.
[glibc/history.git] / sysdeps / ieee754 / dbl-64 / dosincos.c
blob1d347a4bc78b3cb09680a6f065c562ad70057f9f
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001 Free Software Foundation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 /********************************************************************/
21 /* */
22 /* MODULE_NAME: dosincos.c */
23 /* */
24 /* */
25 /* FUNCTIONS: dubsin */
26 /* dubcos */
27 /* docos */
28 /* FILES NEEDED: endian.h mydefs.h dla.h dosincos.h */
29 /* sincos.tbl */
30 /* */
31 /* Routines compute sin() and cos() as Double-Length numbers */
32 /********************************************************************/
36 #include "endian.h"
37 #include "mydefs.h"
38 #include "sincos.tbl"
39 #include "dla.h"
40 #include "dosincos.h"
41 #include "math_private.h"
43 /***********************************************************************/
44 /* Routine receive Double-Length number (x+dx) and computing sin(x+dx) */
45 /* as Double-Length number and store it at array v .It computes it by */
46 /* arithmetic action on Double-Length numbers */
47 /*(x+dx) between 0 and PI/4 */
48 /***********************************************************************/
50 void __dubsin(double x, double dx, double v[]) {
51 double r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
52 sn,ssn,cs,ccs,ds,dss,dc,dcc;
53 #if 0
54 double xx,y,yy,z,zz;
55 #endif
56 mynumber u;
57 int4 k;
59 u.x=x+big.x;
60 k = u.i[LOW_HALF]<<2;
61 x=x-(u.x-big.x);
62 d=x+dx;
63 dd=(x-d)+dx;
64 /* sin(x+dx)=sin(Xi+t)=sin(Xi)*cos(t) + cos(Xi)sin(t) where t ->0 */
65 MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
66 sn=sincos.x[k]; /* */
67 ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
68 cs=sincos.x[k+2]; /* */
69 ccs=sincos.x[k+3]; /* */
70 MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* Taylor */
71 ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
72 MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* series */
73 ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
74 MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* for sin */
75 MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
76 ADD2(ds,dss,d,dd,ds,dss,r,s); /* ds=sin(t) */
78 MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc); ;/* Taylor */
79 ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
80 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* series */
81 ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
82 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* for cos */
83 ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
84 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* dc=cos(t) */
86 MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
87 MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
88 SUB2(e,ee,dc,dcc,e,ee,r,s);
89 ADD2(e,ee,sn,ssn,e,ee,r,s); /* e+ee=sin(x+dx) */
91 v[0]=e;
92 v[1]=ee;
94 /**********************************************************************/
95 /* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
96 /* as Double-Length number and store it in array v .It computes it by */
97 /* arithmetic action on Double-Length numbers */
98 /*(x+dx) between 0 and PI/4 */
99 /**********************************************************************/
101 void __dubcos(double x, double dx, double v[]) {
102 double r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
103 sn,ssn,cs,ccs,ds,dss,dc,dcc;
104 #if 0
105 double xx,y,yy,z,zz;
106 #endif
107 mynumber u;
108 int4 k;
109 u.x=x+big.x;
110 k = u.i[LOW_HALF]<<2;
111 x=x-(u.x-big.x);
112 d=x+dx;
113 dd=(x-d)+dx; /* cos(x+dx)=cos(Xi+t)=cos(Xi)cos(t) - sin(Xi)sin(t) */
114 MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
115 sn=sincos.x[k]; /* */
116 ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
117 cs=sincos.x[k+2]; /* */
118 ccs=sincos.x[k+3]; /* */
119 MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
120 ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
121 MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
122 ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
123 MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
124 MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
125 ADD2(ds,dss,d,dd,ds,dss,r,s);
127 MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
128 ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
129 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
130 ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
131 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
132 ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
133 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
135 MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
136 MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
138 MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
139 ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
140 MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
141 ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
142 MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
143 MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
144 ADD2(ds,dss,d,dd,ds,dss,r,s);
145 MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
146 ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
147 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
148 ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
149 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
150 ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
151 MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
152 MUL2(sn,ssn,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
153 MUL2(dc,dcc,cs,ccs,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
154 ADD2(e,ee,dc,dcc,e,ee,r,s);
155 SUB2(cs,ccs,e,ee,e,ee,r,s);
157 v[0]=e;
158 v[1]=ee;
160 /**********************************************************************/
161 /* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
162 /* as Double-Length number and store it in array v */
163 /**********************************************************************/
164 void __docos(double x, double dx, double v[]) {
165 double y,yy,p,w[2];
166 if (x>0) {y=x; yy=dx;}
167 else {y=-x; yy=-dx;}
168 if (y<0.5*hp0.x) /* y< PI/4 */
169 {__dubcos(y,yy,w); v[0]=w[0]; v[1]=w[1];}
170 else if (y<1.5*hp0.x) { /* y< 3/4 * PI */
171 p=hp0.x-y; /* p = PI/2 - y */
172 yy=hp1.x-yy;
173 y=p+yy;
174 yy=(p-y)+yy;
175 if (y>0) {__dubsin(y,yy,w); v[0]=w[0]; v[1]=w[1];}
176 /* cos(x) = sin ( 90 - x ) */
177 else {__dubsin(-y,-yy,w); v[0]=-w[0]; v[1]=-w[1];
180 else { /* y>= 3/4 * PI */
181 p=2.0*hp0.x-y; /* p = PI- y */
182 yy=2.0*hp1.x-yy;
183 y=p+yy;
184 yy=(p-y)+yy;
185 __dubcos(y,yy,w);
186 v[0]=-w[0];
187 v[1]=-w[1];