1 /* Prototype declarations for math functions; helper file for <math.h>.
2 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If not,
17 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA. */
20 /* NOTE: Because of the special way this file is used by <math.h>, this
21 file must NOT be protected from multiple inclusion as header files
24 This file provides prototype declarations for the math functions.
25 Most functions are declared using the macro:
27 __MATHCALL (NAME,[_r], (ARGS...));
29 This means there is a function `NAME' returning `double' and a function
30 `NAMEf' returning `float'. Each place `_Mdouble_' appears in the
31 prototype, that is actually `double' in the prototype for `NAME' and
32 `float' in the prototype for `NAMEf'. Reentrant variant functions are
33 called `NAME_r' and `NAMEf_r'.
35 Functions returning other types like `int' are declared using the macro:
37 __MATHDECL (TYPE, NAME,[_r], (ARGS...));
39 This is just like __MATHCALL but for a function returning `TYPE'
40 instead of `_Mdouble_'. In all of these cases, there is still
41 both a `NAME' and a `NAMEf' that takes `float' arguments. */
44 #error "Never include mathcalls.h directly; include <math.h> instead."
48 /* Trigonometric functions. */
50 /* Arc cosine of X. */
51 __MATHCALL (acos
,, (_Mdouble_ __x
));
53 __MATHCALL (asin
,, (_Mdouble_ __x
));
54 /* Arc tangent of X. */
55 __MATHCALL (atan
,, (_Mdouble_ __x
));
56 /* Arc tangent of Y/X. */
57 __MATHCALL (atan2
,, (_Mdouble_ __y
, _Mdouble_ __x
));
60 __MATHCALL (cos
,, (_Mdouble_ __x
));
62 __MATHCALL (sin
,, (_Mdouble_ __x
));
64 __MATHCALL (tan
,, (_Mdouble_ __x
));
67 /* Cosine and sine of X. */
68 __MATHDECL (void, sincos
,,
69 (_Mdouble_ __x
, _Mdouble_
*__sinx
, _Mdouble_
*__cosx
));
72 /* Hyperbolic functions. */
74 /* Hyperbolic cosine of X. */
75 __MATHCALL (cosh
,, (_Mdouble_ __x
));
76 /* Hyperbolic sine of X. */
77 __MATHCALL (sinh
,, (_Mdouble_ __x
));
78 /* Hyperbolic tangent of X. */
79 __MATHCALL (tanh
,, (_Mdouble_ __x
));
81 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
82 /* Hyperbolic arc cosine of X. */
83 __MATHCALL (acosh
,, (_Mdouble_ __x
));
84 /* Hyperbolic arc sine of X. */
85 __MATHCALL (asinh
,, (_Mdouble_ __x
));
86 /* Hyperbolic arc tangent of X. */
87 __MATHCALL (atanh
,, (_Mdouble_ __x
));
90 /* Exponential and logarithmic functions. */
92 /* Exponential function of X. */
93 __MATHCALL (exp
,, (_Mdouble_ __x
));
95 /* Break VALUE into a normalized fraction and an integral power of 2. */
96 __MATHCALL (frexp
,, (_Mdouble_ __x
, int *__exponent
));
98 /* X times (two to the EXP power). */
99 __MATHCALL (ldexp
,, (_Mdouble_ __x
, int __exponent
));
101 /* Natural logarithm of X. */
102 __MATHCALL (log
,, (_Mdouble_ __x
));
104 /* Base-ten logarithm of X. */
105 __MATHCALL (log10
,, (_Mdouble_ __x
));
107 /* Break VALUE into integral and fractional parts. */
108 __MATHCALL (modf
,, (_Mdouble_ __x
, _Mdouble_
*__iptr
));
110 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
111 /* Return exp(X) - 1. */
112 __MATHCALL (expm1
,, (_Mdouble_ __x
));
114 /* Return log(1 + X). */
115 __MATHCALL (log1p
,, (_Mdouble_ __x
));
117 /* Return the base 2 signed integral exponent of X. */
118 __MATHCALL (logb
,, (_Mdouble_ __x
));
122 /* Compute base-2 exponential of X. */
123 __MATHCALL (exp2
,, (_Mdouble_ __x
));
125 /* Compute base-2 logarithm of X. */
126 __MATHCALL (log2
,, (_Mdouble_ __x
));
130 /* Power functions. */
132 /* Return X to the Y power. */
133 __MATHCALL (pow
,, (_Mdouble_ __x
, _Mdouble_ __y
));
135 /* Return the square root of X. */
136 __MATHCALL (sqrt
,, (_Mdouble_ __x
));
138 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
139 /* Return `sqrt(X*X + Y*Y)'. */
140 __MATHCALL (hypot
,, (_Mdouble_ __x
, _Mdouble_ __y
));
143 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
144 /* Return the cube root of X. */
145 __MATHCALL (cbrt
,, (_Mdouble_ __x
));
149 /* Nearest integer, absolute value, and remainder functions. */
151 /* Smallest integral value not less than X. */
152 __MATHCALL (ceil
,, (_Mdouble_ __x
));
154 /* Absolute value of X. */
155 __MATHCALLX (fabs
,, (_Mdouble_ __x
), (__const__
));
157 /* Largest integer not greater than X. */
158 __MATHCALL (floor
,, (_Mdouble_ __x
));
160 /* Floating-point modulo remainder of X/Y. */
161 __MATHCALL (fmod
,, (_Mdouble_ __x
, _Mdouble_ __y
));
165 /* Return 0 if VALUE is finite or NaN, +1 if it
166 is +Infinity, -1 if it is -Infinity. */
167 __MATHDECLX (int,isinf
,, (_Mdouble_ __value
), (__const__
));
169 /* Return nonzero if VALUE is finite and not NaN. */
170 __MATHDECLX (int,finite
,, (_Mdouble_ __value
), (__const__
));
172 /* Deal with an infinite or NaN result.
173 If ERROR is ERANGE, result is +Inf;
174 if ERROR is - ERANGE, result is -Inf;
175 otherwise result is NaN.
176 This will set `errno' to either ERANGE or EDOM,
177 and may return an infinity or NaN, or may do something else. */
178 __MATHCALLX (infnan
,, (int __error
), (__const__
));
180 /* Return X times (2 to the Nth power). */
181 __MATHCALL (scalbn
,, (_Mdouble_ __x
, int __n
));
183 /* Return the remainder of X/Y. */
184 __MATHCALL (drem
,, (_Mdouble_ __x
, _Mdouble_ __y
));
187 /* Return the fractional part of X after dividing out `ilogb (X)'. */
188 __MATHCALL (significand
,, (_Mdouble_ __x
));
189 #endif /* Use misc. */
191 #if defined __USE_MISC || defined __USE_ISOC9X
192 /* Return X with its signed changed to Y's. */
193 __MATHCALLX (copysign
,, (_Mdouble_ __x
, _Mdouble_ __y
), (__const__
));
197 /* Return representation of NaN for double type. */
198 __MATHCALLX (nan
,, (__const
char *__tagb
), (__const__
));
202 #if defined __USE_MISC || defined __USE_XOPEN
203 /* Return nonzero if VALUE is not a number. */
204 __MATHDECLX (int,isnan
,, (_Mdouble_ __value
), (__const__
));
206 /* Return the binary exponent of X, which must be nonzero. */
207 __MATHDECL (int,ilogb
,, (_Mdouble_ __x
));
209 /* Bessel functions. */
210 __MATHCALL (j0
,, (_Mdouble_
));
211 __MATHCALL (j1
,, (_Mdouble_
));
212 __MATHCALL (jn
,, (int, _Mdouble_
));
213 __MATHCALL (y0
,, (_Mdouble_
));
214 __MATHCALL (y1
,, (_Mdouble_
));
215 __MATHCALL (yn
,, (int, _Mdouble_
));
219 #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC9X
220 /* Error, gamma, and Bessel functions. */
221 __MATHCALL (erf
,, (_Mdouble_
));
222 __MATHCALL (erfc
,, (_Mdouble_
));
223 __MATHCALL (gamma
,, (_Mdouble_
));
224 __MATHCALL (lgamma
,, (_Mdouble_
));
227 /* Reentrant versions of gamma and lgamma. Those functions use the global
228 variable `signgam'. The reentrant versions instead take a pointer and
229 store the value through it. */
230 __MATHCALL (gamma
,_r
, (_Mdouble_
, int *));
231 __MATHCALL (lgamma
,_r
, (_Mdouble_
, int *));
234 #endif /* Use misc or X/Open. */
237 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X
238 /* Return the integer nearest X in the direction of the
239 prevailing rounding mode. */
240 __MATHCALL (rint
,, (_Mdouble_ __x
));
242 /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
243 __MATHCALLX (nextafter
,, (_Mdouble_ __x
, _Mdouble_ __y
), (__const__
));
245 /* Return the remainder of integer divison X / Y with infinite precision. */
246 __MATHCALL (remainder
,, (_Mdouble_ __x
, _Mdouble_ __y
));
249 #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
250 /* Return X times (2 to the Nth power). */
251 __MATHCALL (scalb
,, (_Mdouble_ __x
, _Mdouble_ __n
));
255 /* Round X to integral valuein floating-point format using current
256 rounding direction, but do not raise inexact exception. */
257 __MATHCALL (nearbyint
,, (_Mdouble_ __x
));
259 /* Round X to nearest integral value, rounding halfway cases away from
261 __MATHCALL (round
,, (_Mdouble_ __x
));
263 /* Round X to the integral value in floating-point format nearest but
264 not larger in magnitude. */
265 __MATHCALLX (trunc
,, (_Mdouble_ __x
), (__const__
));
267 /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
268 and magnitude congruent `mod 2^n' to the magnitude of the integral
269 quotient x/y, with n >= 3. */
270 __MATHCALL (remquo
,, (_Mdouble_ __x
, _Mdouble_ __y
, int *__quo
));
273 /* Return positive difference between X and Y. */
274 __MATHCALL (fdim
,, (_Mdouble_ __x
, _Mdouble_ __y
));
276 /* Return maximum numeric value from X and Y. */
277 __MATHCALL (fmax
,, (_Mdouble_ __x
, _Mdouble_ __y
));
279 /* Return minimum numeric value from X and Y. */
280 __MATHCALL (fmin
,, (_Mdouble_ __x
, _Mdouble_ __y
));
283 /* Classify given number. */
284 __MATHDECL_1 (int, __fpclassify
,, (_Mdouble_ __value
))
285 __attribute__ ((__const__
));
287 /* Test for negative number. */
288 __MATHDECL_1 (int, __signbit
,, (_Mdouble_ __value
))
289 __attribute__ ((__const__
));
290 #endif /* Use ISO C 9X. */