misc edits
[glibc/history.git] / stdlib / qsort.c
blob0cdacf2214572cf13a77561bd72ace5643f8aeb8
1 /* Copyright (C) 1991 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
20 #include <ansidecl.h>
21 #include <stdlib.h>
22 #include <string.h>
24 /* Byte-wise swap two items of size SIZE. */
25 #define SWAP(a, b, size) \
26 do \
27 { \
28 register size_t __size = (size); \
29 register char *__a = (a), *__b = (b); \
30 do \
31 { \
32 char __tmp = *__a; \
33 *__a++ = *__b; \
34 *__b++ = __tmp; \
35 } while (--__size > 0); \
36 } while (0)
38 /* Discontinue quicksort algorithm when partition gets below this size.
39 This particular magic number was chosen to work best on a Sun 4/260. */
40 #define MAX_THRESH 4
42 /* Stack node declarations used to store unfulfilled partition obligations. */
43 typedef struct
45 char *lo;
46 char *hi;
47 } stack_node;
49 /* The next 4 #defines implement a very fast in-line stack abstraction. */
50 #define STACK_SIZE (8 * sizeof(unsigned long int))
51 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
52 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
53 #define STACK_NOT_EMPTY (stack < top)
56 /* Order size using quicksort. This implementation incorporates
57 four optimizations discussed in Sedgewick:
59 1. Non-recursive, using an explicit stack of pointer that store the
60 next array partition to sort. To save time, this maximum amount
61 of space required to store an array of MAX_INT is allocated on the
62 stack. Assuming a 32-bit integer, this needs only 32 *
63 sizeof(stack_node) == 136 bits. Pretty cheap, actually.
65 2. Chose the pivot element using a median-of-three decision tree.
66 This reduces the probability of selecting a bad pivot value and
67 eliminates certain extraneous comparisons.
69 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
70 insertion sort to order the MAX_THRESH items within each partition.
71 This is a big win, since insertion sort is faster for small, mostly
72 sorted array segements.
74 4. The larger of the two sub-partitions is always pushed onto the
75 stack first, with the algorithm then concentrating on the
76 smaller partition. This *guarantees* no more than log (n)
77 stack size is needed (actually O(1) in this case)! */
79 void
80 DEFUN(qsort, (pbase, total_elems, size, cmp),
81 PTR CONST pbase AND size_t total_elems AND size_t size AND
82 int EXFUN((*cmp), (CONST PTR, CONST PTR)))
84 register char *base_ptr = (char *) pbase;
86 /* Allocating SIZE bytes for a pivot buffer facilitates a better
87 algorithm below since we can do comparisons directly on the pivot. */
88 char *pivot_buffer = (char *) __alloca (size);
89 CONST size_t max_thresh = MAX_THRESH * size;
91 if (total_elems > MAX_THRESH)
93 char *lo = base_ptr;
94 char *hi = &lo[size * (total_elems - 1)];
95 /* Largest size needed for 32-bit int!!! */
96 stack_node stack[STACK_SIZE];
97 stack_node *top = stack + 1;
99 while (STACK_NOT_EMPTY)
101 char *left_ptr;
102 char *right_ptr;
104 char *pivot = pivot_buffer;
106 /* Select median value from among LO, MID, and HI. Rearrange
107 LO and HI so the three values are sorted. This lowers the
108 probability of picking a pathological pivot value and
109 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
111 char *mid = lo + size * ((hi - lo) / size >> 1);
113 if ((*cmp)((PTR) mid, (PTR) lo) < 0)
114 SWAP(mid, lo, size);
115 if ((*cmp)((PTR) hi, (PTR) mid) < 0)
116 SWAP(mid, hi, size);
117 else
118 goto jump_over;
119 if ((*cmp)((PTR) mid, (PTR) lo) < 0)
120 SWAP(mid, lo, size);
121 jump_over:;
122 memcpy(pivot, mid, size);
123 pivot = pivot_buffer;
125 left_ptr = lo + size;
126 right_ptr = hi - size;
128 /* Here's the famous ``collapse the walls'' section of quicksort.
129 Gotta like those tight inner loops! They are the main reason
130 that this algorithm runs much faster than others. */
133 while ((*cmp)((PTR) left_ptr, (PTR) pivot) < 0)
134 left_ptr += size;
136 while ((*cmp)((PTR) pivot, (PTR) right_ptr) < 0)
137 right_ptr -= size;
139 if (left_ptr < right_ptr)
141 SWAP(left_ptr, right_ptr, size);
142 left_ptr += size;
143 right_ptr -= size;
145 else if (left_ptr == right_ptr)
147 left_ptr += size;
148 right_ptr -= size;
149 break;
152 while (left_ptr <= right_ptr);
154 /* Set up pointers for next iteration. First determine whether
155 left and right partitions are below the threshold size. If so,
156 ignore one or both. Otherwise, push the larger partition's
157 bounds on the stack and continue sorting the smaller one. */
159 if ((size_t) (right_ptr - lo) <= max_thresh)
161 if ((size_t) (hi - left_ptr) <= max_thresh)
162 /* Ignore both small partitions. */
163 POP(lo, hi);
164 else
165 /* Ignore small left partition. */
166 lo = left_ptr;
168 else if ((size_t) (hi - left_ptr) <= max_thresh)
169 /* Ignore small right partition. */
170 hi = right_ptr;
171 else if ((right_ptr - lo) > (hi - left_ptr))
173 /* Push larger left partition indices. */
174 PUSH(lo, right_ptr);
175 lo = left_ptr;
177 else
179 /* Push larger right partition indices. */
180 PUSH(left_ptr, hi);
181 hi = right_ptr;
186 /* Once the BASE_PTR array is partially sorted by quicksort the rest
187 is completely sorted using insertion sort, since this is efficient
188 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
189 of the array to sort, and END_PTR points at the very last element in
190 the array (*not* one beyond it!). */
192 #define min(x, y) ((x) < (y) ? (x) : (y))
195 char *CONST end_ptr = &base_ptr[size * (total_elems - 1)];
196 char *tmp_ptr = base_ptr;
197 char *thresh = min(end_ptr, base_ptr + max_thresh);
198 register char *run_ptr;
200 /* Find smallest element in first threshold and place it at the
201 array's beginning. This is the smallest array element,
202 and the operation speeds up insertion sort's inner loop. */
204 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
205 if ((*cmp)((PTR) run_ptr, (PTR) tmp_ptr) < 0)
206 tmp_ptr = run_ptr;
208 if (tmp_ptr != base_ptr)
209 SWAP(tmp_ptr, base_ptr, size);
211 /* Insertion sort, running from left-hand-side up to right-hand-side. */
213 run_ptr = base_ptr + size;
214 while ((run_ptr += size) <= end_ptr)
216 tmp_ptr = run_ptr - size;
217 while ((*cmp)((PTR) run_ptr, (PTR) tmp_ptr) < 0)
218 tmp_ptr -= size;
220 tmp_ptr += size;
221 if (tmp_ptr != run_ptr)
223 char *trav;
225 trav = run_ptr + size;
226 while (--trav >= run_ptr)
228 char c = *trav;
229 char *hi, *lo;
231 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
232 *hi = *lo;
233 *hi = c;