 in helping track down dangling pointers.
304 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
305 enabled that will catch more memory errors. You probably won't be
306 able to make much sense of the actual assertion errors, but they
307 should help you locate incorrectly overwritten memory. The checking
308 is fairly extensive, and will slow down execution
309 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
310 will attempt to check every non-mmapped allocated and free chunk in
311 the course of computing the summmaries. (By nature, mmapped regions
312 cannot be checked very much automatically.)
314 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
315 this code. The assertions in the check routines spell out in more
316 detail the assumptions and invariants underlying the algorithms.
318 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
319 checking that all accesses to malloced memory stay within their
320 bounds. However, there are several add-ons and adaptations of this
321 or other mallocs available that do this.
328 #define assert(x) ((void)0)
333 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
336 The default version is the same as size_t.
338 While not strictly necessary, it is best to define this as an
339 unsigned type, even if size_t is a signed type. This may avoid some
340 artificial size limitations on some systems.
342 On a 64-bit machine, you may be able to reduce malloc overhead by
343 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
344 expense of not being able to handle more than 2^32 of malloced
345 space. If this limitation is acceptable, you are encouraged to set
346 this unless you are on a platform requiring 16byte alignments. In
347 this case the alignment requirements turn out to negate any
348 potential advantages of decreasing size_t word size.
350 Implementors: Beware of the possible combinations of:
351 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
352 and might be the same width as int or as long
353 - size_t might have different width and signedness as INTERNAL_SIZE_T
354 - int and long might be 32 or 64 bits, and might be the same width
355 To deal with this, most comparisons and difference computations
356 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
357 aware of the fact that casting an unsigned int to a wider long does
358 not sign-extend. (This also makes checking for negative numbers
359 awkward.) Some of these casts result in harmless compiler warnings
363 #ifndef INTERNAL_SIZE_T
364 #define INTERNAL_SIZE_T size_t
367 /* The corresponding word size */
368 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
372 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
373 It must be a power of two at least 2 * SIZE_SZ, even on machines
374 for which smaller alignments would suffice. It may be defined as
375 larger than this though. Note however that code and data structures
376 are optimized for the case of 8-byte alignment.
380 #ifndef MALLOC_ALIGNMENT
381 /* XXX This is the correct definition. It differs from 2*SIZE_SZ only on
382 powerpc32. For the time being, changing this is causing more
383 compatibility problems due to malloc_get_state/malloc_set_state than
384 will returning blocks not adequately aligned for long double objects
385 under -mlong-double-128.
387 #define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) \
388 ? __alignof__ (long double) : 2 * SIZE_SZ)
390 #define MALLOC_ALIGNMENT (2 * SIZE_SZ)
393 /* The corresponding bit mask value */
394 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
399 REALLOC_ZERO_BYTES_FREES should be set if a call to
400 realloc with zero bytes should be the same as a call to free.
401 This is required by the C standard. Otherwise, since this malloc
402 returns a unique pointer for malloc(0), so does realloc(p, 0).
405 #ifndef REALLOC_ZERO_BYTES_FREES
406 #define REALLOC_ZERO_BYTES_FREES 1
410 TRIM_FASTBINS controls whether free() of a very small chunk can
411 immediately lead to trimming. Setting to true (1) can reduce memory
412 footprint, but will almost always slow down programs that use a lot
415 Define this only if you are willing to give up some speed to more
416 aggressively reduce system-level memory footprint when releasing
417 memory in programs that use many small chunks. You can get
418 essentially the same effect by setting MXFAST to 0, but this can
419 lead to even greater slowdowns in programs using many small chunks.
420 TRIM_FASTBINS is an in-between compile-time option, that disables
421 only those chunks bordering topmost memory from being placed in
425 #ifndef TRIM_FASTBINS
426 #define TRIM_FASTBINS 0
431 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
432 This is necessary when you only want to use this malloc in one part
433 of a program, using your regular system malloc elsewhere.
436 /* #define USE_DL_PREFIX */
440 Two-phase name translation.
441 All of the actual routines are given mangled names.
442 When wrappers are used, they become the public callable versions.
443 When DL_PREFIX is used, the callable names are prefixed.
447 #define public_cALLOc dlcalloc
448 #define public_fREe dlfree
449 #define public_cFREe dlcfree
450 #define public_mALLOc dlmalloc
451 #define public_mEMALIGn dlmemalign
452 #define public_rEALLOc dlrealloc
453 #define public_vALLOc dlvalloc
454 #define public_pVALLOc dlpvalloc
455 #define public_mALLINFo dlmallinfo
456 #define public_mALLOPt dlmallopt
457 #define public_mTRIm dlmalloc_trim
458 #define public_mSTATs dlmalloc_stats
459 #define public_mUSABLe dlmalloc_usable_size
460 #define public_iCALLOc dlindependent_calloc
461 #define public_iCOMALLOc dlindependent_comalloc
462 #define public_gET_STATe dlget_state
463 #define public_sET_STATe dlset_state
464 #else /* USE_DL_PREFIX */
467 /* Special defines for the GNU C library. */
468 #define public_cALLOc __libc_calloc
469 #define public_fREe __libc_free
470 #define public_cFREe __libc_cfree
471 #define public_mALLOc __libc_malloc
472 #define public_mEMALIGn __libc_memalign
473 #define public_rEALLOc __libc_realloc
474 #define public_vALLOc __libc_valloc
475 #define public_pVALLOc __libc_pvalloc
476 #define public_mALLINFo __libc_mallinfo
477 #define public_mALLOPt __libc_mallopt
478 #define public_mTRIm __malloc_trim
479 #define public_mSTATs __malloc_stats
480 #define public_mUSABLe __malloc_usable_size
481 #define public_iCALLOc __libc_independent_calloc
482 #define public_iCOMALLOc __libc_independent_comalloc
483 #define public_gET_STATe __malloc_get_state
484 #define public_sET_STATe __malloc_set_state
485 #define malloc_getpagesize __getpagesize()
488 #define munmap __munmap
489 #define mremap __mremap
490 #define mprotect __mprotect
491 #define MORECORE (*__morecore)
492 #define MORECORE_FAILURE 0
494 Void_t
* __default_morecore (ptrdiff_t);
495 Void_t
*(*__morecore
)(ptrdiff_t) = __default_morecore
;
498 #define public_cALLOc calloc
499 #define public_fREe free
500 #define public_cFREe cfree
501 #define public_mALLOc malloc
502 #define public_mEMALIGn memalign
503 #define public_rEALLOc realloc
504 #define public_vALLOc valloc
505 #define public_pVALLOc pvalloc
506 #define public_mALLINFo mallinfo
507 #define public_mALLOPt mallopt
508 #define public_mTRIm malloc_trim
509 #define public_mSTATs malloc_stats
510 #define public_mUSABLe malloc_usable_size
511 #define public_iCALLOc independent_calloc
512 #define public_iCOMALLOc independent_comalloc
513 #define public_gET_STATe malloc_get_state
514 #define public_sET_STATe malloc_set_state
516 #endif /* USE_DL_PREFIX */
519 #define __builtin_expect(expr, val) (expr)
521 #define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
525 HAVE_MEMCPY should be defined if you are not otherwise using
526 ANSI STD C, but still have memcpy and memset in your C library
527 and want to use them in calloc and realloc. Otherwise simple
528 macro versions are defined below.
530 USE_MEMCPY should be defined as 1 if you actually want to
531 have memset and memcpy called. People report that the macro
532 versions are faster than libc versions on some systems.
534 Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
535 (of <= 36 bytes) are manually unrolled in realloc and calloc.
549 #if (__STD_C || defined(HAVE_MEMCPY))
555 /* On Win32 memset and memcpy are already declared in windows.h */
558 void* memset(void*, int, size_t);
559 void* memcpy(void*, const void*, size_t);
569 MALLOC_FAILURE_ACTION is the action to take before "return 0" when
570 malloc fails to be able to return memory, either because memory is
571 exhausted or because of illegal arguments.
573 By default, sets errno if running on STD_C platform, else does nothing.
576 #ifndef MALLOC_FAILURE_ACTION
578 #define MALLOC_FAILURE_ACTION \
582 #define MALLOC_FAILURE_ACTION
587 MORECORE-related declarations. By default, rely on sbrk
591 #ifdef LACKS_UNISTD_H
592 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
594 extern Void_t
* sbrk(ptrdiff_t);
596 extern Void_t
* sbrk();
602 MORECORE is the name of the routine to call to obtain more memory
603 from the system. See below for general guidance on writing
604 alternative MORECORE functions, as well as a version for WIN32 and a
605 sample version for pre-OSX macos.
609 #define MORECORE sbrk
613 MORECORE_FAILURE is the value returned upon failure of MORECORE
614 as well as mmap. Since it cannot be an otherwise valid memory address,
615 and must reflect values of standard sys calls, you probably ought not
619 #ifndef MORECORE_FAILURE
620 #define MORECORE_FAILURE (-1)
624 If MORECORE_CONTIGUOUS is true, take advantage of fact that
625 consecutive calls to MORECORE with positive arguments always return
626 contiguous increasing addresses. This is true of unix sbrk. Even
627 if not defined, when regions happen to be contiguous, malloc will
628 permit allocations spanning regions obtained from different
629 calls. But defining this when applicable enables some stronger
630 consistency checks and space efficiencies.
633 #ifndef MORECORE_CONTIGUOUS
634 #define MORECORE_CONTIGUOUS 1
638 Define MORECORE_CANNOT_TRIM if your version of MORECORE
639 cannot release space back to the system when given negative
640 arguments. This is generally necessary only if you are using
641 a hand-crafted MORECORE function that cannot handle negative arguments.
644 /* #define MORECORE_CANNOT_TRIM */
646 /* MORECORE_CLEARS (default 1)
647 The degree to which the routine mapped to MORECORE zeroes out
648 memory: never (0), only for newly allocated space (1) or always
649 (2). The distinction between (1) and (2) is necessary because on
650 some systems, if the application first decrements and then
651 increments the break value, the contents of the reallocated space
655 #ifndef MORECORE_CLEARS
656 #define MORECORE_CLEARS 1
661 Define HAVE_MMAP as true to optionally make malloc() use mmap() to
662 allocate very large blocks. These will be returned to the
663 operating system immediately after a free(). Also, if mmap
664 is available, it is used as a backup strategy in cases where
665 MORECORE fails to provide space from system.
667 This malloc is best tuned to work with mmap for large requests.
668 If you do not have mmap, operations involving very large chunks (1MB
669 or so) may be slower than you'd like.
676 Standard unix mmap using /dev/zero clears memory so calloc doesn't
681 #define MMAP_CLEARS 1
686 #define MMAP_CLEARS 0
692 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
693 sbrk fails, and mmap is used as a backup (which is done only if
694 HAVE_MMAP). The value must be a multiple of page size. This
695 backup strategy generally applies only when systems have "holes" in
696 address space, so sbrk cannot perform contiguous expansion, but
697 there is still space available on system. On systems for which
698 this is known to be useful (i.e. most linux kernels), this occurs
699 only when programs allocate huge amounts of memory. Between this,
700 and the fact that mmap regions tend to be limited, the size should
701 be large, to avoid too many mmap calls and thus avoid running out
705 #ifndef MMAP_AS_MORECORE_SIZE
706 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
710 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
711 large blocks. This is currently only possible on Linux with
712 kernel versions newer than 1.3.77.
717 #define HAVE_MREMAP 1
719 #define HAVE_MREMAP 0
722 #endif /* HAVE_MMAP */
724 /* Define USE_ARENAS to enable support for multiple `arenas'. These
725 are allocated using mmap(), are necessary for threads and
726 occasionally useful to overcome address space limitations affecting
730 #define USE_ARENAS HAVE_MMAP
735 The system page size. To the extent possible, this malloc manages
736 memory from the system in page-size units. Note that this value is
737 cached during initialization into a field of malloc_state. So even
738 if malloc_getpagesize is a function, it is only called once.
740 The following mechanics for getpagesize were adapted from bsd/gnu
741 getpagesize.h. If none of the system-probes here apply, a value of
742 4096 is used, which should be OK: If they don't apply, then using
743 the actual value probably doesn't impact performance.
747 #ifndef malloc_getpagesize
749 #ifndef LACKS_UNISTD_H
753 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
754 # ifndef _SC_PAGE_SIZE
755 # define _SC_PAGE_SIZE _SC_PAGESIZE
759 # ifdef _SC_PAGE_SIZE
760 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
762 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
763 extern size_t getpagesize();
764 # define malloc_getpagesize getpagesize()
766 # ifdef WIN32 /* use supplied emulation of getpagesize */
767 # define malloc_getpagesize getpagesize()
769 # ifndef LACKS_SYS_PARAM_H
770 # include <sys/param.h>
772 # ifdef EXEC_PAGESIZE
773 # define malloc_getpagesize EXEC_PAGESIZE
777 # define malloc_getpagesize NBPG
779 # define malloc_getpagesize (NBPG * CLSIZE)
783 # define malloc_getpagesize NBPC
786 # define malloc_getpagesize PAGESIZE
787 # else /* just guess */
788 # define malloc_getpagesize (4096)
799 This version of malloc supports the standard SVID/XPG mallinfo
800 routine that returns a struct containing usage properties and
801 statistics. It should work on any SVID/XPG compliant system that has
802 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
803 install such a thing yourself, cut out the preliminary declarations
804 as described above and below and save them in a malloc.h file. But
805 there's no compelling reason to bother to do this.)
807 The main declaration needed is the mallinfo struct that is returned
808 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
809 bunch of fields that are not even meaningful in this version of
810 malloc. These fields are are instead filled by mallinfo() with
811 other numbers that might be of interest.
813 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
814 /usr/include/malloc.h file that includes a declaration of struct
815 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
816 version is declared below. These must be precisely the same for
817 mallinfo() to work. The original SVID version of this struct,
818 defined on most systems with mallinfo, declares all fields as
819 ints. But some others define as unsigned long. If your system
820 defines the fields using a type of different width than listed here,
821 you must #include your system version and #define
822 HAVE_USR_INCLUDE_MALLOC_H.
825 /* #define HAVE_USR_INCLUDE_MALLOC_H */
827 #ifdef HAVE_USR_INCLUDE_MALLOC_H
828 #include "/usr/include/malloc.h"
832 /* ---------- description of public routines ------------ */
836 Returns a pointer to a newly allocated chunk of at least n bytes, or null
837 if no space is available. Additionally, on failure, errno is
838 set to ENOMEM on ANSI C systems.
840 If n is zero, malloc returns a minumum-sized chunk. (The minimum
841 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
842 systems.) On most systems, size_t is an unsigned type, so calls
843 with negative arguments are interpreted as requests for huge amounts
844 of space, which will often fail. The maximum supported value of n
845 differs across systems, but is in all cases less than the maximum
846 representable value of a size_t.
849 Void_t
* public_mALLOc(size_t);
851 Void_t
* public_mALLOc();
853 #ifdef libc_hidden_proto
854 libc_hidden_proto (public_mALLOc
)
859 Releases the chunk of memory pointed to by p, that had been previously
860 allocated using malloc or a related routine such as realloc.
861 It has no effect if p is null. It can have arbitrary (i.e., bad!)
862 effects if p has already been freed.
864 Unless disabled (using mallopt), freeing very large spaces will
865 when possible, automatically trigger operations that give
866 back unused memory to the system, thus reducing program footprint.
869 void public_fREe(Void_t
*);
873 #ifdef libc_hidden_proto
874 libc_hidden_proto (public_fREe
)
878 calloc(size_t n_elements, size_t element_size);
879 Returns a pointer to n_elements * element_size bytes, with all locations
883 Void_t
* public_cALLOc(size_t, size_t);
885 Void_t
* public_cALLOc();
889 realloc(Void_t* p, size_t n)
890 Returns a pointer to a chunk of size n that contains the same data
891 as does chunk p up to the minimum of (n, p's size) bytes, or null
892 if no space is available.
894 The returned pointer may or may not be the same as p. The algorithm
895 prefers extending p when possible, otherwise it employs the
896 equivalent of a malloc-copy-free sequence.
898 If p is null, realloc is equivalent to malloc.
900 If space is not available, realloc returns null, errno is set (if on
901 ANSI) and p is NOT freed.
903 if n is for fewer bytes than already held by p, the newly unused
904 space is lopped off and freed if possible. Unless the #define
905 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
906 zero (re)allocates a minimum-sized chunk.
908 Large chunks that were internally obtained via mmap will always
909 be reallocated using malloc-copy-free sequences unless
910 the system supports MREMAP (currently only linux).
912 The old unix realloc convention of allowing the last-free'd chunk
913 to be used as an argument to realloc is not supported.
916 Void_t
* public_rEALLOc(Void_t
*, size_t);
918 Void_t
* public_rEALLOc();
920 #ifdef libc_hidden_proto
921 libc_hidden_proto (public_rEALLOc
)
925 memalign(size_t alignment, size_t n);
926 Returns a pointer to a newly allocated chunk of n bytes, aligned
927 in accord with the alignment argument.
929 The alignment argument should be a power of two. If the argument is
930 not a power of two, the nearest greater power is used.
931 8-byte alignment is guaranteed by normal malloc calls, so don't
932 bother calling memalign with an argument of 8 or less.
934 Overreliance on memalign is a sure way to fragment space.
937 Void_t
* public_mEMALIGn(size_t, size_t);
939 Void_t
* public_mEMALIGn();
941 #ifdef libc_hidden_proto
942 libc_hidden_proto (public_mEMALIGn
)
947 Equivalent to memalign(pagesize, n), where pagesize is the page
948 size of the system. If the pagesize is unknown, 4096 is used.
951 Void_t
* public_vALLOc(size_t);
953 Void_t
* public_vALLOc();
959 mallopt(int parameter_number, int parameter_value)
960 Sets tunable parameters The format is to provide a
961 (parameter-number, parameter-value) pair. mallopt then sets the
962 corresponding parameter to the argument value if it can (i.e., so
963 long as the value is meaningful), and returns 1 if successful else
964 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
965 normally defined in malloc.h. Only one of these (M_MXFAST) is used
966 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
967 so setting them has no effect. But this malloc also supports four
968 other options in mallopt. See below for details. Briefly, supported
969 parameters are as follows (listed defaults are for "typical"
972 Symbol param # default allowed param values
973 M_MXFAST 1 64 0-80 (0 disables fastbins)
974 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
976 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
977 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
980 int public_mALLOPt(int, int);
982 int public_mALLOPt();
988 Returns (by copy) a struct containing various summary statistics:
990 arena: current total non-mmapped bytes allocated from system
991 ordblks: the number of free chunks
992 smblks: the number of fastbin blocks (i.e., small chunks that
993 have been freed but not use resused or consolidated)
994 hblks: current number of mmapped regions
995 hblkhd: total bytes held in mmapped regions
996 usmblks: the maximum total allocated space. This will be greater
997 than current total if trimming has occurred.
998 fsmblks: total bytes held in fastbin blocks
999 uordblks: current total allocated space (normal or mmapped)
1000 fordblks: total free space
1001 keepcost: the maximum number of bytes that could ideally be released
1002 back to system via malloc_trim. ("ideally" means that
1003 it ignores page restrictions etc.)
1005 Because these fields are ints, but internal bookkeeping may
1006 be kept as longs, the reported values may wrap around zero and
1010 struct mallinfo
public_mALLINFo(void);
1012 struct mallinfo
public_mALLINFo();
1017 independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
1019 independent_calloc is similar to calloc, but instead of returning a
1020 single cleared space, it returns an array of pointers to n_elements
1021 independent elements that can hold contents of size elem_size, each
1022 of which starts out cleared, and can be independently freed,
1023 realloc'ed etc. The elements are guaranteed to be adjacently
1024 allocated (this is not guaranteed to occur with multiple callocs or
1025 mallocs), which may also improve cache locality in some
1028 The "chunks" argument is optional (i.e., may be null, which is
1029 probably the most typical usage). If it is null, the returned array
1030 is itself dynamically allocated and should also be freed when it is
1031 no longer needed. Otherwise, the chunks array must be of at least
1032 n_elements in length. It is filled in with the pointers to the
1035 In either case, independent_calloc returns this pointer array, or
1036 null if the allocation failed. If n_elements is zero and "chunks"
1037 is null, it returns a chunk representing an array with zero elements
1038 (which should be freed if not wanted).
1040 Each element must be individually freed when it is no longer
1041 needed. If you'd like to instead be able to free all at once, you
1042 should instead use regular calloc and assign pointers into this
1043 space to represent elements. (In this case though, you cannot
1044 independently free elements.)
1046 independent_calloc simplifies and speeds up implementations of many
1047 kinds of pools. It may also be useful when constructing large data
1048 structures that initially have a fixed number of fixed-sized nodes,
1049 but the number is not known at compile time, and some of the nodes
1050 may later need to be freed. For example:
1052 struct Node { int item; struct Node* next; };
1054 struct Node* build_list() {
1056 int n = read_number_of_nodes_needed();
1057 if (n <= 0) return 0;
1058 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1059 if (pool == 0) die();
1060 // organize into a linked list...
1061 struct Node* first = pool[0];
1062 for (i = 0; i < n-1; ++i)
1063 pool[i]->next = pool[i+1];
1064 free(pool); // Can now free the array (or not, if it is needed later)
1069 Void_t
** public_iCALLOc(size_t, size_t, Void_t
**);
1071 Void_t
** public_iCALLOc();
1075 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
1077 independent_comalloc allocates, all at once, a set of n_elements
1078 chunks with sizes indicated in the "sizes" array. It returns
1079 an array of pointers to these elements, each of which can be
1080 independently freed, realloc'ed etc. The elements are guaranteed to
1081 be adjacently allocated (this is not guaranteed to occur with
1082 multiple callocs or mallocs), which may also improve cache locality
1083 in some applications.
1085 The "chunks" argument is optional (i.e., may be null). If it is null
1086 the returned array is itself dynamically allocated and should also
1087 be freed when it is no longer needed. Otherwise, the chunks array
1088 must be of at least n_elements in length. It is filled in with the
1089 pointers to the chunks.
1091 In either case, independent_comalloc returns this pointer array, or
1092 null if the allocation failed. If n_elements is zero and chunks is
1093 null, it returns a chunk representing an array with zero elements
1094 (which should be freed if not wanted).
1096 Each element must be individually freed when it is no longer
1097 needed. If you'd like to instead be able to free all at once, you
1098 should instead use a single regular malloc, and assign pointers at
1099 particular offsets in the aggregate space. (In this case though, you
1100 cannot independently free elements.)
1102 independent_comallac differs from independent_calloc in that each
1103 element may have a different size, and also that it does not
1104 automatically clear elements.
1106 independent_comalloc can be used to speed up allocation in cases
1107 where several structs or objects must always be allocated at the
1108 same time. For example:
1113 void send_message(char* msg) {
1114 int msglen = strlen(msg);
1115 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1117 if (independent_comalloc(3, sizes, chunks) == 0)
1119 struct Head* head = (struct Head*)(chunks[0]);
1120 char* body = (char*)(chunks[1]);
1121 struct Foot* foot = (struct Foot*)(chunks[2]);
1125 In general though, independent_comalloc is worth using only for
1126 larger values of n_elements. For small values, you probably won't
1127 detect enough difference from series of malloc calls to bother.
1129 Overuse of independent_comalloc can increase overall memory usage,
1130 since it cannot reuse existing noncontiguous small chunks that
1131 might be available for some of the elements.
1134 Void_t
** public_iCOMALLOc(size_t, size_t*, Void_t
**);
1136 Void_t
** public_iCOMALLOc();
1144 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1145 round up n to nearest pagesize.
1148 Void_t
* public_pVALLOc(size_t);
1150 Void_t
* public_pVALLOc();
1155 Equivalent to free(p).
1157 cfree is needed/defined on some systems that pair it with calloc,
1158 for odd historical reasons (such as: cfree is used in example
1159 code in the first edition of K&R).
1162 void public_cFREe(Void_t
*);
1164 void public_cFREe();
1168 malloc_trim(size_t pad);
1170 If possible, gives memory back to the system (via negative
1171 arguments to sbrk) if there is unused memory at the `high' end of
1172 the malloc pool. You can call this after freeing large blocks of
1173 memory to potentially reduce the system-level memory requirements
1174 of a program. However, it cannot guarantee to reduce memory. Under
1175 some allocation patterns, some large free blocks of memory will be
1176 locked between two used chunks, so they cannot be given back to
1179 The `pad' argument to malloc_trim represents the amount of free
1180 trailing space to leave untrimmed. If this argument is zero,
1181 only the minimum amount of memory to maintain internal data
1182 structures will be left (one page or less). Non-zero arguments
1183 can be supplied to maintain enough trailing space to service
1184 future expected allocations without having to re-obtain memory
1187 Malloc_trim returns 1 if it actually released any memory, else 0.
1188 On systems that do not support "negative sbrks", it will always
1192 int public_mTRIm(size_t);
1198 malloc_usable_size(Void_t* p);
1200 Returns the number of bytes you can actually use in
1201 an allocated chunk, which may be more than you requested (although
1202 often not) due to alignment and minimum size constraints.
1203 You can use this many bytes without worrying about
1204 overwriting other allocated objects. This is not a particularly great
1205 programming practice. malloc_usable_size can be more useful in
1206 debugging and assertions, for example:
1209 assert(malloc_usable_size(p) >= 256);
1213 size_t public_mUSABLe(Void_t
*);
1215 size_t public_mUSABLe();
1220 Prints on stderr the amount of space obtained from the system (both
1221 via sbrk and mmap), the maximum amount (which may be more than
1222 current if malloc_trim and/or munmap got called), and the current
1223 number of bytes allocated via malloc (or realloc, etc) but not yet
1224 freed. Note that this is the number of bytes allocated, not the
1225 number requested. It will be larger than the number requested
1226 because of alignment and bookkeeping overhead. Because it includes
1227 alignment wastage as being in use, this figure may be greater than
1228 zero even when no user-level chunks are allocated.
1230 The reported current and maximum system memory can be inaccurate if
1231 a program makes other calls to system memory allocation functions
1232 (normally sbrk) outside of malloc.
1234 malloc_stats prints only the most commonly interesting statistics.
1235 More information can be obtained by calling mallinfo.
1239 void public_mSTATs(void);
1241 void public_mSTATs();
1245 malloc_get_state(void);
1247 Returns the state of all malloc variables in an opaque data
1251 Void_t
* public_gET_STATe(void);
1253 Void_t
* public_gET_STATe();
1257 malloc_set_state(Void_t* state);
1259 Restore the state of all malloc variables from data obtained with
1263 int public_sET_STATe(Void_t
*);
1265 int public_sET_STATe();
1270 posix_memalign(void **memptr, size_t alignment, size_t size);
1272 POSIX wrapper like memalign(), checking for validity of size.
1274 int __posix_memalign(void **, size_t, size_t);
1277 /* mallopt tuning options */
1280 M_MXFAST is the maximum request size used for "fastbins", special bins
1281 that hold returned chunks without consolidating their spaces. This
1282 enables future requests for chunks of the same size to be handled
1283 very quickly, but can increase fragmentation, and thus increase the
1284 overall memory footprint of a program.
1286 This malloc manages fastbins very conservatively yet still
1287 efficiently, so fragmentation is rarely a problem for values less
1288 than or equal to the default. The maximum supported value of MXFAST
1289 is 80. You wouldn't want it any higher than this anyway. Fastbins
1290 are designed especially for use with many small structs, objects or
1291 strings -- the default handles structs/objects/arrays with sizes up
1292 to 8 4byte fields, or small strings representing words, tokens,
1293 etc. Using fastbins for larger objects normally worsens
1294 fragmentation without improving speed.
1296 M_MXFAST is set in REQUEST size units. It is internally used in
1297 chunksize units, which adds padding and alignment. You can reduce
1298 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
1299 algorithm to be a closer approximation of fifo-best-fit in all cases,
1300 not just for larger requests, but will generally cause it to be
1305 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
1310 #ifndef DEFAULT_MXFAST
1311 #define DEFAULT_MXFAST 64
1316 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
1317 to keep before releasing via malloc_trim in free().
1319 Automatic trimming is mainly useful in long-lived programs.
1320 Because trimming via sbrk can be slow on some systems, and can
1321 sometimes be wasteful (in cases where programs immediately
1322 afterward allocate more large chunks) the value should be high
1323 enough so that your overall system performance would improve by
1324 releasing this much memory.
1326 The trim threshold and the mmap control parameters (see below)
1327 can be traded off with one another. Trimming and mmapping are
1328 two different ways of releasing unused memory back to the
1329 system. Between these two, it is often possible to keep
1330 system-level demands of a long-lived program down to a bare
1331 minimum. For example, in one test suite of sessions measuring
1332 the XF86 X server on Linux, using a trim threshold of 128K and a
1333 mmap threshold of 192K led to near-minimal long term resource
1336 If you are using this malloc in a long-lived program, it should
1337 pay to experiment with these values. As a rough guide, you
1338 might set to a value close to the average size of a process
1339 (program) running on your system. Releasing this much memory
1340 would allow such a process to run in memory. Generally, it's
1341 worth it to tune for trimming rather tham memory mapping when a
1342 program undergoes phases where several large chunks are
1343 allocated and released in ways that can reuse each other's
1344 storage, perhaps mixed with phases where there are no such
1345 chunks at all. And in well-behaved long-lived programs,
1346 controlling release of large blocks via trimming versus mapping
1349 However, in most programs, these parameters serve mainly as
1350 protection against the system-level effects of carrying around
1351 massive amounts of unneeded memory. Since frequent calls to
1352 sbrk, mmap, and munmap otherwise degrade performance, the default
1353 parameters are set to relatively high values that serve only as
1356 The trim value It must be greater than page size to have any useful
1357 effect. To disable trimming completely, you can set to
1360 Trim settings interact with fastbin (MXFAST) settings: Unless
1361 TRIM_FASTBINS is defined, automatic trimming never takes place upon
1362 freeing a chunk with size less than or equal to MXFAST. Trimming is
1363 instead delayed until subsequent freeing of larger chunks. However,
1364 you can still force an attempted trim by calling malloc_trim.
1366 Also, trimming is not generally possible in cases where
1367 the main arena is obtained via mmap.
1369 Note that the trick some people use of mallocing a huge space and
1370 then freeing it at program startup, in an attempt to reserve system
1371 memory, doesn't have the intended effect under automatic trimming,
1372 since that memory will immediately be returned to the system.
1375 #define M_TRIM_THRESHOLD -1
1377 #ifndef DEFAULT_TRIM_THRESHOLD
1378 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
1382 M_TOP_PAD is the amount of extra `padding' space to allocate or
1383 retain whenever sbrk is called. It is used in two ways internally:
1385 * When sbrk is called to extend the top of the arena to satisfy
1386 a new malloc request, this much padding is added to the sbrk
1389 * When malloc_trim is called automatically from free(),
1390 it is used as the `pad' argument.
1392 In both cases, the actual amount of padding is rounded
1393 so that the end of the arena is always a system page boundary.
1395 The main reason for using padding is to avoid calling sbrk so
1396 often. Having even a small pad greatly reduces the likelihood
1397 that nearly every malloc request during program start-up (or
1398 after trimming) will invoke sbrk, which needlessly wastes
1401 Automatic rounding-up to page-size units is normally sufficient
1402 to avoid measurable overhead, so the default is 0. However, in
1403 systems where sbrk is relatively slow, it can pay to increase
1404 this value, at the expense of carrying around more memory than
1408 #define M_TOP_PAD -2
1410 #ifndef DEFAULT_TOP_PAD
1411 #define DEFAULT_TOP_PAD (0)
1415 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
1416 adjusted MMAP_THRESHOLD.
1419 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
1420 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
1423 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
1424 /* For 32-bit platforms we cannot increase the maximum mmap
1425 threshold much because it is also the minimum value for the
1426 maximum heap size and its alignment. Going above 512k (i.e., 1M
1427 for new heaps) wastes too much address space. */
1428 # if __WORDSIZE == 32
1429 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
1431 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
1436 M_MMAP_THRESHOLD is the request size threshold for using mmap()
1437 to service a request. Requests of at least this size that cannot
1438 be allocated using already-existing space will be serviced via mmap.
1439 (If enough normal freed space already exists it is used instead.)
1441 Using mmap segregates relatively large chunks of memory so that
1442 they can be individually obtained and released from the host
1443 system. A request serviced through mmap is never reused by any
1444 other request (at least not directly; the system may just so
1445 happen to remap successive requests to the same locations).
1447 Segregating space in this way has the benefits that:
1449 1. Mmapped space can ALWAYS be individually released back
1450 to the system, which helps keep the system level memory
1451 demands of a long-lived program low.
1452 2. Mapped memory can never become `locked' between
1453 other chunks, as can happen with normally allocated chunks, which
1454 means that even trimming via malloc_trim would not release them.
1455 3. On some systems with "holes" in address spaces, mmap can obtain
1456 memory that sbrk cannot.
1458 However, it has the disadvantages that:
1460 1. The space cannot be reclaimed, consolidated, and then
1461 used to service later requests, as happens with normal chunks.
1462 2. It can lead to more wastage because of mmap page alignment
1464 3. It causes malloc performance to be more dependent on host
1465 system memory management support routines which may vary in
1466 implementation quality and may impose arbitrary
1467 limitations. Generally, servicing a request via normal
1468 malloc steps is faster than going through a system's mmap.
1470 The advantages of mmap nearly always outweigh disadvantages for
1471 "large" chunks, but the value of "large" varies across systems. The
1472 default is an empirically derived value that works well in most
1477 The above was written in 2001. Since then the world has changed a lot.
1478 Memory got bigger. Applications got bigger. The virtual address space
1479 layout in 32 bit linux changed.
1481 In the new situation, brk() and mmap space is shared and there are no
1482 artificial limits on brk size imposed by the kernel. What is more,
1483 applications have started using transient allocations larger than the
1484 128Kb as was imagined in 2001.
1486 The price for mmap is also high now; each time glibc mmaps from the
1487 kernel, the kernel is forced to zero out the memory it gives to the
1488 application. Zeroing memory is expensive and eats a lot of cache and
1489 memory bandwidth. This has nothing to do with the efficiency of the
1490 virtual memory system, by doing mmap the kernel just has no choice but
1493 In 2001, the kernel had a maximum size for brk() which was about 800
1494 megabytes on 32 bit x86, at that point brk() would hit the first
1495 mmaped shared libaries and couldn't expand anymore. With current 2.6
1496 kernels, the VA space layout is different and brk() and mmap
1497 both can span the entire heap at will.
1499 Rather than using a static threshold for the brk/mmap tradeoff,
1500 we are now using a simple dynamic one. The goal is still to avoid
1501 fragmentation. The old goals we kept are
1502 1) try to get the long lived large allocations to use mmap()
1503 2) really large allocations should always use mmap()
1504 and we're adding now:
1505 3) transient allocations should use brk() to avoid forcing the kernel
1506 having to zero memory over and over again
1508 The implementation works with a sliding threshold, which is by default
1509 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
1510 out at 128Kb as per the 2001 default.
1512 This allows us to satisfy requirement 1) under the assumption that long
1513 lived allocations are made early in the process' lifespan, before it has
1514 started doing dynamic allocations of the same size (which will
1515 increase the threshold).
1517 The upperbound on the threshold satisfies requirement 2)
1519 The threshold goes up in value when the application frees memory that was
1520 allocated with the mmap allocator. The idea is that once the application
1521 starts freeing memory of a certain size, it's highly probable that this is
1522 a size the application uses for transient allocations. This estimator
1523 is there to satisfy the new third requirement.
1527 #define M_MMAP_THRESHOLD -3
1529 #ifndef DEFAULT_MMAP_THRESHOLD
1530 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1534 M_MMAP_MAX is the maximum number of requests to simultaneously
1535 service using mmap. This parameter exists because
1536 some systems have a limited number of internal tables for
1537 use by mmap, and using more than a few of them may degrade
1540 The default is set to a value that serves only as a safeguard.
1541 Setting to 0 disables use of mmap for servicing large requests. If
1542 HAVE_MMAP is not set, the default value is 0, and attempts to set it
1543 to non-zero values in mallopt will fail.
1546 #define M_MMAP_MAX -4
1548 #ifndef DEFAULT_MMAP_MAX
1550 #define DEFAULT_MMAP_MAX (65536)
1552 #define DEFAULT_MMAP_MAX (0)
1557 } /* end of extern "C" */
1563 #define BOUNDED_N(ptr, sz) (ptr)
1565 #ifndef RETURN_ADDRESS
1566 #define RETURN_ADDRESS(X_) (NULL)
1569 /* On some platforms we can compile internal, not exported functions better.
1570 Let the environment provide a macro and define it to be empty if it
1571 is not available. */
1572 #ifndef internal_function
1573 # define internal_function
1576 /* Forward declarations. */
1577 struct malloc_chunk
;
1578 typedef struct malloc_chunk
* mchunkptr
;
1580 /* Internal routines. */
1584 Void_t
* _int_malloc(mstate
, size_t);
1585 void _int_free(mstate
, Void_t
*);
1586 Void_t
* _int_realloc(mstate
, Void_t
*, size_t);
1587 Void_t
* _int_memalign(mstate
, size_t, size_t);
1588 Void_t
* _int_valloc(mstate
, size_t);
1589 static Void_t
* _int_pvalloc(mstate
, size_t);
1590 /*static Void_t* cALLOc(size_t, size_t);*/
1592 static Void_t
** _int_icalloc(mstate
, size_t, size_t, Void_t
**);
1593 static Void_t
** _int_icomalloc(mstate
, size_t, size_t*, Void_t
**);
1595 static int mTRIm(mstate
, size_t);
1596 static size_t mUSABLe(Void_t
*);
1597 static void mSTATs(void);
1598 static int mALLOPt(int, int);
1599 static struct mallinfo
mALLINFo(mstate
);
1600 static void malloc_printerr(int action
, const char *str
, void *ptr
);
1602 static Void_t
* internal_function
mem2mem_check(Void_t
*p
, size_t sz
);
1603 static int internal_function
top_check(void);
1604 static void internal_function
munmap_chunk(mchunkptr p
);
1606 static mchunkptr internal_function
mremap_chunk(mchunkptr p
, size_t new_size
);
1609 static Void_t
* malloc_check(size_t sz
, const Void_t
*caller
);
1610 static void free_check(Void_t
* mem
, const Void_t
*caller
);
1611 static Void_t
* realloc_check(Void_t
* oldmem
, size_t bytes
,
1612 const Void_t
*caller
);
1613 static Void_t
* memalign_check(size_t alignment
, size_t bytes
,
1614 const Void_t
*caller
);
1617 # if USE___THREAD || !defined SHARED
1618 /* These routines are never needed in this configuration. */
1625 static Void_t
* malloc_starter(size_t sz
, const Void_t
*caller
);
1626 static Void_t
* memalign_starter(size_t aln
, size_t sz
, const Void_t
*caller
);
1627 static void free_starter(Void_t
* mem
, const Void_t
*caller
);
1629 static Void_t
* malloc_atfork(size_t sz
, const Void_t
*caller
);
1630 static void free_atfork(Void_t
* mem
, const Void_t
*caller
);
1635 Void_t
* _int_malloc();
1637 Void_t
* _int_realloc();
1638 Void_t
* _int_memalign();
1639 Void_t
* _int_valloc();
1640 Void_t
* _int_pvalloc();
1641 /*static Void_t* cALLOc();*/
1642 static Void_t
** _int_icalloc();
1643 static Void_t
** _int_icomalloc();
1645 static size_t mUSABLe();
1646 static void mSTATs();
1647 static int mALLOPt();
1648 static struct mallinfo
mALLINFo();
1655 /* ------------- Optional versions of memcopy ---------------- */
1661 Note: memcpy is ONLY invoked with non-overlapping regions,
1662 so the (usually slower) memmove is not needed.
1665 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1666 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1668 #else /* !USE_MEMCPY */
1670 /* Use Duff's device for good zeroing/copying performance. */
1672 #define MALLOC_ZERO(charp, nbytes) \
1674 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
1675 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1677 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1679 case 0: for(;;) { *mzp++ = 0; \
1680 case 7: *mzp++ = 0; \
1681 case 6: *mzp++ = 0; \
1682 case 5: *mzp++ = 0; \
1683 case 4: *mzp++ = 0; \
1684 case 3: *mzp++ = 0; \
1685 case 2: *mzp++ = 0; \
1686 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
1690 #define MALLOC_COPY(dest,src,nbytes) \
1692 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
1693 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
1694 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1696 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1698 case 0: for(;;) { *mcdst++ = *mcsrc++; \
1699 case 7: *mcdst++ = *mcsrc++; \
1700 case 6: *mcdst++ = *mcsrc++; \
1701 case 5: *mcdst++ = *mcsrc++; \
1702 case 4: *mcdst++ = *mcsrc++; \
1703 case 3: *mcdst++ = *mcsrc++; \
1704 case 2: *mcdst++ = *mcsrc++; \
1705 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
1711 /* ------------------ MMAP support ------------------ */
1717 #ifndef LACKS_SYS_MMAN_H
1718 #include <sys/mman.h>
1721 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1722 # define MAP_ANONYMOUS MAP_ANON
1724 #if !defined(MAP_FAILED)
1725 # define MAP_FAILED ((char*)-1)
1728 #ifndef MAP_NORESERVE
1729 # ifdef MAP_AUTORESRV
1730 # define MAP_NORESERVE MAP_AUTORESRV
1732 # define MAP_NORESERVE 0
1737 Nearly all versions of mmap support MAP_ANONYMOUS,
1738 so the following is unlikely to be needed, but is
1739 supplied just in case.
1742 #ifndef MAP_ANONYMOUS
1744 static int dev_zero_fd
= -1; /* Cached file descriptor for /dev/zero. */
1746 #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
1747 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1748 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
1749 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
1753 #define MMAP(addr, size, prot, flags) \
1754 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1759 #endif /* HAVE_MMAP */
1763 ----------------------- Chunk representations -----------------------
1768 This struct declaration is misleading (but accurate and necessary).
1769 It declares a "view" into memory allowing access to necessary
1770 fields at known offsets from a given base. See explanation below.
1773 struct malloc_chunk
{
1775 INTERNAL_SIZE_T prev_size
; /* Size of previous chunk (if free). */
1776 INTERNAL_SIZE_T size
; /* Size in bytes, including overhead. */
1778 struct malloc_chunk
* fd
; /* double links -- used only if free. */
1779 struct malloc_chunk
* bk
;
1781 /* Only used for large blocks: pointer to next larger size. */
1782 struct malloc_chunk
* fd_nextsize
; /* double links -- used only if free. */
1783 struct malloc_chunk
* bk_nextsize
;
1788 malloc_chunk details:
1790 (The following includes lightly edited explanations by Colin Plumb.)
1792 Chunks of memory are maintained using a `boundary tag' method as
1793 described in e.g., Knuth or Standish. (See the paper by Paul
1794 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1795 survey of such techniques.) Sizes of free chunks are stored both
1796 in the front of each chunk and at the end. This makes
1797 consolidating fragmented chunks into bigger chunks very fast. The
1798 size fields also hold bits representing whether chunks are free or
1801 An allocated chunk looks like this:
1804 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1805 | Size of previous chunk, if allocated | |
1806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1807 | Size of chunk, in bytes |M|P|
1808 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1809 | User data starts here... .
1811 . (malloc_usable_size() bytes) .
1813 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1818 Where "chunk" is the front of the chunk for the purpose of most of
1819 the malloc code, but "mem" is the pointer that is returned to the
1820 user. "Nextchunk" is the beginning of the next contiguous chunk.
1822 Chunks always begin on even word boundries, so the mem portion
1823 (which is returned to the user) is also on an even word boundary, and
1824 thus at least double-word aligned.
1826 Free chunks are stored in circular doubly-linked lists, and look like this:
1828 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1829 | Size of previous chunk |
1830 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1831 `head:' | Size of chunk, in bytes |P|
1832 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1833 | Forward pointer to next chunk in list |
1834 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1835 | Back pointer to previous chunk in list |
1836 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1837 | Unused space (may be 0 bytes long) .
1840 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1841 `foot:' | Size of chunk, in bytes |
1842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1844 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1845 chunk size (which is always a multiple of two words), is an in-use
1846 bit for the *previous* chunk. If that bit is *clear*, then the
1847 word before the current chunk size contains the previous chunk
1848 size, and can be used to find the front of the previous chunk.
1849 The very first chunk allocated always has this bit set,
1850 preventing access to non-existent (or non-owned) memory. If
1851 prev_inuse is set for any given chunk, then you CANNOT determine
1852 the size of the previous chunk, and might even get a memory
1853 addressing fault when trying to do so.
1855 Note that the `foot' of the current chunk is actually represented
1856 as the prev_size of the NEXT chunk. This makes it easier to
1857 deal with alignments etc but can be very confusing when trying
1858 to extend or adapt this code.
1860 The two exceptions to all this are
1862 1. The special chunk `top' doesn't bother using the
1863 trailing size field since there is no next contiguous chunk
1864 that would have to index off it. After initialization, `top'
1865 is forced to always exist. If it would become less than
1866 MINSIZE bytes long, it is replenished.
1868 2. Chunks allocated via mmap, which have the second-lowest-order
1869 bit M (IS_MMAPPED) set in their size fields. Because they are
1870 allocated one-by-one, each must contain its own trailing size field.
1875 ---------- Size and alignment checks and conversions ----------
1878 /* conversion from malloc headers to user pointers, and back */
1880 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1881 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1883 /* The smallest possible chunk */
1884 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1886 /* The smallest size we can malloc is an aligned minimal chunk */
1889 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1891 /* Check if m has acceptable alignment */
1893 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1895 #define misaligned_chunk(p) \
1896 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1897 & MALLOC_ALIGN_MASK)
1901 Check if a request is so large that it would wrap around zero when
1902 padded and aligned. To simplify some other code, the bound is made
1903 low enough so that adding MINSIZE will also not wrap around zero.
1906 #define REQUEST_OUT_OF_RANGE(req) \
1907 ((unsigned long)(req) >= \
1908 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1910 /* pad request bytes into a usable size -- internal version */
1912 #define request2size(req) \
1913 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1915 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1917 /* Same, except also perform argument check */
1919 #define checked_request2size(req, sz) \
1920 if (REQUEST_OUT_OF_RANGE(req)) { \
1921 MALLOC_FAILURE_ACTION; \
1924 (sz) = request2size(req);
1927 --------------- Physical chunk operations ---------------
1931 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1932 #define PREV_INUSE 0x1
1934 /* extract inuse bit of previous chunk */
1935 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1938 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1939 #define IS_MMAPPED 0x2
1941 /* check for mmap()'ed chunk */
1942 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1945 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1946 from a non-main arena. This is only set immediately before handing
1947 the chunk to the user, if necessary. */
1948 #define NON_MAIN_ARENA 0x4
1950 /* check for chunk from non-main arena */
1951 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1955 Bits to mask off when extracting size
1957 Note: IS_MMAPPED is intentionally not masked off from size field in
1958 macros for which mmapped chunks should never be seen. This should
1959 cause helpful core dumps to occur if it is tried by accident by
1960 people extending or adapting this malloc.
1962 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
1964 /* Get size, ignoring use bits */
1965 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1968 /* Ptr to next physical malloc_chunk. */
1969 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
1971 /* Ptr to previous physical malloc_chunk */
1972 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1974 /* Treat space at ptr + offset as a chunk */
1975 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1977 /* extract p's inuse bit */
1979 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
1981 /* set/clear chunk as being inuse without otherwise disturbing */
1982 #define set_inuse(p)\
1983 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
1985 #define clear_inuse(p)\
1986 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
1989 /* check/set/clear inuse bits in known places */
1990 #define inuse_bit_at_offset(p, s)\
1991 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1993 #define set_inuse_bit_at_offset(p, s)\
1994 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1996 #define clear_inuse_bit_at_offset(p, s)\
1997 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
2000 /* Set size at head, without disturbing its use bit */
2001 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
2003 /* Set size/use field */
2004 #define set_head(p, s) ((p)->size = (s))
2006 /* Set size at footer (only when chunk is not in use) */
2007 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
2011 -------------------- Internal data structures --------------------
2013 All internal state is held in an instance of malloc_state defined
2014 below. There are no other static variables, except in two optional
2016 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
2017 * If HAVE_MMAP is true, but mmap doesn't support
2018 MAP_ANONYMOUS, a dummy file descriptor for mmap.
2020 Beware of lots of tricks that minimize the total bookkeeping space
2021 requirements. The result is a little over 1K bytes (for 4byte
2022 pointers and size_t.)
2028 An array of bin headers for free chunks. Each bin is doubly
2029 linked. The bins are approximately proportionally (log) spaced.
2030 There are a lot of these bins (128). This may look excessive, but
2031 works very well in practice. Most bins hold sizes that are
2032 unusual as malloc request sizes, but are more usual for fragments
2033 and consolidated sets of chunks, which is what these bins hold, so
2034 they can be found quickly. All procedures maintain the invariant
2035 that no consolidated chunk physically borders another one, so each
2036 chunk in a list is known to be preceeded and followed by either
2037 inuse chunks or the ends of memory.
2039 Chunks in bins are kept in size order, with ties going to the
2040 approximately least recently used chunk. Ordering isn't needed
2041 for the small bins, which all contain the same-sized chunks, but
2042 facilitates best-fit allocation for larger chunks. These lists
2043 are just sequential. Keeping them in order almost never requires
2044 enough traversal to warrant using fancier ordered data
2047 Chunks of the same size are linked with the most
2048 recently freed at the front, and allocations are taken from the
2049 back. This results in LRU (FIFO) allocation order, which tends
2050 to give each chunk an equal opportunity to be consolidated with
2051 adjacent freed chunks, resulting in larger free chunks and less
2054 To simplify use in double-linked lists, each bin header acts
2055 as a malloc_chunk. This avoids special-casing for headers.
2056 But to conserve space and improve locality, we allocate
2057 only the fd/bk pointers of bins, and then use repositioning tricks
2058 to treat these as the fields of a malloc_chunk*.
2061 typedef struct malloc_chunk
* mbinptr
;
2063 /* addressing -- note that bin_at(0) does not exist */
2064 #define bin_at(m, i) \
2065 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
2066 - offsetof (struct malloc_chunk, fd))
2068 /* analog of ++bin */
2069 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
2071 /* Reminders about list directionality within bins */
2072 #define first(b) ((b)->fd)
2073 #define last(b) ((b)->bk)
2075 /* Take a chunk off a bin list */
2076 #define unlink(P, BK, FD) { \
2079 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
2080 malloc_printerr (check_action, "corrupted double-linked list", P); \
2084 if (!in_smallbin_range (P->size) \
2085 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
2086 assert (P->fd_nextsize->bk_nextsize == P); \
2087 assert (P->bk_nextsize->fd_nextsize == P); \
2088 if (FD->fd_nextsize == NULL) { \
2089 if (P->fd_nextsize == P) \
2090 FD->fd_nextsize = FD->bk_nextsize = FD; \
2092 FD->fd_nextsize = P->fd_nextsize; \
2093 FD->bk_nextsize = P->bk_nextsize; \
2094 P->fd_nextsize->bk_nextsize = FD; \
2095 P->bk_nextsize->fd_nextsize = FD; \
2098 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
2099 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
2108 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
2109 8 bytes apart. Larger bins are approximately logarithmically spaced:
2115 4 bins of size 32768
2116 2 bins of size 262144
2117 1 bin of size what's left
2119 There is actually a little bit of slop in the numbers in bin_index
2120 for the sake of speed. This makes no difference elsewhere.
2122 The bins top out around 1MB because we expect to service large
2127 #define NSMALLBINS 64
2128 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
2129 #define MIN_LARGE_SIZE (NSMALLBINS * SMALLBIN_WIDTH)
2131 #define in_smallbin_range(sz) \
2132 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
2134 #define smallbin_index(sz) \
2135 (SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3))
2137 #define largebin_index_32(sz) \
2138 (((((unsigned long)(sz)) >> 6) <= 38)? 56 + (((unsigned long)(sz)) >> 6): \
2139 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2140 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2141 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2142 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2145 // XXX It remains to be seen whether it is good to keep the widths of
2146 // XXX the buckets the same or whether it should be scaled by a factor
2147 // XXX of two as well.
2148 #define largebin_index_64(sz) \
2149 (((((unsigned long)(sz)) >> 6) <= 48)? 48 + (((unsigned long)(sz)) >> 6): \
2150 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2151 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2152 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2153 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2156 #define largebin_index(sz) \
2157 (SIZE_SZ == 8 ? largebin_index_64 (sz) : largebin_index_32 (sz))
2159 #define bin_index(sz) \
2160 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
2166 All remainders from chunk splits, as well as all returned chunks,
2167 are first placed in the "unsorted" bin. They are then placed
2168 in regular bins after malloc gives them ONE chance to be used before
2169 binning. So, basically, the unsorted_chunks list acts as a queue,
2170 with chunks being placed on it in free (and malloc_consolidate),
2171 and taken off (to be either used or placed in bins) in malloc.
2173 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
2174 does not have to be taken into account in size comparisons.
2177 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
2178 #define unsorted_chunks(M) (bin_at(M, 1))
2183 The top-most available chunk (i.e., the one bordering the end of
2184 available memory) is treated specially. It is never included in
2185 any bin, is used only if no other chunk is available, and is
2186 released back to the system if it is very large (see
2187 M_TRIM_THRESHOLD). Because top initially
2188 points to its own bin with initial zero size, thus forcing
2189 extension on the first malloc request, we avoid having any special
2190 code in malloc to check whether it even exists yet. But we still
2191 need to do so when getting memory from system, so we make
2192 initial_top treat the bin as a legal but unusable chunk during the
2193 interval between initialization and the first call to
2194 sYSMALLOc. (This is somewhat delicate, since it relies on
2195 the 2 preceding words to be zero during this interval as well.)
2198 /* Conveniently, the unsorted bin can be used as dummy top on first call */
2199 #define initial_top(M) (unsorted_chunks(M))
2204 To help compensate for the large number of bins, a one-level index
2205 structure is used for bin-by-bin searching. `binmap' is a
2206 bitvector recording whether bins are definitely empty so they can
2207 be skipped over during during traversals. The bits are NOT always
2208 cleared as soon as bins are empty, but instead only
2209 when they are noticed to be empty during traversal in malloc.
2212 /* Conservatively use 32 bits per map word, even if on 64bit system */
2213 #define BINMAPSHIFT 5
2214 #define BITSPERMAP (1U << BINMAPSHIFT)
2215 #define BINMAPSIZE (NBINS / BITSPERMAP)
2217 #define idx2block(i) ((i) >> BINMAPSHIFT)
2218 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
2220 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
2221 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
2222 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
2227 An array of lists holding recently freed small chunks. Fastbins
2228 are not doubly linked. It is faster to single-link them, and
2229 since chunks are never removed from the middles of these lists,
2230 double linking is not necessary. Also, unlike regular bins, they
2231 are not even processed in FIFO order (they use faster LIFO) since
2232 ordering doesn't much matter in the transient contexts in which
2233 fastbins are normally used.
2235 Chunks in fastbins keep their inuse bit set, so they cannot
2236 be consolidated with other free chunks. malloc_consolidate
2237 releases all chunks in fastbins and consolidates them with
2241 typedef struct malloc_chunk
* mfastbinptr
;
2243 /* offset 2 to use otherwise unindexable first 2 bins */
2244 #define fastbin_index(sz) ((((unsigned int)(sz)) >> 3) - 2)
2246 /* The maximum fastbin request size we support */
2247 #define MAX_FAST_SIZE 80
2249 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
2252 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
2253 that triggers automatic consolidation of possibly-surrounding
2254 fastbin chunks. This is a heuristic, so the exact value should not
2255 matter too much. It is defined at half the default trim threshold as a
2256 compromise heuristic to only attempt consolidation if it is likely
2257 to lead to trimming. However, it is not dynamically tunable, since
2258 consolidation reduces fragmentation surrounding large chunks even
2259 if trimming is not used.
2262 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
2265 Since the lowest 2 bits in max_fast don't matter in size comparisons,
2266 they are used as flags.
2270 FASTCHUNKS_BIT held in max_fast indicates that there are probably
2271 some fastbin chunks. It is set true on entering a chunk into any
2272 fastbin, and cleared only in malloc_consolidate.
2274 The truth value is inverted so that have_fastchunks will be true
2275 upon startup (since statics are zero-filled), simplifying
2276 initialization checks.
2279 #define FASTCHUNKS_BIT (1U)
2281 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
2282 #define clear_fastchunks(M) ((M)->flags |= FASTCHUNKS_BIT)
2283 #define set_fastchunks(M) ((M)->flags &= ~FASTCHUNKS_BIT)
2286 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
2287 regions. Otherwise, contiguity is exploited in merging together,
2288 when possible, results from consecutive MORECORE calls.
2290 The initial value comes from MORECORE_CONTIGUOUS, but is
2291 changed dynamically if mmap is ever used as an sbrk substitute.
2294 #define NONCONTIGUOUS_BIT (2U)
2296 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
2297 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
2298 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
2299 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
2302 Set value of max_fast.
2303 Use impossibly small value if 0.
2304 Precondition: there are no existing fastbin chunks.
2305 Setting the value clears fastchunk bit but preserves noncontiguous bit.
2308 #define set_max_fast(s) \
2309 global_max_fast = ((s) == 0)? SMALLBIN_WIDTH: request2size(s)
2310 #define get_max_fast() global_max_fast
2314 ----------- Internal state representation and initialization -----------
2317 struct malloc_state
{
2318 /* Serialize access. */
2321 /* Flags (formerly in max_fast). */
2325 /* Statistics for locking. Only used if THREAD_STATS is defined. */
2326 long stat_lock_direct
, stat_lock_loop
, stat_lock_wait
;
2330 mfastbinptr fastbins
[NFASTBINS
];
2332 /* Base of the topmost chunk -- not otherwise kept in a bin */
2335 /* The remainder from the most recent split of a small request */
2336 mchunkptr last_remainder
;
2338 /* Normal bins packed as described above */
2339 mchunkptr bins
[NBINS
* 2 - 2];
2341 /* Bitmap of bins */
2342 unsigned int binmap
[BINMAPSIZE
];
2345 struct malloc_state
*next
;
2347 /* Memory allocated from the system in this arena. */
2348 INTERNAL_SIZE_T system_mem
;
2349 INTERNAL_SIZE_T max_system_mem
;
2353 /* Tunable parameters */
2354 unsigned long trim_threshold
;
2355 INTERNAL_SIZE_T top_pad
;
2356 INTERNAL_SIZE_T mmap_threshold
;
2358 /* Memory map support */
2362 /* the mmap_threshold is dynamic, until the user sets
2363 it manually, at which point we need to disable any
2364 dynamic behavior. */
2365 int no_dyn_threshold
;
2367 /* Cache malloc_getpagesize */
2368 unsigned int pagesize
;
2371 INTERNAL_SIZE_T mmapped_mem
;
2372 /*INTERNAL_SIZE_T sbrked_mem;*/
2373 /*INTERNAL_SIZE_T max_sbrked_mem;*/
2374 INTERNAL_SIZE_T max_mmapped_mem
;
2375 INTERNAL_SIZE_T max_total_mem
; /* only kept for NO_THREADS */
2377 /* First address handed out by MORECORE/sbrk. */
2381 /* There are several instances of this struct ("arenas") in this
2382 malloc. If you are adapting this malloc in a way that does NOT use
2383 a static or mmapped malloc_state, you MUST explicitly zero-fill it
2384 before using. This malloc relies on the property that malloc_state
2385 is initialized to all zeroes (as is true of C statics). */
2387 static struct malloc_state main_arena
;
2389 /* There is only one instance of the malloc parameters. */
2391 static struct malloc_par mp_
;
2394 /* Maximum size of memory handled in fastbins. */
2395 static INTERNAL_SIZE_T global_max_fast
;
2398 Initialize a malloc_state struct.
2400 This is called only from within malloc_consolidate, which needs
2401 be called in the same contexts anyway. It is never called directly
2402 outside of malloc_consolidate because some optimizing compilers try
2403 to inline it at all call points, which turns out not to be an
2404 optimization at all. (Inlining it in malloc_consolidate is fine though.)
2408 static void malloc_init_state(mstate av
)
2410 static void malloc_init_state(av
) mstate av
;
2416 /* Establish circular links for normal bins */
2417 for (i
= 1; i
< NBINS
; ++i
) {
2419 bin
->fd
= bin
->bk
= bin
;
2422 #if MORECORE_CONTIGUOUS
2423 if (av
!= &main_arena
)
2425 set_noncontiguous(av
);
2426 if (av
== &main_arena
)
2427 set_max_fast(DEFAULT_MXFAST
);
2428 av
->flags
|= FASTCHUNKS_BIT
;
2430 av
->top
= initial_top(av
);
2434 Other internal utilities operating on mstates
2438 static Void_t
* sYSMALLOc(INTERNAL_SIZE_T
, mstate
);
2439 static int sYSTRIm(size_t, mstate
);
2440 static void malloc_consolidate(mstate
);
2442 static Void_t
** iALLOc(mstate
, size_t, size_t*, int, Void_t
**);
2445 static Void_t
* sYSMALLOc();
2446 static int sYSTRIm();
2447 static void malloc_consolidate();
2448 static Void_t
** iALLOc();
2452 /* -------------- Early definitions for debugging hooks ---------------- */
2454 /* Define and initialize the hook variables. These weak definitions must
2455 appear before any use of the variables in a function (arena.c uses one). */
2456 #ifndef weak_variable
2458 #define weak_variable /**/
2460 /* In GNU libc we want the hook variables to be weak definitions to
2461 avoid a problem with Emacs. */
2462 #define weak_variable weak_function
2466 /* Forward declarations. */
2467 static Void_t
* malloc_hook_ini
__MALLOC_P ((size_t sz
,
2468 const __malloc_ptr_t caller
));
2469 static Void_t
* realloc_hook_ini
__MALLOC_P ((Void_t
* ptr
, size_t sz
,
2470 const __malloc_ptr_t caller
));
2471 static Void_t
* memalign_hook_ini
__MALLOC_P ((size_t alignment
, size_t sz
,
2472 const __malloc_ptr_t caller
));
2474 void weak_variable (*__malloc_initialize_hook
) (void) = NULL
;
2475 void weak_variable (*__free_hook
) (__malloc_ptr_t __ptr
,
2476 const __malloc_ptr_t
) = NULL
;
2477 __malloc_ptr_t
weak_variable (*__malloc_hook
)
2478 (size_t __size
, const __malloc_ptr_t
) = malloc_hook_ini
;
2479 __malloc_ptr_t
weak_variable (*__realloc_hook
)
2480 (__malloc_ptr_t __ptr
, size_t __size
, const __malloc_ptr_t
)
2482 __malloc_ptr_t
weak_variable (*__memalign_hook
)
2483 (size_t __alignment
, size_t __size
, const __malloc_ptr_t
)
2484 = memalign_hook_ini
;
2485 void weak_variable (*__after_morecore_hook
) (void) = NULL
;
2488 /* ---------------- Error behavior ------------------------------------ */
2490 #ifndef DEFAULT_CHECK_ACTION
2491 #define DEFAULT_CHECK_ACTION 3
2494 static int check_action
= DEFAULT_CHECK_ACTION
;
2497 /* ------------------ Testing support ----------------------------------*/
2499 static int perturb_byte
;
2501 #define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
2502 #define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
2505 /* ------------------- Support for multiple arenas -------------------- */
2511 These routines make a number of assertions about the states
2512 of data structures that should be true at all times. If any
2513 are not true, it's very likely that a user program has somehow
2514 trashed memory. (It's also possible that there is a coding error
2515 in malloc. In which case, please report it!)
2520 #define check_chunk(A,P)
2521 #define check_free_chunk(A,P)
2522 #define check_inuse_chunk(A,P)
2523 #define check_remalloced_chunk(A,P,N)
2524 #define check_malloced_chunk(A,P,N)
2525 #define check_malloc_state(A)
2529 #define check_chunk(A,P) do_check_chunk(A,P)
2530 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2531 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2532 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
2533 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2534 #define check_malloc_state(A) do_check_malloc_state(A)
2537 Properties of all chunks
2541 static void do_check_chunk(mstate av
, mchunkptr p
)
2543 static void do_check_chunk(av
, p
) mstate av
; mchunkptr p
;
2546 unsigned long sz
= chunksize(p
);
2547 /* min and max possible addresses assuming contiguous allocation */
2548 char* max_address
= (char*)(av
->top
) + chunksize(av
->top
);
2549 char* min_address
= max_address
- av
->system_mem
;
2551 if (!chunk_is_mmapped(p
)) {
2553 /* Has legal address ... */
2555 if (contiguous(av
)) {
2556 assert(((char*)p
) >= min_address
);
2557 assert(((char*)p
+ sz
) <= ((char*)(av
->top
)));
2561 /* top size is always at least MINSIZE */
2562 assert((unsigned long)(sz
) >= MINSIZE
);
2563 /* top predecessor always marked inuse */
2564 assert(prev_inuse(p
));
2570 /* address is outside main heap */
2571 if (contiguous(av
) && av
->top
!= initial_top(av
)) {
2572 assert(((char*)p
) < min_address
|| ((char*)p
) >= max_address
);
2574 /* chunk is page-aligned */
2575 assert(((p
->prev_size
+ sz
) & (mp_
.pagesize
-1)) == 0);
2576 /* mem is aligned */
2577 assert(aligned_OK(chunk2mem(p
)));
2579 /* force an appropriate assert violation if debug set */
2580 assert(!chunk_is_mmapped(p
));
2586 Properties of free chunks
2590 static void do_check_free_chunk(mstate av
, mchunkptr p
)
2592 static void do_check_free_chunk(av
, p
) mstate av
; mchunkptr p
;
2595 INTERNAL_SIZE_T sz
= p
->size
& ~(PREV_INUSE
|NON_MAIN_ARENA
);
2596 mchunkptr next
= chunk_at_offset(p
, sz
);
2598 do_check_chunk(av
, p
);
2600 /* Chunk must claim to be free ... */
2602 assert (!chunk_is_mmapped(p
));
2604 /* Unless a special marker, must have OK fields */
2605 if ((unsigned long)(sz
) >= MINSIZE
)
2607 assert((sz
& MALLOC_ALIGN_MASK
) == 0);
2608 assert(aligned_OK(chunk2mem(p
)));
2609 /* ... matching footer field */
2610 assert(next
->prev_size
== sz
);
2611 /* ... and is fully consolidated */
2612 assert(prev_inuse(p
));
2613 assert (next
== av
->top
|| inuse(next
));
2615 /* ... and has minimally sane links */
2616 assert(p
->fd
->bk
== p
);
2617 assert(p
->bk
->fd
== p
);
2619 else /* markers are always of size SIZE_SZ */
2620 assert(sz
== SIZE_SZ
);
2624 Properties of inuse chunks
2628 static void do_check_inuse_chunk(mstate av
, mchunkptr p
)
2630 static void do_check_inuse_chunk(av
, p
) mstate av
; mchunkptr p
;
2635 do_check_chunk(av
, p
);
2637 if (chunk_is_mmapped(p
))
2638 return; /* mmapped chunks have no next/prev */
2640 /* Check whether it claims to be in use ... */
2643 next
= next_chunk(p
);
2645 /* ... and is surrounded by OK chunks.
2646 Since more things can be checked with free chunks than inuse ones,
2647 if an inuse chunk borders them and debug is on, it's worth doing them.
2649 if (!prev_inuse(p
)) {
2650 /* Note that we cannot even look at prev unless it is not inuse */
2651 mchunkptr prv
= prev_chunk(p
);
2652 assert(next_chunk(prv
) == p
);
2653 do_check_free_chunk(av
, prv
);
2656 if (next
== av
->top
) {
2657 assert(prev_inuse(next
));
2658 assert(chunksize(next
) >= MINSIZE
);
2660 else if (!inuse(next
))
2661 do_check_free_chunk(av
, next
);
2665 Properties of chunks recycled from fastbins
2669 static void do_check_remalloced_chunk(mstate av
, mchunkptr p
, INTERNAL_SIZE_T s
)
2671 static void do_check_remalloced_chunk(av
, p
, s
)
2672 mstate av
; mchunkptr p
; INTERNAL_SIZE_T s
;
2675 INTERNAL_SIZE_T sz
= p
->size
& ~(PREV_INUSE
|NON_MAIN_ARENA
);
2677 if (!chunk_is_mmapped(p
)) {
2678 assert(av
== arena_for_chunk(p
));
2679 if (chunk_non_main_arena(p
))
2680 assert(av
!= &main_arena
);
2682 assert(av
== &main_arena
);
2685 do_check_inuse_chunk(av
, p
);
2687 /* Legal size ... */
2688 assert((sz
& MALLOC_ALIGN_MASK
) == 0);
2689 assert((unsigned long)(sz
) >= MINSIZE
);
2690 /* ... and alignment */
2691 assert(aligned_OK(chunk2mem(p
)));
2692 /* chunk is less than MINSIZE more than request */
2693 assert((long)(sz
) - (long)(s
) >= 0);
2694 assert((long)(sz
) - (long)(s
+ MINSIZE
) < 0);
2698 Properties of nonrecycled chunks at the point they are malloced
2702 static void do_check_malloced_chunk(mstate av
, mchunkptr p
, INTERNAL_SIZE_T s
)
2704 static void do_check_malloced_chunk(av
, p
, s
)
2705 mstate av
; mchunkptr p
; INTERNAL_SIZE_T s
;
2708 /* same as recycled case ... */
2709 do_check_remalloced_chunk(av
, p
, s
);
2712 ... plus, must obey implementation invariant that prev_inuse is
2713 always true of any allocated chunk; i.e., that each allocated
2714 chunk borders either a previously allocated and still in-use
2715 chunk, or the base of its memory arena. This is ensured
2716 by making all allocations from the the `lowest' part of any found
2717 chunk. This does not necessarily hold however for chunks
2718 recycled via fastbins.
2721 assert(prev_inuse(p
));
2726 Properties of malloc_state.
2728 This may be useful for debugging malloc, as well as detecting user
2729 programmer errors that somehow write into malloc_state.
2731 If you are extending or experimenting with this malloc, you can
2732 probably figure out how to hack this routine to print out or
2733 display chunk addresses, sizes, bins, and other instrumentation.
2736 static void do_check_malloc_state(mstate av
)
2743 INTERNAL_SIZE_T size
;
2744 unsigned long total
= 0;
2747 /* internal size_t must be no wider than pointer type */
2748 assert(sizeof(INTERNAL_SIZE_T
) <= sizeof(char*));
2750 /* alignment is a power of 2 */
2751 assert((MALLOC_ALIGNMENT
& (MALLOC_ALIGNMENT
-1)) == 0);
2753 /* cannot run remaining checks until fully initialized */
2754 if (av
->top
== 0 || av
->top
== initial_top(av
))
2757 /* pagesize is a power of 2 */
2758 assert((mp_
.pagesize
& (mp_
.pagesize
-1)) == 0);
2760 /* A contiguous main_arena is consistent with sbrk_base. */
2761 if (av
== &main_arena
&& contiguous(av
))
2762 assert((char*)mp_
.sbrk_base
+ av
->system_mem
==
2763 (char*)av
->top
+ chunksize(av
->top
));
2765 /* properties of fastbins */
2767 /* max_fast is in allowed range */
2768 assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE
));
2770 max_fast_bin
= fastbin_index(get_max_fast ());
2772 for (i
= 0; i
< NFASTBINS
; ++i
) {
2773 p
= av
->fastbins
[i
];
2775 /* The following test can only be performed for the main arena.
2776 While mallopt calls malloc_consolidate to get rid of all fast
2777 bins (especially those larger than the new maximum) this does
2778 only happen for the main arena. Trying to do this for any
2779 other arena would mean those arenas have to be locked and
2780 malloc_consolidate be called for them. This is excessive. And
2781 even if this is acceptable to somebody it still cannot solve
2782 the problem completely since if the arena is locked a
2783 concurrent malloc call might create a new arena which then
2784 could use the newly invalid fast bins. */
2786 /* all bins past max_fast are empty */
2787 if (av
== &main_arena
&& i
> max_fast_bin
)
2791 /* each chunk claims to be inuse */
2792 do_check_inuse_chunk(av
, p
);
2793 total
+= chunksize(p
);
2794 /* chunk belongs in this bin */
2795 assert(fastbin_index(chunksize(p
)) == i
);
2801 assert(have_fastchunks(av
));
2802 else if (!have_fastchunks(av
))
2805 /* check normal bins */
2806 for (i
= 1; i
< NBINS
; ++i
) {
2809 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2811 unsigned int binbit
= get_binmap(av
,i
);
2812 int empty
= last(b
) == b
;
2819 for (p
= last(b
); p
!= b
; p
= p
->bk
) {
2820 /* each chunk claims to be free */
2821 do_check_free_chunk(av
, p
);
2822 size
= chunksize(p
);
2825 /* chunk belongs in bin */
2826 idx
= bin_index(size
);
2828 /* lists are sorted */
2829 assert(p
->bk
== b
||
2830 (unsigned long)chunksize(p
->bk
) >= (unsigned long)chunksize(p
));
2832 if (!in_smallbin_range(size
))
2834 if (p
->fd_nextsize
!= NULL
)
2836 if (p
->fd_nextsize
== p
)
2837 assert (p
->bk_nextsize
== p
);
2840 if (p
->fd_nextsize
== first (b
))
2841 assert (chunksize (p
) < chunksize (p
->fd_nextsize
));
2843 assert (chunksize (p
) > chunksize (p
->fd_nextsize
));
2846 assert (chunksize (p
) > chunksize (p
->bk_nextsize
));
2848 assert (chunksize (p
) < chunksize (p
->bk_nextsize
));
2852 assert (p
->bk_nextsize
== NULL
);
2854 } else if (!in_smallbin_range(size
))
2855 assert (p
->fd_nextsize
== NULL
&& p
->bk_nextsize
== NULL
);
2856 /* chunk is followed by a legal chain of inuse chunks */
2857 for (q
= next_chunk(p
);
2858 (q
!= av
->top
&& inuse(q
) &&
2859 (unsigned long)(chunksize(q
)) >= MINSIZE
);
2861 do_check_inuse_chunk(av
, q
);
2865 /* top chunk is OK */
2866 check_chunk(av
, av
->top
);
2868 /* sanity checks for statistics */
2871 assert(total
<= (unsigned long)(mp_
.max_total_mem
));
2872 assert(mp_
.n_mmaps
>= 0);
2874 assert(mp_
.n_mmaps
<= mp_
.max_n_mmaps
);
2876 assert((unsigned long)(av
->system_mem
) <=
2877 (unsigned long)(av
->max_system_mem
));
2879 assert((unsigned long)(mp_
.mmapped_mem
) <=
2880 (unsigned long)(mp_
.max_mmapped_mem
));
2883 assert((unsigned long)(mp_
.max_total_mem
) >=
2884 (unsigned long)(mp_
.mmapped_mem
) + (unsigned long)(av
->system_mem
));
2890 /* ----------------- Support for debugging hooks -------------------- */
2894 /* ----------- Routines dealing with system allocation -------------- */
2897 sysmalloc handles malloc cases requiring more memory from the system.
2898 On entry, it is assumed that av->top does not have enough
2899 space to service request for nb bytes, thus requiring that av->top
2900 be extended or replaced.
2904 static Void_t
* sYSMALLOc(INTERNAL_SIZE_T nb
, mstate av
)
2906 static Void_t
* sYSMALLOc(nb
, av
) INTERNAL_SIZE_T nb
; mstate av
;
2909 mchunkptr old_top
; /* incoming value of av->top */
2910 INTERNAL_SIZE_T old_size
; /* its size */
2911 char* old_end
; /* its end address */
2913 long size
; /* arg to first MORECORE or mmap call */
2914 char* brk
; /* return value from MORECORE */
2916 long correction
; /* arg to 2nd MORECORE call */
2917 char* snd_brk
; /* 2nd return val */
2919 INTERNAL_SIZE_T front_misalign
; /* unusable bytes at front of new space */
2920 INTERNAL_SIZE_T end_misalign
; /* partial page left at end of new space */
2921 char* aligned_brk
; /* aligned offset into brk */
2923 mchunkptr p
; /* the allocated/returned chunk */
2924 mchunkptr remainder
; /* remainder from allocation */
2925 unsigned long remainder_size
; /* its size */
2927 unsigned long sum
; /* for updating stats */
2929 size_t pagemask
= mp_
.pagesize
- 1;
2930 bool tried_mmap
= false;
2936 If have mmap, and the request size meets the mmap threshold, and
2937 the system supports mmap, and there are few enough currently
2938 allocated mmapped regions, try to directly map this request
2939 rather than expanding top.
2942 if ((unsigned long)(nb
) >= (unsigned long)(mp_
.mmap_threshold
) &&
2943 (mp_
.n_mmaps
< mp_
.n_mmaps_max
)) {
2945 char* mm
; /* return value from mmap call*/
2949 Round up size to nearest page. For mmapped chunks, the overhead
2950 is one SIZE_SZ unit larger than for normal chunks, because there
2951 is no following chunk whose prev_size field could be used.
2954 /* See the front_misalign handling below, for glibc there is no
2955 need for further alignments. */
2956 size
= (nb
+ SIZE_SZ
+ pagemask
) & ~pagemask
;
2958 size
= (nb
+ SIZE_SZ
+ MALLOC_ALIGN_MASK
+ pagemask
) & ~pagemask
;
2962 /* Don't try if size wraps around 0 */
2963 if ((unsigned long)(size
) > (unsigned long)(nb
)) {
2965 mm
= (char*)(MMAP(0, size
, PROT_READ
|PROT_WRITE
, MAP_PRIVATE
));
2967 if (mm
!= MAP_FAILED
) {
2970 The offset to the start of the mmapped region is stored
2971 in the prev_size field of the chunk. This allows us to adjust
2972 returned start address to meet alignment requirements here
2973 and in memalign(), and still be able to compute proper
2974 address argument for later munmap in free() and realloc().
2978 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
2979 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
2980 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
2981 assert (((INTERNAL_SIZE_T
)chunk2mem(mm
) & MALLOC_ALIGN_MASK
) == 0);
2983 front_misalign
= (INTERNAL_SIZE_T
)chunk2mem(mm
) & MALLOC_ALIGN_MASK
;
2984 if (front_misalign
> 0) {
2985 correction
= MALLOC_ALIGNMENT
- front_misalign
;
2986 p
= (mchunkptr
)(mm
+ correction
);
2987 p
->prev_size
= correction
;
2988 set_head(p
, (size
- correction
) |IS_MMAPPED
);
2994 set_head(p
, size
|IS_MMAPPED
);
2997 /* update statistics */
2999 if (++mp_
.n_mmaps
> mp_
.max_n_mmaps
)
3000 mp_
.max_n_mmaps
= mp_
.n_mmaps
;
3002 sum
= mp_
.mmapped_mem
+= size
;
3003 if (sum
> (unsigned long)(mp_
.max_mmapped_mem
))
3004 mp_
.max_mmapped_mem
= sum
;
3006 sum
+= av
->system_mem
;
3007 if (sum
> (unsigned long)(mp_
.max_total_mem
))
3008 mp_
.max_total_mem
= sum
;
3013 return chunk2mem(p
);
3019 /* Record incoming configuration of top */
3022 old_size
= chunksize(old_top
);
3023 old_end
= (char*)(chunk_at_offset(old_top
, old_size
));
3025 brk
= snd_brk
= (char*)(MORECORE_FAILURE
);
3028 If not the first time through, we require old_size to be
3029 at least MINSIZE and to have prev_inuse set.
3032 assert((old_top
== initial_top(av
) && old_size
== 0) ||
3033 ((unsigned long) (old_size
) >= MINSIZE
&&
3034 prev_inuse(old_top
) &&
3035 ((unsigned long)old_end
& pagemask
) == 0));
3037 /* Precondition: not enough current space to satisfy nb request */
3038 assert((unsigned long)(old_size
) < (unsigned long)(nb
+ MINSIZE
));
3040 /* Precondition: all fastbins are consolidated */
3041 assert(!have_fastchunks(av
));
3044 if (av
!= &main_arena
) {
3046 heap_info
*old_heap
, *heap
;
3047 size_t old_heap_size
;
3049 /* First try to extend the current heap. */
3050 old_heap
= heap_for_ptr(old_top
);
3051 old_heap_size
= old_heap
->size
;
3052 if ((long) (MINSIZE
+ nb
- old_size
) > 0
3053 && grow_heap(old_heap
, MINSIZE
+ nb
- old_size
) == 0) {
3054 av
->system_mem
+= old_heap
->size
- old_heap_size
;
3055 arena_mem
+= old_heap
->size
- old_heap_size
;
3057 if(mmapped_mem
+ arena_mem
+ sbrked_mem
> max_total_mem
)
3058 max_total_mem
= mmapped_mem
+ arena_mem
+ sbrked_mem
;
3060 set_head(old_top
, (((char *)old_heap
+ old_heap
->size
) - (char *)old_top
)
3063 else if ((heap
= new_heap(nb
+ (MINSIZE
+ sizeof(*heap
)), mp_
.top_pad
))) {
3064 /* Use a newly allocated heap. */
3066 heap
->prev
= old_heap
;
3067 av
->system_mem
+= heap
->size
;
3068 arena_mem
+= heap
->size
;
3070 if((unsigned long)(mmapped_mem
+ arena_mem
+ sbrked_mem
) > max_total_mem
)
3071 max_total_mem
= mmapped_mem
+ arena_mem
+ sbrked_mem
;
3073 /* Set up the new top. */
3074 top(av
) = chunk_at_offset(heap
, sizeof(*heap
));
3075 set_head(top(av
), (heap
->size
- sizeof(*heap
)) | PREV_INUSE
);
3077 /* Setup fencepost and free the old top chunk. */
3078 /* The fencepost takes at least MINSIZE bytes, because it might
3079 become the top chunk again later. Note that a footer is set
3080 up, too, although the chunk is marked in use. */
3081 old_size
-= MINSIZE
;
3082 set_head(chunk_at_offset(old_top
, old_size
+ 2*SIZE_SZ
), 0|PREV_INUSE
);
3083 if (old_size
>= MINSIZE
) {
3084 set_head(chunk_at_offset(old_top
, old_size
), (2*SIZE_SZ
)|PREV_INUSE
);
3085 set_foot(chunk_at_offset(old_top
, old_size
), (2*SIZE_SZ
));
3086 set_head(old_top
, old_size
|PREV_INUSE
|NON_MAIN_ARENA
);
3087 _int_free(av
, chunk2mem(old_top
));
3089 set_head(old_top
, (old_size
+ 2*SIZE_SZ
)|PREV_INUSE
);
3090 set_foot(old_top
, (old_size
+ 2*SIZE_SZ
));
3093 else if (!tried_mmap
)
3094 /* We can at least try to use to mmap memory. */
3097 } else { /* av == main_arena */
3100 /* Request enough space for nb + pad + overhead */
3102 size
= nb
+ mp_
.top_pad
+ MINSIZE
;
3105 If contiguous, we can subtract out existing space that we hope to
3106 combine with new space. We add it back later only if
3107 we don't actually get contiguous space.
3114 Round to a multiple of page size.
3115 If MORECORE is not contiguous, this ensures that we only call it
3116 with whole-page arguments. And if MORECORE is contiguous and
3117 this is not first time through, this preserves page-alignment of
3118 previous calls. Otherwise, we correct to page-align below.
3121 size
= (size
+ pagemask
) & ~pagemask
;
3124 Don't try to call MORECORE if argument is so big as to appear
3125 negative. Note that since mmap takes size_t arg, it may succeed
3126 below even if we cannot call MORECORE.
3130 brk
= (char*)(MORECORE(size
));
3132 if (brk
!= (char*)(MORECORE_FAILURE
)) {
3133 /* Call the `morecore' hook if necessary. */
3134 if (__after_morecore_hook
)
3135 (*__after_morecore_hook
) ();
3138 If have mmap, try using it as a backup when MORECORE fails or
3139 cannot be used. This is worth doing on systems that have "holes" in
3140 address space, so sbrk cannot extend to give contiguous space, but
3141 space is available elsewhere. Note that we ignore mmap max count
3142 and threshold limits, since the space will not be used as a
3143 segregated mmap region.
3147 /* Cannot merge with old top, so add its size back in */
3149 size
= (size
+ old_size
+ pagemask
) & ~pagemask
;
3151 /* If we are relying on mmap as backup, then use larger units */
3152 if ((unsigned long)(size
) < (unsigned long)(MMAP_AS_MORECORE_SIZE
))
3153 size
= MMAP_AS_MORECORE_SIZE
;
3155 /* Don't try if size wraps around 0 */
3156 if ((unsigned long)(size
) > (unsigned long)(nb
)) {
3158 char *mbrk
= (char*)(MMAP(0, size
, PROT_READ
|PROT_WRITE
, MAP_PRIVATE
));
3160 if (mbrk
!= MAP_FAILED
) {
3162 /* We do not need, and cannot use, another sbrk call to find end */
3164 snd_brk
= brk
+ size
;
3167 Record that we no longer have a contiguous sbrk region.
3168 After the first time mmap is used as backup, we do not
3169 ever rely on contiguous space since this could incorrectly
3172 set_noncontiguous(av
);
3178 if (brk
!= (char*)(MORECORE_FAILURE
)) {
3179 if (mp_
.sbrk_base
== 0)
3180 mp_
.sbrk_base
= brk
;
3181 av
->system_mem
+= size
;
3184 If MORECORE extends previous space, we can likewise extend top size.
3187 if (brk
== old_end
&& snd_brk
== (char*)(MORECORE_FAILURE
))
3188 set_head(old_top
, (size
+ old_size
) | PREV_INUSE
);
3190 else if (contiguous(av
) && old_size
&& brk
< old_end
) {
3191 /* Oops! Someone else killed our space.. Can't touch anything. */
3196 Otherwise, make adjustments:
3198 * If the first time through or noncontiguous, we need to call sbrk
3199 just to find out where the end of memory lies.
3201 * We need to ensure that all returned chunks from malloc will meet
3204 * If there was an intervening foreign sbrk, we need to adjust sbrk
3205 request size to account for fact that we will not be able to
3206 combine new space with existing space in old_top.
3208 * Almost all systems internally allocate whole pages at a time, in
3209 which case we might as well use the whole last page of request.
3210 So we allocate enough more memory to hit a page boundary now,
3211 which in turn causes future contiguous calls to page-align.
3220 /* handle contiguous cases */
3221 if (contiguous(av
)) {
3223 /* Count foreign sbrk as system_mem. */
3225 av
->system_mem
+= brk
- old_end
;
3227 /* Guarantee alignment of first new chunk made from this space */
3229 front_misalign
= (INTERNAL_SIZE_T
)chunk2mem(brk
) & MALLOC_ALIGN_MASK
;
3230 if (front_misalign
> 0) {
3233 Skip over some bytes to arrive at an aligned position.
3234 We don't need to specially mark these wasted front bytes.
3235 They will never be accessed anyway because
3236 prev_inuse of av->top (and any chunk created from its start)
3237 is always true after initialization.
3240 correction
= MALLOC_ALIGNMENT
- front_misalign
;
3241 aligned_brk
+= correction
;
3245 If this isn't adjacent to existing space, then we will not
3246 be able to merge with old_top space, so must add to 2nd request.
3249 correction
+= old_size
;
3251 /* Extend the end address to hit a page boundary */
3252 end_misalign
= (INTERNAL_SIZE_T
)(brk
+ size
+ correction
);
3253 correction
+= ((end_misalign
+ pagemask
) & ~pagemask
) - end_misalign
;
3255 assert(correction
>= 0);
3256 snd_brk
= (char*)(MORECORE(correction
));
3259 If can't allocate correction, try to at least find out current
3260 brk. It might be enough to proceed without failing.
3262 Note that if second sbrk did NOT fail, we assume that space
3263 is contiguous with first sbrk. This is a safe assumption unless
3264 program is multithreaded but doesn't use locks and a foreign sbrk
3265 occurred between our first and second calls.
3268 if (snd_brk
== (char*)(MORECORE_FAILURE
)) {
3270 snd_brk
= (char*)(MORECORE(0));
3272 /* Call the `morecore' hook if necessary. */
3273 if (__after_morecore_hook
)
3274 (*__after_morecore_hook
) ();
3277 /* handle non-contiguous cases */
3279 /* MORECORE/mmap must correctly align */
3280 assert(((unsigned long)chunk2mem(brk
) & MALLOC_ALIGN_MASK
) == 0);
3282 /* Find out current end of memory */
3283 if (snd_brk
== (char*)(MORECORE_FAILURE
)) {
3284 snd_brk
= (char*)(MORECORE(0));
3288 /* Adjust top based on results of second sbrk */
3289 if (snd_brk
!= (char*)(MORECORE_FAILURE
)) {
3290 av
->top
= (mchunkptr
)aligned_brk
;
3291 set_head(av
->top
, (snd_brk
- aligned_brk
+ correction
) | PREV_INUSE
);
3292 av
->system_mem
+= correction
;
3295 If not the first time through, we either have a
3296 gap due to foreign sbrk or a non-contiguous region. Insert a
3297 double fencepost at old_top to prevent consolidation with space
3298 we don't own. These fenceposts are artificial chunks that are
3299 marked as inuse and are in any case too small to use. We need
3300 two to make sizes and alignments work out.
3303 if (old_size
!= 0) {
3305 Shrink old_top to insert fenceposts, keeping size a
3306 multiple of MALLOC_ALIGNMENT. We know there is at least
3307 enough space in old_top to do this.
3309 old_size
= (old_size
- 4*SIZE_SZ
) & ~MALLOC_ALIGN_MASK
;
3310 set_head(old_top
, old_size
| PREV_INUSE
);
3313 Note that the following assignments completely overwrite
3314 old_top when old_size was previously MINSIZE. This is
3315 intentional. We need the fencepost, even if old_top otherwise gets
3318 chunk_at_offset(old_top
, old_size
)->size
=
3319 (2*SIZE_SZ
)|PREV_INUSE
;
3321 chunk_at_offset(old_top
, old_size
+ 2*SIZE_SZ
)->size
=
3322 (2*SIZE_SZ
)|PREV_INUSE
;
3324 /* If possible, release the rest. */
3325 if (old_size
>= MINSIZE
) {
3326 _int_free(av
, chunk2mem(old_top
));
3333 /* Update statistics */
3335 sum
= av
->system_mem
+ mp_
.mmapped_mem
;
3336 if (sum
> (unsigned long)(mp_
.max_total_mem
))
3337 mp_
.max_total_mem
= sum
;
3342 } /* if (av != &main_arena) */
3344 if ((unsigned long)av
->system_mem
> (unsigned long)(av
->max_system_mem
))
3345 av
->max_system_mem
= av
->system_mem
;
3346 check_malloc_state(av
);
3348 /* finally, do the allocation */
3350 size
= chunksize(p
);
3352 /* check that one of the above allocation paths succeeded */
3353 if ((unsigned long)(size
) >= (unsigned long)(nb
+ MINSIZE
)) {
3354 remainder_size
= size
- nb
;
3355 remainder
= chunk_at_offset(p
, nb
);
3356 av
->top
= remainder
;
3357 set_head(p
, nb
| PREV_INUSE
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
3358 set_head(remainder
, remainder_size
| PREV_INUSE
);
3359 check_malloced_chunk(av
, p
, nb
);
3360 return chunk2mem(p
);
3363 /* catch all failure paths */
3364 MALLOC_FAILURE_ACTION
;
3370 sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
3371 to the system (via negative arguments to sbrk) if there is unused
3372 memory at the `high' end of the malloc pool. It is called
3373 automatically by free() when top space exceeds the trim
3374 threshold. It is also called by the public malloc_trim routine. It
3375 returns 1 if it actually released any memory, else 0.
3379 static int sYSTRIm(size_t pad
, mstate av
)
3381 static int sYSTRIm(pad
, av
) size_t pad
; mstate av
;
3384 long top_size
; /* Amount of top-most memory */
3385 long extra
; /* Amount to release */
3386 long released
; /* Amount actually released */
3387 char* current_brk
; /* address returned by pre-check sbrk call */
3388 char* new_brk
; /* address returned by post-check sbrk call */
3391 pagesz
= mp_
.pagesize
;
3392 top_size
= chunksize(av
->top
);
3394 /* Release in pagesize units, keeping at least one page */
3395 extra
= ((top_size
- pad
- MINSIZE
+ (pagesz
-1)) / pagesz
- 1) * pagesz
;
3400 Only proceed if end of memory is where we last set it.
3401 This avoids problems if there were foreign sbrk calls.
3403 current_brk
= (char*)(MORECORE(0));
3404 if (current_brk
== (char*)(av
->top
) + top_size
) {
3407 Attempt to release memory. We ignore MORECORE return value,
3408 and instead call again to find out where new end of memory is.
3409 This avoids problems if first call releases less than we asked,
3410 of if failure somehow altered brk value. (We could still
3411 encounter problems if it altered brk in some very bad way,
3412 but the only thing we can do is adjust anyway, which will cause
3413 some downstream failure.)
3417 /* Call the `morecore' hook if necessary. */
3418 if (__after_morecore_hook
)
3419 (*__after_morecore_hook
) ();
3420 new_brk
= (char*)(MORECORE(0));
3422 if (new_brk
!= (char*)MORECORE_FAILURE
) {
3423 released
= (long)(current_brk
- new_brk
);
3425 if (released
!= 0) {
3426 /* Success. Adjust top. */
3427 av
->system_mem
-= released
;
3428 set_head(av
->top
, (top_size
- released
) | PREV_INUSE
);
3429 check_malloc_state(av
);
3443 munmap_chunk(mchunkptr p
)
3445 munmap_chunk(p
) mchunkptr p
;
3448 INTERNAL_SIZE_T size
= chunksize(p
);
3450 assert (chunk_is_mmapped(p
));
3452 assert(! ((char*)p
>= mp_
.sbrk_base
&& (char*)p
< mp_
.sbrk_base
+ mp_
.sbrked_mem
));
3453 assert((mp_
.n_mmaps
> 0));
3456 uintptr_t block
= (uintptr_t) p
- p
->prev_size
;
3457 size_t total_size
= p
->prev_size
+ size
;
3458 /* Unfortunately we have to do the compilers job by hand here. Normally
3459 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3460 page size. But gcc does not recognize the optimization possibility
3461 (in the moment at least) so we combine the two values into one before
3463 if (__builtin_expect (((block
| total_size
) & (mp_
.pagesize
- 1)) != 0, 0))
3465 malloc_printerr (check_action
, "munmap_chunk(): invalid pointer",
3471 mp_
.mmapped_mem
-= total_size
;
3473 int ret
__attribute__ ((unused
)) = munmap((char *)block
, total_size
);
3475 /* munmap returns non-zero on failure */
3484 mremap_chunk(mchunkptr p
, size_t new_size
)
3486 mremap_chunk(p
, new_size
) mchunkptr p
; size_t new_size
;
3489 size_t page_mask
= mp_
.pagesize
- 1;
3490 INTERNAL_SIZE_T offset
= p
->prev_size
;
3491 INTERNAL_SIZE_T size
= chunksize(p
);
3494 assert (chunk_is_mmapped(p
));
3496 assert(! ((char*)p
>= mp_
.sbrk_base
&& (char*)p
< mp_
.sbrk_base
+ mp_
.sbrked_mem
));
3497 assert((mp_
.n_mmaps
> 0));
3499 assert(((size
+ offset
) & (mp_
.pagesize
-1)) == 0);
3501 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3502 new_size
= (new_size
+ offset
+ SIZE_SZ
+ page_mask
) & ~page_mask
;
3504 /* No need to remap if the number of pages does not change. */
3505 if (size
+ offset
== new_size
)
3508 cp
= (char *)mremap((char *)p
- offset
, size
+ offset
, new_size
,
3511 if (cp
== MAP_FAILED
) return 0;
3513 p
= (mchunkptr
)(cp
+ offset
);
3515 assert(aligned_OK(chunk2mem(p
)));
3517 assert((p
->prev_size
== offset
));
3518 set_head(p
, (new_size
- offset
)|IS_MMAPPED
);
3520 mp_
.mmapped_mem
-= size
+ offset
;
3521 mp_
.mmapped_mem
+= new_size
;
3522 if ((unsigned long)mp_
.mmapped_mem
> (unsigned long)mp_
.max_mmapped_mem
)
3523 mp_
.max_mmapped_mem
= mp_
.mmapped_mem
;
3525 if ((unsigned long)(mp_
.mmapped_mem
+ arena_mem
+ main_arena
.system_mem
) >
3527 mp_
.max_total_mem
= mp_
.mmapped_mem
+ arena_mem
+ main_arena
.system_mem
;
3532 #endif /* HAVE_MREMAP */
3534 #endif /* HAVE_MMAP */
3536 /*------------------------ Public wrappers. --------------------------------*/
3539 public_mALLOc(size_t bytes
)
3544 __malloc_ptr_t (*hook
) (size_t, __const __malloc_ptr_t
) = __malloc_hook
;
3546 return (*hook
)(bytes
, RETURN_ADDRESS (0));
3548 arena_get(ar_ptr
, bytes
);
3551 victim
= _int_malloc(ar_ptr
, bytes
);
3553 /* Maybe the failure is due to running out of mmapped areas. */
3554 if(ar_ptr
!= &main_arena
) {
3555 (void)mutex_unlock(&ar_ptr
->mutex
);
3556 ar_ptr
= &main_arena
;
3557 (void)mutex_lock(&ar_ptr
->mutex
);
3558 victim
= _int_malloc(ar_ptr
, bytes
);
3559 (void)mutex_unlock(&ar_ptr
->mutex
);
3562 /* ... or sbrk() has failed and there is still a chance to mmap() */
3563 ar_ptr
= arena_get2(ar_ptr
->next
? ar_ptr
: 0, bytes
);
3564 (void)mutex_unlock(&main_arena
.mutex
);
3566 victim
= _int_malloc(ar_ptr
, bytes
);
3567 (void)mutex_unlock(&ar_ptr
->mutex
);
3572 (void)mutex_unlock(&ar_ptr
->mutex
);
3573 assert(!victim
|| chunk_is_mmapped(mem2chunk(victim
)) ||
3574 ar_ptr
== arena_for_chunk(mem2chunk(victim
)));
3577 #ifdef libc_hidden_def
3578 libc_hidden_def(public_mALLOc
)
3582 public_fREe(Void_t
* mem
)
3585 mchunkptr p
; /* chunk corresponding to mem */
3587 void (*hook
) (__malloc_ptr_t
, __const __malloc_ptr_t
) = __free_hook
;
3589 (*hook
)(mem
, RETURN_ADDRESS (0));
3593 if (mem
== 0) /* free(0) has no effect */
3599 if (chunk_is_mmapped(p
)) /* release mmapped memory. */
3601 /* see if the dynamic brk/mmap threshold needs adjusting */
3602 if (!mp_
.no_dyn_threshold
3603 && p
->size
> mp_
.mmap_threshold
3604 && p
->size
<= DEFAULT_MMAP_THRESHOLD_MAX
)
3606 mp_
.mmap_threshold
= chunksize (p
);
3607 mp_
.trim_threshold
= 2 * mp_
.mmap_threshold
;
3614 ar_ptr
= arena_for_chunk(p
);
3616 if(!mutex_trylock(&ar_ptr
->mutex
))
3617 ++(ar_ptr
->stat_lock_direct
);
3619 (void)mutex_lock(&ar_ptr
->mutex
);
3620 ++(ar_ptr
->stat_lock_wait
);
3623 (void)mutex_lock(&ar_ptr
->mutex
);
3625 _int_free(ar_ptr
, mem
);
3626 (void)mutex_unlock(&ar_ptr
->mutex
);
3628 #ifdef libc_hidden_def
3629 libc_hidden_def (public_fREe
)
3633 public_rEALLOc(Void_t
* oldmem
, size_t bytes
)
3636 INTERNAL_SIZE_T nb
; /* padded request size */
3638 mchunkptr oldp
; /* chunk corresponding to oldmem */
3639 INTERNAL_SIZE_T oldsize
; /* its size */
3641 Void_t
* newp
; /* chunk to return */
3643 __malloc_ptr_t (*hook
) (__malloc_ptr_t
, size_t, __const __malloc_ptr_t
) =
3646 return (*hook
)(oldmem
, bytes
, RETURN_ADDRESS (0));
3648 #if REALLOC_ZERO_BYTES_FREES
3649 if (bytes
== 0 && oldmem
!= NULL
) { public_fREe(oldmem
); return 0; }
3652 /* realloc of null is supposed to be same as malloc */
3653 if (oldmem
== 0) return public_mALLOc(bytes
);
3655 oldp
= mem2chunk(oldmem
);
3656 oldsize
= chunksize(oldp
);
3658 /* Little security check which won't hurt performance: the
3659 allocator never wrapps around at the end of the address space.
3660 Therefore we can exclude some size values which might appear
3661 here by accident or by "design" from some intruder. */
3662 if (__builtin_expect ((uintptr_t) oldp
> (uintptr_t) -oldsize
, 0)
3663 || __builtin_expect (misaligned_chunk (oldp
), 0))
3665 malloc_printerr (check_action
, "realloc(): invalid pointer", oldmem
);
3669 checked_request2size(bytes
, nb
);
3672 if (chunk_is_mmapped(oldp
))
3677 newp
= mremap_chunk(oldp
, nb
);
3678 if(newp
) return chunk2mem(newp
);
3680 /* Note the extra SIZE_SZ overhead. */
3681 if(oldsize
- SIZE_SZ
>= nb
) return oldmem
; /* do nothing */
3682 /* Must alloc, copy, free. */
3683 newmem
= public_mALLOc(bytes
);
3684 if (newmem
== 0) return 0; /* propagate failure */
3685 MALLOC_COPY(newmem
, oldmem
, oldsize
- 2*SIZE_SZ
);
3691 ar_ptr
= arena_for_chunk(oldp
);
3693 if(!mutex_trylock(&ar_ptr
->mutex
))
3694 ++(ar_ptr
->stat_lock_direct
);
3696 (void)mutex_lock(&ar_ptr
->mutex
);
3697 ++(ar_ptr
->stat_lock_wait
);
3700 (void)mutex_lock(&ar_ptr
->mutex
);
3704 /* As in malloc(), remember this arena for the next allocation. */
3705 tsd_setspecific(arena_key
, (Void_t
*)ar_ptr
);
3708 newp
= _int_realloc(ar_ptr
, oldmem
, bytes
);
3710 (void)mutex_unlock(&ar_ptr
->mutex
);
3711 assert(!newp
|| chunk_is_mmapped(mem2chunk(newp
)) ||
3712 ar_ptr
== arena_for_chunk(mem2chunk(newp
)));
3716 /* Try harder to allocate memory in other arenas. */
3717 newp
= public_mALLOc(bytes
);
3720 MALLOC_COPY (newp
, oldmem
, oldsize
- 2 * SIZE_SZ
);
3722 if(!mutex_trylock(&ar_ptr
->mutex
))
3723 ++(ar_ptr
->stat_lock_direct
);
3725 (void)mutex_lock(&ar_ptr
->mutex
);
3726 ++(ar_ptr
->stat_lock_wait
);
3729 (void)mutex_lock(&ar_ptr
->mutex
);
3731 _int_free(ar_ptr
, oldmem
);
3732 (void)mutex_unlock(&ar_ptr
->mutex
);
3738 #ifdef libc_hidden_def
3739 libc_hidden_def (public_rEALLOc
)
3743 public_mEMALIGn(size_t alignment
, size_t bytes
)
3748 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
3749 __const __malloc_ptr_t
)) =
3752 return (*hook
)(alignment
, bytes
, RETURN_ADDRESS (0));
3754 /* If need less alignment than we give anyway, just relay to malloc */
3755 if (alignment
<= MALLOC_ALIGNMENT
) return public_mALLOc(bytes
);
3757 /* Otherwise, ensure that it is at least a minimum chunk size */
3758 if (alignment
< MINSIZE
) alignment
= MINSIZE
;
3760 arena_get(ar_ptr
, bytes
+ alignment
+ MINSIZE
);
3763 p
= _int_memalign(ar_ptr
, alignment
, bytes
);
3765 /* Maybe the failure is due to running out of mmapped areas. */
3766 if(ar_ptr
!= &main_arena
) {
3767 (void)mutex_unlock(&ar_ptr
->mutex
);
3768 ar_ptr
= &main_arena
;
3769 (void)mutex_lock(&ar_ptr
->mutex
);
3770 p
= _int_memalign(ar_ptr
, alignment
, bytes
);
3771 (void)mutex_unlock(&ar_ptr
->mutex
);
3774 /* ... or sbrk() has failed and there is still a chance to mmap() */
3775 mstate prev
= ar_ptr
->next
? ar_ptr
: 0;
3776 (void)mutex_unlock(&ar_ptr
->mutex
);
3777 ar_ptr
= arena_get2(prev
, bytes
);
3779 p
= _int_memalign(ar_ptr
, alignment
, bytes
);
3780 (void)mutex_unlock(&ar_ptr
->mutex
);
3785 (void)mutex_unlock(&ar_ptr
->mutex
);
3786 assert(!p
|| chunk_is_mmapped(mem2chunk(p
)) ||
3787 ar_ptr
== arena_for_chunk(mem2chunk(p
)));
3790 #ifdef libc_hidden_def
3791 libc_hidden_def (public_mEMALIGn
)
3795 public_vALLOc(size_t bytes
)
3800 if(__malloc_initialized
< 0)
3803 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
3804 __const __malloc_ptr_t
)) =
3807 return (*hook
)(mp_
.pagesize
, bytes
, RETURN_ADDRESS (0));
3809 arena_get(ar_ptr
, bytes
+ mp_
.pagesize
+ MINSIZE
);
3812 p
= _int_valloc(ar_ptr
, bytes
);
3813 (void)mutex_unlock(&ar_ptr
->mutex
);
3818 public_pVALLOc(size_t bytes
)
3823 if(__malloc_initialized
< 0)
3826 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
3827 __const __malloc_ptr_t
)) =
3830 return (*hook
)(mp_
.pagesize
,
3831 (bytes
+ mp_
.pagesize
- 1) & ~(mp_
.pagesize
- 1),
3832 RETURN_ADDRESS (0));
3834 arena_get(ar_ptr
, bytes
+ 2*mp_
.pagesize
+ MINSIZE
);
3835 p
= _int_pvalloc(ar_ptr
, bytes
);
3836 (void)mutex_unlock(&ar_ptr
->mutex
);
3841 public_cALLOc(size_t n
, size_t elem_size
)
3844 mchunkptr oldtop
, p
;
3845 INTERNAL_SIZE_T bytes
, sz
, csz
, oldtopsize
;
3847 unsigned long clearsize
;
3848 unsigned long nclears
;
3850 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, __const __malloc_ptr_t
)) =
3853 /* size_t is unsigned so the behavior on overflow is defined. */
3854 bytes
= n
* elem_size
;
3855 #define HALF_INTERNAL_SIZE_T \
3856 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
3857 if (__builtin_expect ((n
| elem_size
) >= HALF_INTERNAL_SIZE_T
, 0)) {
3858 if (elem_size
!= 0 && bytes
/ elem_size
!= n
) {
3859 MALLOC_FAILURE_ACTION
;
3866 mem
= (*hook
)(sz
, RETURN_ADDRESS (0));
3870 return memset(mem
, 0, sz
);
3872 while(sz
> 0) ((char*)mem
)[--sz
] = 0; /* rather inefficient */
3883 /* Check if we hand out the top chunk, in which case there may be no
3887 oldtopsize
= chunksize(top(av
));
3888 #if MORECORE_CLEARS < 2
3889 /* Only newly allocated memory is guaranteed to be cleared. */
3890 if (av
== &main_arena
&&
3891 oldtopsize
< mp_
.sbrk_base
+ av
->max_system_mem
- (char *)oldtop
)
3892 oldtopsize
= (mp_
.sbrk_base
+ av
->max_system_mem
- (char *)oldtop
);
3894 if (av
!= &main_arena
)
3896 heap_info
*heap
= heap_for_ptr (oldtop
);
3897 if (oldtopsize
< (char *) heap
+ heap
->mprotect_size
- (char *) oldtop
)
3898 oldtopsize
= (char *) heap
+ heap
->mprotect_size
- (char *) oldtop
;
3901 mem
= _int_malloc(av
, sz
);
3903 /* Only clearing follows, so we can unlock early. */
3904 (void)mutex_unlock(&av
->mutex
);
3906 assert(!mem
|| chunk_is_mmapped(mem2chunk(mem
)) ||
3907 av
== arena_for_chunk(mem2chunk(mem
)));
3910 /* Maybe the failure is due to running out of mmapped areas. */
3911 if(av
!= &main_arena
) {
3912 (void)mutex_lock(&main_arena
.mutex
);
3913 mem
= _int_malloc(&main_arena
, sz
);
3914 (void)mutex_unlock(&main_arena
.mutex
);
3917 /* ... or sbrk() has failed and there is still a chance to mmap() */
3918 (void)mutex_lock(&main_arena
.mutex
);
3919 av
= arena_get2(av
->next
? av
: 0, sz
);
3920 (void)mutex_unlock(&main_arena
.mutex
);
3922 mem
= _int_malloc(av
, sz
);
3923 (void)mutex_unlock(&av
->mutex
);
3927 if (mem
== 0) return 0;
3931 /* Two optional cases in which clearing not necessary */
3933 if (chunk_is_mmapped (p
))
3935 if (__builtin_expect (perturb_byte
, 0))
3936 MALLOC_ZERO (mem
, sz
);
3944 if (perturb_byte
== 0 && (p
== oldtop
&& csz
> oldtopsize
)) {
3945 /* clear only the bytes from non-freshly-sbrked memory */
3950 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
3951 contents have an odd number of INTERNAL_SIZE_T-sized words;
3953 d
= (INTERNAL_SIZE_T
*)mem
;
3954 clearsize
= csz
- SIZE_SZ
;
3955 nclears
= clearsize
/ sizeof(INTERNAL_SIZE_T
);
3956 assert(nclears
>= 3);
3959 MALLOC_ZERO(d
, clearsize
);
3985 public_iCALLOc(size_t n
, size_t elem_size
, Void_t
** chunks
)
3990 arena_get(ar_ptr
, n
*elem_size
);
3994 m
= _int_icalloc(ar_ptr
, n
, elem_size
, chunks
);
3995 (void)mutex_unlock(&ar_ptr
->mutex
);
4000 public_iCOMALLOc(size_t n
, size_t sizes
[], Void_t
** chunks
)
4005 arena_get(ar_ptr
, 0);
4009 m
= _int_icomalloc(ar_ptr
, n
, sizes
, chunks
);
4010 (void)mutex_unlock(&ar_ptr
->mutex
);
4015 public_cFREe(Void_t
* m
)
4023 public_mTRIm(size_t s
)
4027 if(__malloc_initialized
< 0)
4030 mstate ar_ptr
= &main_arena
;
4033 (void) mutex_lock (&ar_ptr
->mutex
);
4034 result
|= mTRIm (ar_ptr
, s
);
4035 (void) mutex_unlock (&ar_ptr
->mutex
);
4037 ar_ptr
= ar_ptr
->next
;
4039 while (ar_ptr
!= &main_arena
);
4045 public_mUSABLe(Void_t
* m
)
4049 result
= mUSABLe(m
);
4059 struct mallinfo
public_mALLINFo()
4063 if(__malloc_initialized
< 0)
4065 (void)mutex_lock(&main_arena
.mutex
);
4066 m
= mALLINFo(&main_arena
);
4067 (void)mutex_unlock(&main_arena
.mutex
);
4072 public_mALLOPt(int p
, int v
)
4075 result
= mALLOPt(p
, v
);
4080 ------------------------------ malloc ------------------------------
4084 _int_malloc(mstate av
, size_t bytes
)
4086 INTERNAL_SIZE_T nb
; /* normalized request size */
4087 unsigned int idx
; /* associated bin index */
4088 mbinptr bin
; /* associated bin */
4089 mfastbinptr
* fb
; /* associated fastbin */
4091 mchunkptr victim
; /* inspected/selected chunk */
4092 INTERNAL_SIZE_T size
; /* its size */
4093 int victim_index
; /* its bin index */
4095 mchunkptr remainder
; /* remainder from a split */
4096 unsigned long remainder_size
; /* its size */
4098 unsigned int block
; /* bit map traverser */
4099 unsigned int bit
; /* bit map traverser */
4100 unsigned int map
; /* current word of binmap */
4102 mchunkptr fwd
; /* misc temp for linking */
4103 mchunkptr bck
; /* misc temp for linking */
4106 Convert request size to internal form by adding SIZE_SZ bytes
4107 overhead plus possibly more to obtain necessary alignment and/or
4108 to obtain a size of at least MINSIZE, the smallest allocatable
4109 size. Also, checked_request2size traps (returning 0) request sizes
4110 that are so large that they wrap around zero when padded and
4114 checked_request2size(bytes
, nb
);
4117 If the size qualifies as a fastbin, first check corresponding bin.
4118 This code is safe to execute even if av is not yet initialized, so we
4119 can try it without checking, which saves some time on this fast path.
4122 if ((unsigned long)(nb
) <= (unsigned long)(get_max_fast ())) {
4123 long int idx
= fastbin_index(nb
);
4124 fb
= &(av
->fastbins
[idx
]);
4125 if ( (victim
= *fb
) != 0) {
4126 if (__builtin_expect (fastbin_index (chunksize (victim
)) != idx
, 0))
4127 malloc_printerr (check_action
, "malloc(): memory corruption (fast)",
4128 chunk2mem (victim
));
4130 check_remalloced_chunk(av
, victim
, nb
);
4131 void *p
= chunk2mem(victim
);
4132 if (__builtin_expect (perturb_byte
, 0))
4133 alloc_perturb (p
, bytes
);
4139 If a small request, check regular bin. Since these "smallbins"
4140 hold one size each, no searching within bins is necessary.
4141 (For a large request, we need to wait until unsorted chunks are
4142 processed to find best fit. But for small ones, fits are exact
4143 anyway, so we can check now, which is faster.)
4146 if (in_smallbin_range(nb
)) {
4147 idx
= smallbin_index(nb
);
4148 bin
= bin_at(av
,idx
);
4150 if ( (victim
= last(bin
)) != bin
) {
4151 if (victim
== 0) /* initialization check */
4152 malloc_consolidate(av
);
4155 set_inuse_bit_at_offset(victim
, nb
);
4159 if (av
!= &main_arena
)
4160 victim
->size
|= NON_MAIN_ARENA
;
4161 check_malloced_chunk(av
, victim
, nb
);
4162 void *p
= chunk2mem(victim
);
4163 if (__builtin_expect (perturb_byte
, 0))
4164 alloc_perturb (p
, bytes
);
4171 If this is a large request, consolidate fastbins before continuing.
4172 While it might look excessive to kill all fastbins before
4173 even seeing if there is space available, this avoids
4174 fragmentation problems normally associated with fastbins.
4175 Also, in practice, programs tend to have runs of either small or
4176 large requests, but less often mixtures, so consolidation is not
4177 invoked all that often in most programs. And the programs that
4178 it is called frequently in otherwise tend to fragment.
4182 idx
= largebin_index(nb
);
4183 if (have_fastchunks(av
))
4184 malloc_consolidate(av
);
4188 Process recently freed or remaindered chunks, taking one only if
4189 it is exact fit, or, if this a small request, the chunk is remainder from
4190 the most recent non-exact fit. Place other traversed chunks in
4191 bins. Note that this step is the only place in any routine where
4192 chunks are placed in bins.
4194 The outer loop here is needed because we might not realize until
4195 near the end of malloc that we should have consolidated, so must
4196 do so and retry. This happens at most once, and only when we would
4197 otherwise need to expand memory to service a "small" request.
4203 while ( (victim
= unsorted_chunks(av
)->bk
) != unsorted_chunks(av
)) {
4205 if (__builtin_expect (victim
->size
<= 2 * SIZE_SZ
, 0)
4206 || __builtin_expect (victim
->size
> av
->system_mem
, 0))
4207 malloc_printerr (check_action
, "malloc(): memory corruption",
4208 chunk2mem (victim
));
4209 size
= chunksize(victim
);
4212 If a small request, try to use last remainder if it is the
4213 only chunk in unsorted bin. This helps promote locality for
4214 runs of consecutive small requests. This is the only
4215 exception to best-fit, and applies only when there is
4216 no exact fit for a small chunk.
4219 if (in_smallbin_range(nb
) &&
4220 bck
== unsorted_chunks(av
) &&
4221 victim
== av
->last_remainder
&&
4222 (unsigned long)(size
) > (unsigned long)(nb
+ MINSIZE
)) {
4224 /* split and reattach remainder */
4225 remainder_size
= size
- nb
;
4226 remainder
= chunk_at_offset(victim
, nb
);
4227 unsorted_chunks(av
)->bk
= unsorted_chunks(av
)->fd
= remainder
;
4228 av
->last_remainder
= remainder
;
4229 remainder
->bk
= remainder
->fd
= unsorted_chunks(av
);
4230 if (!in_smallbin_range(remainder_size
))
4232 remainder
->fd_nextsize
= NULL
;
4233 remainder
->bk_nextsize
= NULL
;
4236 set_head(victim
, nb
| PREV_INUSE
|
4237 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4238 set_head(remainder
, remainder_size
| PREV_INUSE
);
4239 set_foot(remainder
, remainder_size
);
4241 check_malloced_chunk(av
, victim
, nb
);
4242 void *p
= chunk2mem(victim
);
4243 if (__builtin_expect (perturb_byte
, 0))
4244 alloc_perturb (p
, bytes
);
4248 /* remove from unsorted list */
4249 unsorted_chunks(av
)->bk
= bck
;
4250 bck
->fd
= unsorted_chunks(av
);
4252 /* Take now instead of binning if exact fit */
4255 set_inuse_bit_at_offset(victim
, size
);
4256 if (av
!= &main_arena
)
4257 victim
->size
|= NON_MAIN_ARENA
;
4258 check_malloced_chunk(av
, victim
, nb
);
4259 void *p
= chunk2mem(victim
);
4260 if (__builtin_expect (perturb_byte
, 0))
4261 alloc_perturb (p
, bytes
);
4265 /* place chunk in bin */
4267 if (in_smallbin_range(size
)) {
4268 victim_index
= smallbin_index(size
);
4269 bck
= bin_at(av
, victim_index
);
4273 victim_index
= largebin_index(size
);
4274 bck
= bin_at(av
, victim_index
);
4277 /* maintain large bins in sorted order */
4279 /* Or with inuse bit to speed comparisons */
4281 /* if smaller than smallest, bypass loop below */
4282 assert((bck
->bk
->size
& NON_MAIN_ARENA
) == 0);
4283 if ((unsigned long)(size
) < (unsigned long)(bck
->bk
->size
)) {
4287 victim
->fd_nextsize
= fwd
->fd
;
4288 victim
->bk_nextsize
= fwd
->fd
->bk_nextsize
;
4289 fwd
->fd
->bk_nextsize
= victim
->bk_nextsize
->fd_nextsize
= victim
;
4292 assert((fwd
->size
& NON_MAIN_ARENA
) == 0);
4293 while ((unsigned long) size
< fwd
->size
)
4295 fwd
= fwd
->fd_nextsize
;
4296 assert((fwd
->size
& NON_MAIN_ARENA
) == 0);
4299 if ((unsigned long) size
== (unsigned long) fwd
->size
)
4300 /* Always insert in the second position. */
4304 victim
->fd_nextsize
= fwd
;
4305 victim
->bk_nextsize
= fwd
->bk_nextsize
;
4306 fwd
->bk_nextsize
= victim
;
4307 victim
->bk_nextsize
->fd_nextsize
= victim
;
4312 victim
->fd_nextsize
= victim
->bk_nextsize
= victim
;
4315 mark_bin(av
, victim_index
);
4321 #define MAX_ITERS 10000
4322 if (++iters
>= MAX_ITERS
)
4327 If a large request, scan through the chunks of current bin in
4328 sorted order to find smallest that fits. Use the skip list for this.
4331 if (!in_smallbin_range(nb
)) {
4332 bin
= bin_at(av
, idx
);
4334 /* skip scan if empty or largest chunk is too small */
4335 if ((victim
= first(bin
)) != bin
&&
4336 (unsigned long)(victim
->size
) >= (unsigned long)(nb
)) {
4338 victim
= victim
->bk_nextsize
;
4339 while (((unsigned long)(size
= chunksize(victim
)) <
4340 (unsigned long)(nb
)))
4341 victim
= victim
->bk_nextsize
;
4343 /* Avoid removing the first entry for a size so that the skip
4344 list does not have to be rerouted. */
4345 if (victim
!= last(bin
) && victim
->size
== victim
->fd
->size
)
4346 victim
= victim
->fd
;
4348 remainder_size
= size
- nb
;
4349 unlink(victim
, bck
, fwd
);
4352 if (remainder_size
< MINSIZE
) {
4353 set_inuse_bit_at_offset(victim
, size
);
4354 if (av
!= &main_arena
)
4355 victim
->size
|= NON_MAIN_ARENA
;
4359 remainder
= chunk_at_offset(victim
, nb
);
4360 /* We cannot assume the unsorted list is empty and therefore
4361 have to perform a complete insert here. */
4362 bck
= unsorted_chunks(av
);
4364 remainder
->bk
= bck
;
4365 remainder
->fd
= fwd
;
4366 bck
->fd
= remainder
;
4367 fwd
->bk
= remainder
;
4368 if (!in_smallbin_range(remainder_size
))
4370 remainder
->fd_nextsize
= NULL
;
4371 remainder
->bk_nextsize
= NULL
;
4373 set_head(victim
, nb
| PREV_INUSE
|
4374 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4375 set_head(remainder
, remainder_size
| PREV_INUSE
);
4376 set_foot(remainder
, remainder_size
);
4378 check_malloced_chunk(av
, victim
, nb
);
4379 void *p
= chunk2mem(victim
);
4380 if (__builtin_expect (perturb_byte
, 0))
4381 alloc_perturb (p
, bytes
);
4387 Search for a chunk by scanning bins, starting with next largest
4388 bin. This search is strictly by best-fit; i.e., the smallest
4389 (with ties going to approximately the least recently used) chunk
4390 that fits is selected.
4392 The bitmap avoids needing to check that most blocks are nonempty.
4393 The particular case of skipping all bins during warm-up phases
4394 when no chunks have been returned yet is faster than it might look.
4398 bin
= bin_at(av
,idx
);
4399 block
= idx2block(idx
);
4400 map
= av
->binmap
[block
];
4405 /* Skip rest of block if there are no more set bits in this block. */
4406 if (bit
> map
|| bit
== 0) {
4408 if (++block
>= BINMAPSIZE
) /* out of bins */
4410 } while ( (map
= av
->binmap
[block
]) == 0);
4412 bin
= bin_at(av
, (block
<< BINMAPSHIFT
));
4416 /* Advance to bin with set bit. There must be one. */
4417 while ((bit
& map
) == 0) {
4418 bin
= next_bin(bin
);
4423 /* Inspect the bin. It is likely to be non-empty */
4426 /* If a false alarm (empty bin), clear the bit. */
4427 if (victim
== bin
) {
4428 av
->binmap
[block
] = map
&= ~bit
; /* Write through */
4429 bin
= next_bin(bin
);
4434 size
= chunksize(victim
);
4436 /* We know the first chunk in this bin is big enough to use. */
4437 assert((unsigned long)(size
) >= (unsigned long)(nb
));
4439 remainder_size
= size
- nb
;
4442 unlink(victim
, bck
, fwd
);
4445 if (remainder_size
< MINSIZE
) {
4446 set_inuse_bit_at_offset(victim
, size
);
4447 if (av
!= &main_arena
)
4448 victim
->size
|= NON_MAIN_ARENA
;
4453 remainder
= chunk_at_offset(victim
, nb
);
4455 /* We cannot assume the unsorted list is empty and therefore
4456 have to perform a complete insert here. */
4457 bck
= unsorted_chunks(av
);
4459 remainder
->bk
= bck
;
4460 remainder
->fd
= fwd
;
4461 bck
->fd
= remainder
;
4462 fwd
->bk
= remainder
;
4464 /* advertise as last remainder */
4465 if (in_smallbin_range(nb
))
4466 av
->last_remainder
= remainder
;
4467 if (!in_smallbin_range(remainder_size
))
4469 remainder
->fd_nextsize
= NULL
;
4470 remainder
->bk_nextsize
= NULL
;
4472 set_head(victim
, nb
| PREV_INUSE
|
4473 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4474 set_head(remainder
, remainder_size
| PREV_INUSE
);
4475 set_foot(remainder
, remainder_size
);
4477 check_malloced_chunk(av
, victim
, nb
);
4478 void *p
= chunk2mem(victim
);
4479 if (__builtin_expect (perturb_byte
, 0))
4480 alloc_perturb (p
, bytes
);
4487 If large enough, split off the chunk bordering the end of memory
4488 (held in av->top). Note that this is in accord with the best-fit
4489 search rule. In effect, av->top is treated as larger (and thus
4490 less well fitting) than any other available chunk since it can
4491 be extended to be as large as necessary (up to system
4494 We require that av->top always exists (i.e., has size >=
4495 MINSIZE) after initialization, so if it would otherwise be
4496 exhausted by current request, it is replenished. (The main
4497 reason for ensuring it exists is that we may need MINSIZE space
4498 to put in fenceposts in sysmalloc.)
4502 size
= chunksize(victim
);
4504 if ((unsigned long)(size
) >= (unsigned long)(nb
+ MINSIZE
)) {
4505 remainder_size
= size
- nb
;
4506 remainder
= chunk_at_offset(victim
, nb
);
4507 av
->top
= remainder
;
4508 set_head(victim
, nb
| PREV_INUSE
|
4509 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4510 set_head(remainder
, remainder_size
| PREV_INUSE
);
4512 check_malloced_chunk(av
, victim
, nb
);
4513 void *p
= chunk2mem(victim
);
4514 if (__builtin_expect (perturb_byte
, 0))
4515 alloc_perturb (p
, bytes
);
4520 If there is space available in fastbins, consolidate and retry,
4521 to possibly avoid expanding memory. This can occur only if nb is
4522 in smallbin range so we didn't consolidate upon entry.
4525 else if (have_fastchunks(av
)) {
4526 assert(in_smallbin_range(nb
));
4527 malloc_consolidate(av
);
4528 idx
= smallbin_index(nb
); /* restore original bin index */
4532 Otherwise, relay to handle system-dependent cases
4535 void *p
= sYSMALLOc(nb
, av
);
4536 if (p
!= NULL
&& __builtin_expect (perturb_byte
, 0))
4537 alloc_perturb (p
, bytes
);
4544 ------------------------------ free ------------------------------
4548 _int_free(mstate av
, Void_t
* mem
)
4550 mchunkptr p
; /* chunk corresponding to mem */
4551 INTERNAL_SIZE_T size
; /* its size */
4552 mfastbinptr
* fb
; /* associated fastbin */
4553 mchunkptr nextchunk
; /* next contiguous chunk */
4554 INTERNAL_SIZE_T nextsize
; /* its size */
4555 int nextinuse
; /* true if nextchunk is used */
4556 INTERNAL_SIZE_T prevsize
; /* size of previous contiguous chunk */
4557 mchunkptr bck
; /* misc temp for linking */
4558 mchunkptr fwd
; /* misc temp for linking */
4560 const char *errstr
= NULL
;
4563 size
= chunksize(p
);
4565 /* Little security check which won't hurt performance: the
4566 allocator never wrapps around at the end of the address space.
4567 Therefore we can exclude some size values which might appear
4568 here by accident or by "design" from some intruder. */
4569 if (__builtin_expect ((uintptr_t) p
> (uintptr_t) -size
, 0)
4570 || __builtin_expect (misaligned_chunk (p
), 0))
4572 errstr
= "free(): invalid pointer";
4574 malloc_printerr (check_action
, errstr
, mem
);
4577 /* We know that each chunk is at least MINSIZE bytes in size. */
4578 if (__builtin_expect (size
< MINSIZE
, 0))
4580 errstr
= "free(): invalid size";
4584 check_inuse_chunk(av
, p
);
4587 If eligible, place chunk on a fastbin so it can be found
4588 and used quickly in malloc.
4591 if ((unsigned long)(size
) <= (unsigned long)(get_max_fast ())
4595 If TRIM_FASTBINS set, don't place chunks
4596 bordering top into fastbins
4598 && (chunk_at_offset(p
, size
) != av
->top
)
4602 if (__builtin_expect (chunk_at_offset (p
, size
)->size
<= 2 * SIZE_SZ
, 0)
4603 || __builtin_expect (chunksize (chunk_at_offset (p
, size
))
4604 >= av
->system_mem
, 0))
4606 errstr
= "free(): invalid next size (fast)";
4611 fb
= &(av
->fastbins
[fastbin_index(size
)]);
4612 /* Another simple check: make sure the top of the bin is not the
4613 record we are going to add (i.e., double free). */
4614 if (__builtin_expect (*fb
== p
, 0))
4616 errstr
= "double free or corruption (fasttop)";
4620 if (__builtin_expect (perturb_byte
, 0))
4621 free_perturb (mem
, size
- SIZE_SZ
);
4628 Consolidate other non-mmapped chunks as they arrive.
4631 else if (!chunk_is_mmapped(p
)) {
4632 nextchunk
= chunk_at_offset(p
, size
);
4634 /* Lightweight tests: check whether the block is already the
4636 if (__builtin_expect (p
== av
->top
, 0))
4638 errstr
= "double free or corruption (top)";
4641 /* Or whether the next chunk is beyond the boundaries of the arena. */
4642 if (__builtin_expect (contiguous (av
)
4643 && (char *) nextchunk
4644 >= ((char *) av
->top
+ chunksize(av
->top
)), 0))
4646 errstr
= "double free or corruption (out)";
4649 /* Or whether the block is actually not marked used. */
4650 if (__builtin_expect (!prev_inuse(nextchunk
), 0))
4652 errstr
= "double free or corruption (!prev)";
4656 nextsize
= chunksize(nextchunk
);
4657 if (__builtin_expect (nextchunk
->size
<= 2 * SIZE_SZ
, 0)
4658 || __builtin_expect (nextsize
>= av
->system_mem
, 0))
4660 errstr
= "free(): invalid next size (normal)";
4664 if (__builtin_expect (perturb_byte
, 0))
4665 free_perturb (mem
, size
- SIZE_SZ
);
4667 /* consolidate backward */
4668 if (!prev_inuse(p
)) {
4669 prevsize
= p
->prev_size
;
4671 p
= chunk_at_offset(p
, -((long) prevsize
));
4672 unlink(p
, bck
, fwd
);
4675 if (nextchunk
!= av
->top
) {
4676 /* get and clear inuse bit */
4677 nextinuse
= inuse_bit_at_offset(nextchunk
, nextsize
);
4679 /* consolidate forward */
4681 unlink(nextchunk
, bck
, fwd
);
4684 clear_inuse_bit_at_offset(nextchunk
, 0);
4687 Place the chunk in unsorted chunk list. Chunks are
4688 not placed into regular bins until after they have
4689 been given one chance to be used in malloc.
4692 bck
= unsorted_chunks(av
);
4696 if (!in_smallbin_range(size
))
4698 p
->fd_nextsize
= NULL
;
4699 p
->bk_nextsize
= NULL
;
4704 set_head(p
, size
| PREV_INUSE
);
4707 check_free_chunk(av
, p
);
4711 If the chunk borders the current high end of memory,
4712 consolidate into top
4717 set_head(p
, size
| PREV_INUSE
);
4723 If freeing a large space, consolidate possibly-surrounding
4724 chunks. Then, if the total unused topmost memory exceeds trim
4725 threshold, ask malloc_trim to reduce top.
4727 Unless max_fast is 0, we don't know if there are fastbins
4728 bordering top, so we cannot tell for sure whether threshold
4729 has been reached unless fastbins are consolidated. But we
4730 don't want to consolidate on each free. As a compromise,
4731 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
4735 if ((unsigned long)(size
) >= FASTBIN_CONSOLIDATION_THRESHOLD
) {
4736 if (have_fastchunks(av
))
4737 malloc_consolidate(av
);
4739 if (av
== &main_arena
) {
4740 #ifndef MORECORE_CANNOT_TRIM
4741 if ((unsigned long)(chunksize(av
->top
)) >=
4742 (unsigned long)(mp_
.trim_threshold
))
4743 sYSTRIm(mp_
.top_pad
, av
);
4746 /* Always try heap_trim(), even if the top chunk is not
4747 large, because the corresponding heap might go away. */
4748 heap_info
*heap
= heap_for_ptr(top(av
));
4750 assert(heap
->ar_ptr
== av
);
4751 heap_trim(heap
, mp_
.top_pad
);
4757 If the chunk was allocated via mmap, release via munmap(). Note
4758 that if HAVE_MMAP is false but chunk_is_mmapped is true, then
4759 user must have overwritten memory. There's nothing we can do to
4760 catch this error unless MALLOC_DEBUG is set, in which case
4761 check_inuse_chunk (above) will have triggered error.
4772 ------------------------- malloc_consolidate -------------------------
4774 malloc_consolidate is a specialized version of free() that tears
4775 down chunks held in fastbins. Free itself cannot be used for this
4776 purpose since, among other things, it might place chunks back onto
4777 fastbins. So, instead, we need to use a minor variant of the same
4780 Also, because this routine needs to be called the first time through
4781 malloc anyway, it turns out to be the perfect place to trigger
4782 initialization code.
4786 static void malloc_consolidate(mstate av
)
4788 static void malloc_consolidate(av
) mstate av
;
4791 mfastbinptr
* fb
; /* current fastbin being consolidated */
4792 mfastbinptr
* maxfb
; /* last fastbin (for loop control) */
4793 mchunkptr p
; /* current chunk being consolidated */
4794 mchunkptr nextp
; /* next chunk to consolidate */
4795 mchunkptr unsorted_bin
; /* bin header */
4796 mchunkptr first_unsorted
; /* chunk to link to */
4798 /* These have same use as in free() */
4799 mchunkptr nextchunk
;
4800 INTERNAL_SIZE_T size
;
4801 INTERNAL_SIZE_T nextsize
;
4802 INTERNAL_SIZE_T prevsize
;
4808 If max_fast is 0, we know that av hasn't
4809 yet been initialized, in which case do so below
4812 if (get_max_fast () != 0) {
4813 clear_fastchunks(av
);
4815 unsorted_bin
= unsorted_chunks(av
);
4818 Remove each chunk from fast bin and consolidate it, placing it
4819 then in unsorted bin. Among other reasons for doing this,
4820 placing in unsorted bin avoids needing to calculate actual bins
4821 until malloc is sure that chunks aren't immediately going to be
4826 /* It is wrong to limit the fast bins to search using get_max_fast
4827 because, except for the main arena, all the others might have
4828 blocks in the high fast bins. It's not worth it anyway, just
4829 search all bins all the time. */
4830 maxfb
= &(av
->fastbins
[fastbin_index(get_max_fast ())]);
4832 maxfb
= &(av
->fastbins
[NFASTBINS
- 1]);
4834 fb
= &(av
->fastbins
[0]);
4836 if ( (p
= *fb
) != 0) {
4840 check_inuse_chunk(av
, p
);
4843 /* Slightly streamlined version of consolidation code in free() */
4844 size
= p
->size
& ~(PREV_INUSE
|NON_MAIN_ARENA
);
4845 nextchunk
= chunk_at_offset(p
, size
);
4846 nextsize
= chunksize(nextchunk
);
4848 if (!prev_inuse(p
)) {
4849 prevsize
= p
->prev_size
;
4851 p
= chunk_at_offset(p
, -((long) prevsize
));
4852 unlink(p
, bck
, fwd
);
4855 if (nextchunk
!= av
->top
) {
4856 nextinuse
= inuse_bit_at_offset(nextchunk
, nextsize
);
4860 unlink(nextchunk
, bck
, fwd
);
4862 clear_inuse_bit_at_offset(nextchunk
, 0);
4864 first_unsorted
= unsorted_bin
->fd
;
4865 unsorted_bin
->fd
= p
;
4866 first_unsorted
->bk
= p
;
4868 if (!in_smallbin_range (size
)) {
4869 p
->fd_nextsize
= NULL
;
4870 p
->bk_nextsize
= NULL
;
4873 set_head(p
, size
| PREV_INUSE
);
4874 p
->bk
= unsorted_bin
;
4875 p
->fd
= first_unsorted
;
4881 set_head(p
, size
| PREV_INUSE
);
4885 } while ( (p
= nextp
) != 0);
4888 } while (fb
++ != maxfb
);
4891 malloc_init_state(av
);
4892 check_malloc_state(av
);
4897 ------------------------------ realloc ------------------------------
4901 _int_realloc(mstate av
, Void_t
* oldmem
, size_t bytes
)
4903 INTERNAL_SIZE_T nb
; /* padded request size */
4905 mchunkptr oldp
; /* chunk corresponding to oldmem */
4906 INTERNAL_SIZE_T oldsize
; /* its size */
4908 mchunkptr newp
; /* chunk to return */
4909 INTERNAL_SIZE_T newsize
; /* its size */
4910 Void_t
* newmem
; /* corresponding user mem */
4912 mchunkptr next
; /* next contiguous chunk after oldp */
4914 mchunkptr remainder
; /* extra space at end of newp */
4915 unsigned long remainder_size
; /* its size */
4917 mchunkptr bck
; /* misc temp for linking */
4918 mchunkptr fwd
; /* misc temp for linking */
4920 unsigned long copysize
; /* bytes to copy */
4921 unsigned int ncopies
; /* INTERNAL_SIZE_T words to copy */
4922 INTERNAL_SIZE_T
* s
; /* copy source */
4923 INTERNAL_SIZE_T
* d
; /* copy destination */
4925 const char *errstr
= NULL
;
4928 checked_request2size(bytes
, nb
);
4930 oldp
= mem2chunk(oldmem
);
4931 oldsize
= chunksize(oldp
);
4933 /* Simple tests for old block integrity. */
4934 if (__builtin_expect (misaligned_chunk (oldp
), 0))
4936 errstr
= "realloc(): invalid pointer";
4938 malloc_printerr (check_action
, errstr
, oldmem
);
4941 if (__builtin_expect (oldp
->size
<= 2 * SIZE_SZ
, 0)
4942 || __builtin_expect (oldsize
>= av
->system_mem
, 0))
4944 errstr
= "realloc(): invalid old size";
4948 check_inuse_chunk(av
, oldp
);
4950 if (!chunk_is_mmapped(oldp
)) {
4952 next
= chunk_at_offset(oldp
, oldsize
);
4953 INTERNAL_SIZE_T nextsize
= chunksize(next
);
4954 if (__builtin_expect (next
->size
<= 2 * SIZE_SZ
, 0)
4955 || __builtin_expect (nextsize
>= av
->system_mem
, 0))
4957 errstr
= "realloc(): invalid next size";
4961 if ((unsigned long)(oldsize
) >= (unsigned long)(nb
)) {
4962 /* already big enough; split below */
4968 /* Try to expand forward into top */
4969 if (next
== av
->top
&&
4970 (unsigned long)(newsize
= oldsize
+ nextsize
) >=
4971 (unsigned long)(nb
+ MINSIZE
)) {
4972 set_head_size(oldp
, nb
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
4973 av
->top
= chunk_at_offset(oldp
, nb
);
4974 set_head(av
->top
, (newsize
- nb
) | PREV_INUSE
);
4975 check_inuse_chunk(av
, oldp
);
4976 return chunk2mem(oldp
);
4979 /* Try to expand forward into next chunk; split off remainder below */
4980 else if (next
!= av
->top
&&
4982 (unsigned long)(newsize
= oldsize
+ nextsize
) >=
4983 (unsigned long)(nb
)) {
4985 unlink(next
, bck
, fwd
);
4988 /* allocate, copy, free */
4990 newmem
= _int_malloc(av
, nb
- MALLOC_ALIGN_MASK
);
4992 return 0; /* propagate failure */
4994 newp
= mem2chunk(newmem
);
4995 newsize
= chunksize(newp
);
4998 Avoid copy if newp is next chunk after oldp.
5006 Unroll copy of <= 36 bytes (72 if 8byte sizes)
5007 We know that contents have an odd number of
5008 INTERNAL_SIZE_T-sized words; minimally 3.
5011 copysize
= oldsize
- SIZE_SZ
;
5012 s
= (INTERNAL_SIZE_T
*)(oldmem
);
5013 d
= (INTERNAL_SIZE_T
*)(newmem
);
5014 ncopies
= copysize
/ sizeof(INTERNAL_SIZE_T
);
5015 assert(ncopies
>= 3);
5018 MALLOC_COPY(d
, s
, copysize
);
5038 _int_free(av
, oldmem
);
5039 check_inuse_chunk(av
, newp
);
5040 return chunk2mem(newp
);
5045 /* If possible, free extra space in old or extended chunk */
5047 assert((unsigned long)(newsize
) >= (unsigned long)(nb
));
5049 remainder_size
= newsize
- nb
;
5051 if (remainder_size
< MINSIZE
) { /* not enough extra to split off */
5052 set_head_size(newp
, newsize
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
5053 set_inuse_bit_at_offset(newp
, newsize
);
5055 else { /* split remainder */
5056 remainder
= chunk_at_offset(newp
, nb
);
5057 set_head_size(newp
, nb
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
5058 set_head(remainder
, remainder_size
| PREV_INUSE
|
5059 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
5060 /* Mark remainder as inuse so free() won't complain */
5061 set_inuse_bit_at_offset(remainder
, remainder_size
);
5062 _int_free(av
, chunk2mem(remainder
));
5065 check_inuse_chunk(av
, newp
);
5066 return chunk2mem(newp
);
5077 INTERNAL_SIZE_T offset
= oldp
->prev_size
;
5078 size_t pagemask
= mp_
.pagesize
- 1;
5082 /* Note the extra SIZE_SZ overhead */
5083 newsize
= (nb
+ offset
+ SIZE_SZ
+ pagemask
) & ~pagemask
;
5085 /* don't need to remap if still within same page */
5086 if (oldsize
== newsize
- offset
)
5089 cp
= (char*)mremap((char*)oldp
- offset
, oldsize
+ offset
, newsize
, 1);
5091 if (cp
!= MAP_FAILED
) {
5093 newp
= (mchunkptr
)(cp
+ offset
);
5094 set_head(newp
, (newsize
- offset
)|IS_MMAPPED
);
5096 assert(aligned_OK(chunk2mem(newp
)));
5097 assert((newp
->prev_size
== offset
));
5099 /* update statistics */
5100 sum
= mp_
.mmapped_mem
+= newsize
- oldsize
;
5101 if (sum
> (unsigned long)(mp_
.max_mmapped_mem
))
5102 mp_
.max_mmapped_mem
= sum
;
5104 sum
+= main_arena
.system_mem
;
5105 if (sum
> (unsigned long)(mp_
.max_total_mem
))
5106 mp_
.max_total_mem
= sum
;
5109 return chunk2mem(newp
);
5113 /* Note the extra SIZE_SZ overhead. */
5114 if ((unsigned long)(oldsize
) >= (unsigned long)(nb
+ SIZE_SZ
))
5115 newmem
= oldmem
; /* do nothing */
5117 /* Must alloc, copy, free. */
5118 newmem
= _int_malloc(av
, nb
- MALLOC_ALIGN_MASK
);
5120 MALLOC_COPY(newmem
, oldmem
, oldsize
- 2*SIZE_SZ
);
5121 _int_free(av
, oldmem
);
5127 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
5128 check_malloc_state(av
);
5129 MALLOC_FAILURE_ACTION
;
5136 ------------------------------ memalign ------------------------------
5140 _int_memalign(mstate av
, size_t alignment
, size_t bytes
)
5142 INTERNAL_SIZE_T nb
; /* padded request size */
5143 char* m
; /* memory returned by malloc call */
5144 mchunkptr p
; /* corresponding chunk */
5145 char* brk
; /* alignment point within p */
5146 mchunkptr newp
; /* chunk to return */
5147 INTERNAL_SIZE_T newsize
; /* its size */
5148 INTERNAL_SIZE_T leadsize
; /* leading space before alignment point */
5149 mchunkptr remainder
; /* spare room at end to split off */
5150 unsigned long remainder_size
; /* its size */
5151 INTERNAL_SIZE_T size
;
5153 /* If need less alignment than we give anyway, just relay to malloc */
5155 if (alignment
<= MALLOC_ALIGNMENT
) return _int_malloc(av
, bytes
);
5157 /* Otherwise, ensure that it is at least a minimum chunk size */
5159 if (alignment
< MINSIZE
) alignment
= MINSIZE
;
5161 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
5162 if ((alignment
& (alignment
- 1)) != 0) {
5163 size_t a
= MALLOC_ALIGNMENT
* 2;
5164 while ((unsigned long)a
< (unsigned long)alignment
) a
<<= 1;
5168 checked_request2size(bytes
, nb
);
5171 Strategy: find a spot within that chunk that meets the alignment
5172 request, and then possibly free the leading and trailing space.
5176 /* Call malloc with worst case padding to hit alignment. */
5178 m
= (char*)(_int_malloc(av
, nb
+ alignment
+ MINSIZE
));
5180 if (m
== 0) return 0; /* propagate failure */
5184 if ((((unsigned long)(m
)) % alignment
) != 0) { /* misaligned */
5187 Find an aligned spot inside chunk. Since we need to give back
5188 leading space in a chunk of at least MINSIZE, if the first
5189 calculation places us at a spot with less than MINSIZE leader,
5190 we can move to the next aligned spot -- we've allocated enough
5191 total room so that this is always possible.
5194 brk
= (char*)mem2chunk(((unsigned long)(m
+ alignment
- 1)) &
5195 -((signed long) alignment
));
5196 if ((unsigned long)(brk
- (char*)(p
)) < MINSIZE
)
5199 newp
= (mchunkptr
)brk
;
5200 leadsize
= brk
- (char*)(p
);
5201 newsize
= chunksize(p
) - leadsize
;
5203 /* For mmapped chunks, just adjust offset */
5204 if (chunk_is_mmapped(p
)) {
5205 newp
->prev_size
= p
->prev_size
+ leadsize
;
5206 set_head(newp
, newsize
|IS_MMAPPED
);
5207 return chunk2mem(newp
);
5210 /* Otherwise, give back leader, use the rest */
5211 set_head(newp
, newsize
| PREV_INUSE
|
5212 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
5213 set_inuse_bit_at_offset(newp
, newsize
);
5214 set_head_size(p
, leadsize
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
5215 _int_free(av
, chunk2mem(p
));
5218 assert (newsize
>= nb
&&
5219 (((unsigned long)(chunk2mem(p
))) % alignment
) == 0);
5222 /* Also give back spare room at the end */
5223 if (!chunk_is_mmapped(p
)) {
5224 size
= chunksize(p
);
5225 if ((unsigned long)(size
) > (unsigned long)(nb
+ MINSIZE
)) {
5226 remainder_size
= size
- nb
;
5227 remainder
= chunk_at_offset(p
, nb
);
5228 set_head(remainder
, remainder_size
| PREV_INUSE
|
5229 (av
!= &main_arena
? NON_MAIN_ARENA
: 0));
5230 set_head_size(p
, nb
);
5231 _int_free(av
, chunk2mem(remainder
));
5235 check_inuse_chunk(av
, p
);
5236 return chunk2mem(p
);
5241 ------------------------------ calloc ------------------------------
5245 Void_t
* cALLOc(size_t n_elements
, size_t elem_size
)
5247 Void_t
* cALLOc(n_elements
, elem_size
) size_t n_elements
; size_t elem_size
;
5251 unsigned long clearsize
;
5252 unsigned long nclears
;
5255 Void_t
* mem
= mALLOc(n_elements
* elem_size
);
5261 if (!chunk_is_mmapped(p
)) /* don't need to clear mmapped space */
5265 Unroll clear of <= 36 bytes (72 if 8byte sizes)
5266 We know that contents have an odd number of
5267 INTERNAL_SIZE_T-sized words; minimally 3.
5270 d
= (INTERNAL_SIZE_T
*)mem
;
5271 clearsize
= chunksize(p
) - SIZE_SZ
;
5272 nclears
= clearsize
/ sizeof(INTERNAL_SIZE_T
);
5273 assert(nclears
>= 3);
5276 MALLOC_ZERO(d
, clearsize
);
5303 ------------------------- independent_calloc -------------------------
5308 _int_icalloc(mstate av
, size_t n_elements
, size_t elem_size
, Void_t
* chunks
[])
5310 _int_icalloc(av
, n_elements
, elem_size
, chunks
)
5311 mstate av
; size_t n_elements
; size_t elem_size
; Void_t
* chunks
[];
5314 size_t sz
= elem_size
; /* serves as 1-element array */
5315 /* opts arg of 3 means all elements are same size, and should be cleared */
5316 return iALLOc(av
, n_elements
, &sz
, 3, chunks
);
5320 ------------------------- independent_comalloc -------------------------
5325 _int_icomalloc(mstate av
, size_t n_elements
, size_t sizes
[], Void_t
* chunks
[])
5327 _int_icomalloc(av
, n_elements
, sizes
, chunks
)
5328 mstate av
; size_t n_elements
; size_t sizes
[]; Void_t
* chunks
[];
5331 return iALLOc(av
, n_elements
, sizes
, 0, chunks
);
5336 ------------------------------ ialloc ------------------------------
5337 ialloc provides common support for independent_X routines, handling all of
5338 the combinations that can result.
5341 bit 0 set if all elements are same size (using sizes[0])
5342 bit 1 set if elements should be zeroed
5348 iALLOc(mstate av
, size_t n_elements
, size_t* sizes
, int opts
, Void_t
* chunks
[])
5350 iALLOc(av
, n_elements
, sizes
, opts
, chunks
)
5351 mstate av
; size_t n_elements
; size_t* sizes
; int opts
; Void_t
* chunks
[];
5354 INTERNAL_SIZE_T element_size
; /* chunksize of each element, if all same */
5355 INTERNAL_SIZE_T contents_size
; /* total size of elements */
5356 INTERNAL_SIZE_T array_size
; /* request size of pointer array */
5357 Void_t
* mem
; /* malloced aggregate space */
5358 mchunkptr p
; /* corresponding chunk */
5359 INTERNAL_SIZE_T remainder_size
; /* remaining bytes while splitting */
5360 Void_t
** marray
; /* either "chunks" or malloced ptr array */
5361 mchunkptr array_chunk
; /* chunk for malloced ptr array */
5362 int mmx
; /* to disable mmap */
5363 INTERNAL_SIZE_T size
;
5364 INTERNAL_SIZE_T size_flags
;
5367 /* Ensure initialization/consolidation */
5368 if (have_fastchunks(av
)) malloc_consolidate(av
);
5370 /* compute array length, if needed */
5372 if (n_elements
== 0)
5373 return chunks
; /* nothing to do */
5378 /* if empty req, must still return chunk representing empty array */
5379 if (n_elements
== 0)
5380 return (Void_t
**) _int_malloc(av
, 0);
5382 array_size
= request2size(n_elements
* (sizeof(Void_t
*)));
5385 /* compute total element size */
5386 if (opts
& 0x1) { /* all-same-size */
5387 element_size
= request2size(*sizes
);
5388 contents_size
= n_elements
* element_size
;
5390 else { /* add up all the sizes */
5393 for (i
= 0; i
!= n_elements
; ++i
)
5394 contents_size
+= request2size(sizes
[i
]);
5397 /* subtract out alignment bytes from total to minimize overallocation */
5398 size
= contents_size
+ array_size
- MALLOC_ALIGN_MASK
;
5401 Allocate the aggregate chunk.
5402 But first disable mmap so malloc won't use it, since
5403 we would not be able to later free/realloc space internal
5404 to a segregated mmap region.
5406 mmx
= mp_
.n_mmaps_max
; /* disable mmap */
5407 mp_
.n_mmaps_max
= 0;
5408 mem
= _int_malloc(av
, size
);
5409 mp_
.n_mmaps_max
= mmx
; /* reset mmap */
5414 assert(!chunk_is_mmapped(p
));
5415 remainder_size
= chunksize(p
);
5417 if (opts
& 0x2) { /* optionally clear the elements */
5418 MALLOC_ZERO(mem
, remainder_size
- SIZE_SZ
- array_size
);
5421 size_flags
= PREV_INUSE
| (av
!= &main_arena
? NON_MAIN_ARENA
: 0);
5423 /* If not provided, allocate the pointer array as final part of chunk */
5425 array_chunk
= chunk_at_offset(p
, contents_size
);
5426 marray
= (Void_t
**) (chunk2mem(array_chunk
));
5427 set_head(array_chunk
, (remainder_size
- contents_size
) | size_flags
);
5428 remainder_size
= contents_size
;
5431 /* split out elements */
5432 for (i
= 0; ; ++i
) {
5433 marray
[i
] = chunk2mem(p
);
5434 if (i
!= n_elements
-1) {
5435 if (element_size
!= 0)
5436 size
= element_size
;
5438 size
= request2size(sizes
[i
]);
5439 remainder_size
-= size
;
5440 set_head(p
, size
| size_flags
);
5441 p
= chunk_at_offset(p
, size
);
5443 else { /* the final element absorbs any overallocation slop */
5444 set_head(p
, remainder_size
| size_flags
);
5450 if (marray
!= chunks
) {
5451 /* final element must have exactly exhausted chunk */
5452 if (element_size
!= 0)
5453 assert(remainder_size
== element_size
);
5455 assert(remainder_size
== request2size(sizes
[i
]));
5456 check_inuse_chunk(av
, mem2chunk(marray
));
5459 for (i
= 0; i
!= n_elements
; ++i
)
5460 check_inuse_chunk(av
, mem2chunk(marray
[i
]));
5469 ------------------------------ valloc ------------------------------
5474 _int_valloc(mstate av
, size_t bytes
)
5476 _int_valloc(av
, bytes
) mstate av
; size_t bytes
;
5479 /* Ensure initialization/consolidation */
5480 if (have_fastchunks(av
)) malloc_consolidate(av
);
5481 return _int_memalign(av
, mp_
.pagesize
, bytes
);
5485 ------------------------------ pvalloc ------------------------------
5491 _int_pvalloc(mstate av
, size_t bytes
)
5493 _int_pvalloc(av
, bytes
) mstate av
, size_t bytes
;
5498 /* Ensure initialization/consolidation */
5499 if (have_fastchunks(av
)) malloc_consolidate(av
);
5500 pagesz
= mp_
.pagesize
;
5501 return _int_memalign(av
, pagesz
, (bytes
+ pagesz
- 1) & ~(pagesz
- 1));
5506 ------------------------------ malloc_trim ------------------------------
5510 static int mTRIm(mstate av
, size_t pad
)
5512 static int mTRIm(av
, pad
) mstate av
; size_t pad
;
5515 /* Ensure initialization/consolidation */
5516 malloc_consolidate (av
);
5518 const size_t ps
= mp_
.pagesize
;
5519 int psindex
= bin_index (ps
);
5520 const size_t psm1
= ps
- 1;
5523 for (int i
= 1; i
< NBINS
; ++i
)
5524 if (i
== 1 || i
>= psindex
)
5526 mbinptr bin
= bin_at (av
, i
);
5528 for (mchunkptr p
= last (bin
); p
!= bin
; p
= p
->bk
)
5530 INTERNAL_SIZE_T size
= chunksize (p
);
5532 if (size
> psm1
+ sizeof (struct malloc_chunk
))
5534 /* See whether the chunk contains at least one unused page. */
5535 char *paligned_mem
= (char *) (((uintptr_t) p
5536 + sizeof (struct malloc_chunk
)
5539 assert ((char *) chunk2mem (p
) + 4 * SIZE_SZ
<= paligned_mem
);
5540 assert ((char *) p
+ size
> paligned_mem
);
5542 /* This is the size we could potentially free. */
5543 size
-= paligned_mem
- (char *) p
;
5548 /* When debugging we simulate destroying the memory
5550 memset (paligned_mem
, 0x89, size
& ~psm1
);
5552 madvise (paligned_mem
, size
& ~psm1
, MADV_DONTNEED
);
5560 #ifndef MORECORE_CANNOT_TRIM
5561 return result
| (av
== &main_arena
? sYSTRIm (pad
, av
) : 0);
5569 ------------------------- malloc_usable_size -------------------------
5573 size_t mUSABLe(Void_t
* mem
)
5575 size_t mUSABLe(mem
) Void_t
* mem
;
5581 if (chunk_is_mmapped(p
))
5582 return chunksize(p
) - 2*SIZE_SZ
;
5584 return chunksize(p
) - SIZE_SZ
;
5590 ------------------------------ mallinfo ------------------------------
5593 struct mallinfo
mALLINFo(mstate av
)
5599 INTERNAL_SIZE_T avail
;
5600 INTERNAL_SIZE_T fastavail
;
5604 /* Ensure initialization */
5605 if (av
->top
== 0) malloc_consolidate(av
);
5607 check_malloc_state(av
);
5609 /* Account for top */
5610 avail
= chunksize(av
->top
);
5611 nblocks
= 1; /* top always exists */
5613 /* traverse fastbins */
5617 for (i
= 0; i
< NFASTBINS
; ++i
) {
5618 for (p
= av
->fastbins
[i
]; p
!= 0; p
= p
->fd
) {
5620 fastavail
+= chunksize(p
);
5626 /* traverse regular bins */
5627 for (i
= 1; i
< NBINS
; ++i
) {
5629 for (p
= last(b
); p
!= b
; p
= p
->bk
) {
5631 avail
+= chunksize(p
);
5635 mi
.smblks
= nfastblocks
;
5636 mi
.ordblks
= nblocks
;
5637 mi
.fordblks
= avail
;
5638 mi
.uordblks
= av
->system_mem
- avail
;
5639 mi
.arena
= av
->system_mem
;
5640 mi
.hblks
= mp_
.n_mmaps
;
5641 mi
.hblkhd
= mp_
.mmapped_mem
;
5642 mi
.fsmblks
= fastavail
;
5643 mi
.keepcost
= chunksize(av
->top
);
5644 mi
.usmblks
= mp_
.max_total_mem
;
5649 ------------------------------ malloc_stats ------------------------------
5657 unsigned int in_use_b
= mp_
.mmapped_mem
, system_b
= in_use_b
;
5659 long stat_lock_direct
= 0, stat_lock_loop
= 0, stat_lock_wait
= 0;
5662 if(__malloc_initialized
< 0)
5665 _IO_flockfile (stderr
);
5666 int old_flags2
= ((_IO_FILE
*) stderr
)->_flags2
;
5667 ((_IO_FILE
*) stderr
)->_flags2
|= _IO_FLAGS2_NOTCANCEL
;
5669 for (i
=0, ar_ptr
= &main_arena
;; i
++) {
5670 (void)mutex_lock(&ar_ptr
->mutex
);
5671 mi
= mALLINFo(ar_ptr
);
5672 fprintf(stderr
, "Arena %d:\n", i
);
5673 fprintf(stderr
, "system bytes = %10u\n", (unsigned int)mi
.arena
);
5674 fprintf(stderr
, "in use bytes = %10u\n", (unsigned int)mi
.uordblks
);
5675 #if MALLOC_DEBUG > 1
5677 dump_heap(heap_for_ptr(top(ar_ptr
)));
5679 system_b
+= mi
.arena
;
5680 in_use_b
+= mi
.uordblks
;
5682 stat_lock_direct
+= ar_ptr
->stat_lock_direct
;
5683 stat_lock_loop
+= ar_ptr
->stat_lock_loop
;
5684 stat_lock_wait
+= ar_ptr
->stat_lock_wait
;
5686 (void)mutex_unlock(&ar_ptr
->mutex
);
5687 ar_ptr
= ar_ptr
->next
;
5688 if(ar_ptr
== &main_arena
) break;
5691 fprintf(stderr
, "Total (incl. mmap):\n");
5693 fprintf(stderr
, "Total:\n");
5695 fprintf(stderr
, "system bytes = %10u\n", system_b
);
5696 fprintf(stderr
, "in use bytes = %10u\n", in_use_b
);
5698 fprintf(stderr
, "max system bytes = %10u\n", (unsigned int)mp_
.max_total_mem
);
5701 fprintf(stderr
, "max mmap regions = %10u\n", (unsigned int)mp_
.max_n_mmaps
);
5702 fprintf(stderr
, "max mmap bytes = %10lu\n",
5703 (unsigned long)mp_
.max_mmapped_mem
);
5706 fprintf(stderr
, "heaps created = %10d\n", stat_n_heaps
);
5707 fprintf(stderr
, "locked directly = %10ld\n", stat_lock_direct
);
5708 fprintf(stderr
, "locked in loop = %10ld\n", stat_lock_loop
);
5709 fprintf(stderr
, "locked waiting = %10ld\n", stat_lock_wait
);
5710 fprintf(stderr
, "locked total = %10ld\n",
5711 stat_lock_direct
+ stat_lock_loop
+ stat_lock_wait
);
5714 ((_IO_FILE
*) stderr
)->_flags2
|= old_flags2
;
5715 _IO_funlockfile (stderr
);
5721 ------------------------------ mallopt ------------------------------
5725 int mALLOPt(int param_number
, int value
)
5727 int mALLOPt(param_number
, value
) int param_number
; int value
;
5730 mstate av
= &main_arena
;
5733 if(__malloc_initialized
< 0)
5735 (void)mutex_lock(&av
->mutex
);
5736 /* Ensure initialization/consolidation */
5737 malloc_consolidate(av
);
5739 switch(param_number
) {
5741 if (value
>= 0 && value
<= MAX_FAST_SIZE
) {
5742 set_max_fast(value
);
5748 case M_TRIM_THRESHOLD
:
5749 mp_
.trim_threshold
= value
;
5750 mp_
.no_dyn_threshold
= 1;
5754 mp_
.top_pad
= value
;
5755 mp_
.no_dyn_threshold
= 1;
5758 case M_MMAP_THRESHOLD
:
5760 /* Forbid setting the threshold too high. */
5761 if((unsigned long)value
> HEAP_MAX_SIZE
/2)
5765 mp_
.mmap_threshold
= value
;
5766 mp_
.no_dyn_threshold
= 1;
5775 mp_
.n_mmaps_max
= value
;
5776 mp_
.no_dyn_threshold
= 1;
5779 case M_CHECK_ACTION
:
5780 check_action
= value
;
5784 perturb_byte
= value
;
5787 (void)mutex_unlock(&av
->mutex
);
5793 -------------------- Alternative MORECORE functions --------------------
5798 General Requirements for MORECORE.
5800 The MORECORE function must have the following properties:
5802 If MORECORE_CONTIGUOUS is false:
5804 * MORECORE must allocate in multiples of pagesize. It will
5805 only be called with arguments that are multiples of pagesize.
5807 * MORECORE(0) must return an address that is at least
5808 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
5810 else (i.e. If MORECORE_CONTIGUOUS is true):
5812 * Consecutive calls to MORECORE with positive arguments
5813 return increasing addresses, indicating that space has been
5814 contiguously extended.
5816 * MORECORE need not allocate in multiples of pagesize.
5817 Calls to MORECORE need not have args of multiples of pagesize.
5819 * MORECORE need not page-align.
5823 * MORECORE may allocate more memory than requested. (Or even less,
5824 but this will generally result in a malloc failure.)
5826 * MORECORE must not allocate memory when given argument zero, but
5827 instead return one past the end address of memory from previous
5828 nonzero call. This malloc does NOT call MORECORE(0)
5829 until at least one call with positive arguments is made, so
5830 the initial value returned is not important.
5832 * Even though consecutive calls to MORECORE need not return contiguous
5833 addresses, it must be OK for malloc'ed chunks to span multiple
5834 regions in those cases where they do happen to be contiguous.
5836 * MORECORE need not handle negative arguments -- it may instead
5837 just return MORECORE_FAILURE when given negative arguments.
5838 Negative arguments are always multiples of pagesize. MORECORE
5839 must not misinterpret negative args as large positive unsigned
5840 args. You can suppress all such calls from even occurring by defining
5841 MORECORE_CANNOT_TRIM,
5843 There is some variation across systems about the type of the
5844 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
5845 actually be size_t, because sbrk supports negative args, so it is
5846 normally the signed type of the same width as size_t (sometimes
5847 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
5848 matter though. Internally, we use "long" as arguments, which should
5849 work across all reasonable possibilities.
5851 Additionally, if MORECORE ever returns failure for a positive
5852 request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
5853 system allocator. This is a useful backup strategy for systems with
5854 holes in address spaces -- in this case sbrk cannot contiguously
5855 expand the heap, but mmap may be able to map noncontiguous space.
5857 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
5858 a function that always returns MORECORE_FAILURE.
5860 If you are using this malloc with something other than sbrk (or its
5861 emulation) to supply memory regions, you probably want to set
5862 MORECORE_CONTIGUOUS as false. As an example, here is a custom
5863 allocator kindly contributed for pre-OSX macOS. It uses virtually
5864 but not necessarily physically contiguous non-paged memory (locked
5865 in, present and won't get swapped out). You can use it by
5866 uncommenting this section, adding some #includes, and setting up the
5867 appropriate defines above:
5869 #define MORECORE osMoreCore
5870 #define MORECORE_CONTIGUOUS 0
5872 There is also a shutdown routine that should somehow be called for
5873 cleanup upon program exit.
5875 #define MAX_POOL_ENTRIES 100
5876 #define MINIMUM_MORECORE_SIZE (64 * 1024)
5877 static int next_os_pool;
5878 void *our_os_pools[MAX_POOL_ENTRIES];
5880 void *osMoreCore(int size)
5883 static void *sbrk_top = 0;
5887 if (size < MINIMUM_MORECORE_SIZE)
5888 size = MINIMUM_MORECORE_SIZE;
5889 if (CurrentExecutionLevel() == kTaskLevel)
5890 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5893 return (void *) MORECORE_FAILURE;
5895 // save ptrs so they can be freed during cleanup
5896 our_os_pools[next_os_pool] = ptr;
5898 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5899 sbrk_top = (char *) ptr + size;
5904 // we don't currently support shrink behavior
5905 return (void *) MORECORE_FAILURE;
5913 // cleanup any allocated memory pools
5914 // called as last thing before shutting down driver
5916 void osCleanupMem(void)
5920 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5923 PoolDeallocate(*ptr);
5933 extern char **__libc_argv attribute_hidden
;
5936 malloc_printerr(int action
, const char *str
, void *ptr
)
5938 if ((action
& 5) == 5)
5939 __libc_message (action
& 2, "%s\n", str
);
5940 else if (action
& 1)
5942 char buf
[2 * sizeof (uintptr_t) + 1];
5944 buf
[sizeof (buf
) - 1] = '\0';
5945 char *cp
= _itoa_word ((uintptr_t) ptr
, &buf
[sizeof (buf
) - 1], 16, 0);
5949 __libc_message (action
& 2,
5950 "*** glibc detected *** %s: %s: 0x%s ***\n",
5951 __libc_argv
[0] ?: "<unknown>", str
, cp
);
5953 else if (action
& 2)
5958 # include <sys/param.h>
5960 /* We need a wrapper function for one of the additions of POSIX. */
5962 __posix_memalign (void **memptr
, size_t alignment
, size_t size
)
5965 __malloc_ptr_t (*hook
) __MALLOC_PMT ((size_t, size_t,
5966 __const __malloc_ptr_t
)) =
5969 /* Test whether the SIZE argument is valid. It must be a power of
5970 two multiple of sizeof (void *). */
5971 if (alignment
% sizeof (void *) != 0
5972 || !powerof2 (alignment
/ sizeof (void *)) != 0
5976 /* Call the hook here, so that caller is posix_memalign's caller
5977 and not posix_memalign itself. */
5979 mem
= (*hook
)(alignment
, size
, RETURN_ADDRESS (0));
5981 mem
= public_mEMALIGn (alignment
, size
);
5990 weak_alias (__posix_memalign
, posix_memalign
)
5992 strong_alias (__libc_calloc
, __calloc
) weak_alias (__libc_calloc
, calloc
)
5993 strong_alias (__libc_free
, __cfree
) weak_alias (__libc_free
, cfree
)
5994 strong_alias (__libc_free
, __free
) strong_alias (__libc_free
, free
)
5995 strong_alias (__libc_malloc
, __malloc
) strong_alias (__libc_malloc
, malloc
)
5996 strong_alias (__libc_memalign
, __memalign
)
5997 weak_alias (__libc_memalign
, memalign
)
5998 strong_alias (__libc_realloc
, __realloc
) strong_alias (__libc_realloc
, realloc
)
5999 strong_alias (__libc_valloc
, __valloc
) weak_alias (__libc_valloc
, valloc
)
6000 strong_alias (__libc_pvalloc
, __pvalloc
) weak_alias (__libc_pvalloc
, pvalloc
)
6001 strong_alias (__libc_mallinfo
, __mallinfo
)
6002 weak_alias (__libc_mallinfo
, mallinfo
)
6003 strong_alias (__libc_mallopt
, __mallopt
) weak_alias (__libc_mallopt
, mallopt
)
6005 weak_alias (__malloc_stats
, malloc_stats
)
6006 weak_alias (__malloc_usable_size
, malloc_usable_size
)
6007 weak_alias (__malloc_trim
, malloc_trim
)
6008 weak_alias (__malloc_get_state
, malloc_get_state
)
6009 weak_alias (__malloc_set_state
, malloc_set_state
)
6013 /* ------------------------------------------------------------
6016 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]