.
[glibc/history.git] / sysdeps / ieee754 / dbl-64 / s_sin.c
blobb40776f5e2f513700edbea12dc1d635e3bc2fd25
1 /*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001, 2009 Free Software Foundation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 /****************************************************************************/
21 /* */
22 /* MODULE_NAME:usncs.c */
23 /* */
24 /* FUNCTIONS: usin */
25 /* ucos */
26 /* slow */
27 /* slow1 */
28 /* slow2 */
29 /* sloww */
30 /* sloww1 */
31 /* sloww2 */
32 /* bsloww */
33 /* bsloww1 */
34 /* bsloww2 */
35 /* cslow2 */
36 /* csloww */
37 /* csloww1 */
38 /* csloww2 */
39 /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */
40 /* branred.c sincos32.c dosincos.c mpa.c */
41 /* sincos.tbl */
42 /* */
43 /* An ultimate sin and routine. Given an IEEE double machine number x */
44 /* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
45 /* Assumption: Machine arithmetic operations are performed in */
46 /* round to nearest mode of IEEE 754 standard. */
47 /* */
48 /****************************************************************************/
51 #include <errno.h>
52 #include "endian.h"
53 #include "mydefs.h"
54 #include "usncs.h"
55 #include "MathLib.h"
56 #include "sincos.tbl"
57 #include "math_private.h"
59 static const double
60 sn3 = -1.66666666666664880952546298448555E-01,
61 sn5 = 8.33333214285722277379541354343671E-03,
62 cs2 = 4.99999999999999999999950396842453E-01,
63 cs4 = -4.16666666666664434524222570944589E-02,
64 cs6 = 1.38888874007937613028114285595617E-03;
66 void __dubsin(double x, double dx, double w[]);
67 void __docos(double x, double dx, double w[]);
68 double __mpsin(double x, double dx);
69 double __mpcos(double x, double dx);
70 double __mpsin1(double x);
71 double __mpcos1(double x);
72 static double slow(double x);
73 static double slow1(double x);
74 static double slow2(double x);
75 static double sloww(double x, double dx, double orig);
76 static double sloww1(double x, double dx, double orig);
77 static double sloww2(double x, double dx, double orig, int n);
78 static double bsloww(double x, double dx, double orig, int n);
79 static double bsloww1(double x, double dx, double orig, int n);
80 static double bsloww2(double x, double dx, double orig, int n);
81 int __branred(double x, double *a, double *aa);
82 static double cslow2(double x);
83 static double csloww(double x, double dx, double orig);
84 static double csloww1(double x, double dx, double orig);
85 static double csloww2(double x, double dx, double orig, int n);
86 /*******************************************************************/
87 /* An ultimate sin routine. Given an IEEE double machine number x */
88 /* it computes the correctly rounded (to nearest) value of sin(x) */
89 /*******************************************************************/
90 double __sin(double x){
91 double xx,res,t,cor,y,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2;
92 #if 0
93 double w[2];
94 #endif
95 mynumber u,v;
96 int4 k,m,n;
97 #if 0
98 int4 nn;
99 #endif
101 u.x = x;
102 m = u.i[HIGH_HALF];
103 k = 0x7fffffff&m; /* no sign */
104 if (k < 0x3e500000) /* if x->0 =>sin(x)=x */
105 return x;
106 /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
107 else if (k < 0x3fd00000){
108 xx = x*x;
109 /*Taylor series */
110 t = ((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*(xx*x);
111 res = x+t;
112 cor = (x-res)+t;
113 return (res == res + 1.07*cor)? res : slow(x);
114 } /* else if (k < 0x3fd00000) */
115 /*---------------------------- 0.25<|x|< 0.855469---------------------- */
116 else if (k < 0x3feb6000) {
117 u.x=(m>0)?big.x+x:big.x-x;
118 y=(m>0)?x-(u.x-big.x):x+(u.x-big.x);
119 xx=y*y;
120 s = y + y*xx*(sn3 +xx*sn5);
121 c = xx*(cs2 +xx*(cs4 + xx*cs6));
122 k=u.i[LOW_HALF]<<2;
123 sn=(m>0)?sincos.x[k]:-sincos.x[k];
124 ssn=(m>0)?sincos.x[k+1]:-sincos.x[k+1];
125 cs=sincos.x[k+2];
126 ccs=sincos.x[k+3];
127 cor=(ssn+s*ccs-sn*c)+cs*s;
128 res=sn+cor;
129 cor=(sn-res)+cor;
130 return (res==res+1.025*cor)? res : slow1(x);
131 } /* else if (k < 0x3feb6000) */
133 /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/
134 else if (k < 0x400368fd ) {
136 y = (m>0)? hp0.x-x:hp0.x+x;
137 if (y>=0) {
138 u.x = big.x+y;
139 y = (y-(u.x-big.x))+hp1.x;
141 else {
142 u.x = big.x-y;
143 y = (-hp1.x) - (y+(u.x-big.x));
145 xx=y*y;
146 s = y + y*xx*(sn3 +xx*sn5);
147 c = xx*(cs2 +xx*(cs4 + xx*cs6));
148 k=u.i[LOW_HALF]<<2;
149 sn=sincos.x[k];
150 ssn=sincos.x[k+1];
151 cs=sincos.x[k+2];
152 ccs=sincos.x[k+3];
153 cor=(ccs-s*ssn-cs*c)-sn*s;
154 res=cs+cor;
155 cor=(cs-res)+cor;
156 return (res==res+1.020*cor)? ((m>0)?res:-res) : slow2(x);
157 } /* else if (k < 0x400368fd) */
159 /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
160 else if (k < 0x419921FB ) {
161 t = (x*hpinv.x + toint.x);
162 xn = t - toint.x;
163 v.x = t;
164 y = (x - xn*mp1.x) - xn*mp2.x;
165 n =v.i[LOW_HALF]&3;
166 da = xn*mp3.x;
167 a=y-da;
168 da = (y-a)-da;
169 eps = ABS(x)*1.2e-30;
171 switch (n) { /* quarter of unit circle */
172 case 0:
173 case 2:
174 xx = a*a;
175 if (n) {a=-a;da=-da;}
176 if (xx < 0.01588) {
177 /*Taylor series */
178 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
179 res = a+t;
180 cor = (a-res)+t;
181 cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;
182 return (res == res + cor)? res : sloww(a,da,x);
184 else {
185 if (a>0)
186 {m=1;t=a;db=da;}
187 else
188 {m=0;t=-a;db=-da;}
189 u.x=big.x+t;
190 y=t-(u.x-big.x);
191 xx=y*y;
192 s = y + (db+y*xx*(sn3 +xx*sn5));
193 c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
194 k=u.i[LOW_HALF]<<2;
195 sn=sincos.x[k];
196 ssn=sincos.x[k+1];
197 cs=sincos.x[k+2];
198 ccs=sincos.x[k+3];
199 cor=(ssn+s*ccs-sn*c)+cs*s;
200 res=sn+cor;
201 cor=(sn-res)+cor;
202 cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;
203 return (res==res+cor)? ((m)?res:-res) : sloww1(a,da,x);
205 break;
207 case 1:
208 case 3:
209 if (a<0)
210 {a=-a;da=-da;}
211 u.x=big.x+a;
212 y=a-(u.x-big.x)+da;
213 xx=y*y;
214 k=u.i[LOW_HALF]<<2;
215 sn=sincos.x[k];
216 ssn=sincos.x[k+1];
217 cs=sincos.x[k+2];
218 ccs=sincos.x[k+3];
219 s = y + y*xx*(sn3 +xx*sn5);
220 c = xx*(cs2 +xx*(cs4 + xx*cs6));
221 cor=(ccs-s*ssn-cs*c)-sn*s;
222 res=cs+cor;
223 cor=(cs-res)+cor;
224 cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
225 return (res==res+cor)? ((n&2)?-res:res) : sloww2(a,da,x,n);
227 break;
231 } /* else if (k < 0x419921FB ) */
233 /*---------------------105414350 <|x|< 281474976710656 --------------------*/
234 else if (k < 0x42F00000 ) {
235 t = (x*hpinv.x + toint.x);
236 xn = t - toint.x;
237 v.x = t;
238 xn1 = (xn+8.0e22)-8.0e22;
239 xn2 = xn - xn1;
240 y = ((((x - xn1*mp1.x) - xn1*mp2.x)-xn2*mp1.x)-xn2*mp2.x);
241 n =v.i[LOW_HALF]&3;
242 da = xn1*pp3.x;
243 t=y-da;
244 da = (y-t)-da;
245 da = (da - xn2*pp3.x) -xn*pp4.x;
246 a = t+da;
247 da = (t-a)+da;
248 eps = 1.0e-24;
250 switch (n) {
251 case 0:
252 case 2:
253 xx = a*a;
254 if (n) {a=-a;da=-da;}
255 if (xx < 0.01588) {
256 /* Taylor series */
257 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
258 res = a+t;
259 cor = (a-res)+t;
260 cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;
261 return (res == res + cor)? res : bsloww(a,da,x,n);
263 else {
264 if (a>0) {m=1;t=a;db=da;}
265 else {m=0;t=-a;db=-da;}
266 u.x=big.x+t;
267 y=t-(u.x-big.x);
268 xx=y*y;
269 s = y + (db+y*xx*(sn3 +xx*sn5));
270 c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
271 k=u.i[LOW_HALF]<<2;
272 sn=sincos.x[k];
273 ssn=sincos.x[k+1];
274 cs=sincos.x[k+2];
275 ccs=sincos.x[k+3];
276 cor=(ssn+s*ccs-sn*c)+cs*s;
277 res=sn+cor;
278 cor=(sn-res)+cor;
279 cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;
280 return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n);
282 break;
284 case 1:
285 case 3:
286 if (a<0)
287 {a=-a;da=-da;}
288 u.x=big.x+a;
289 y=a-(u.x-big.x)+da;
290 xx=y*y;
291 k=u.i[LOW_HALF]<<2;
292 sn=sincos.x[k];
293 ssn=sincos.x[k+1];
294 cs=sincos.x[k+2];
295 ccs=sincos.x[k+3];
296 s = y + y*xx*(sn3 +xx*sn5);
297 c = xx*(cs2 +xx*(cs4 + xx*cs6));
298 cor=(ccs-s*ssn-cs*c)-sn*s;
299 res=cs+cor;
300 cor=(cs-res)+cor;
301 cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
302 return (res==res+cor)? ((n&2)?-res:res) : bsloww2(a,da,x,n);
304 break;
308 } /* else if (k < 0x42F00000 ) */
310 /* -----------------281474976710656 <|x| <2^1024----------------------------*/
311 else if (k < 0x7ff00000) {
313 n = __branred(x,&a,&da);
314 switch (n) {
315 case 0:
316 if (a*a < 0.01588) return bsloww(a,da,x,n);
317 else return bsloww1(a,da,x,n);
318 break;
319 case 2:
320 if (a*a < 0.01588) return bsloww(-a,-da,x,n);
321 else return bsloww1(-a,-da,x,n);
322 break;
324 case 1:
325 case 3:
326 return bsloww2(a,da,x,n);
327 break;
330 } /* else if (k < 0x7ff00000 ) */
332 /*--------------------- |x| > 2^1024 ----------------------------------*/
333 else {
334 if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
335 __set_errno (EDOM);
336 return x / x;
338 return 0; /* unreachable */
342 /*******************************************************************/
343 /* An ultimate cos routine. Given an IEEE double machine number x */
344 /* it computes the correctly rounded (to nearest) value of cos(x) */
345 /*******************************************************************/
347 double __cos(double x)
349 double y,xx,res,t,cor,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2;
350 mynumber u,v;
351 int4 k,m,n;
353 u.x = x;
354 m = u.i[HIGH_HALF];
355 k = 0x7fffffff&m;
357 if (k < 0x3e400000 ) return 1.0; /* |x|<2^-27 => cos(x)=1 */
359 else if (k < 0x3feb6000 ) {/* 2^-27 < |x| < 0.855469 */
360 y=ABS(x);
361 u.x = big.x+y;
362 y = y-(u.x-big.x);
363 xx=y*y;
364 s = y + y*xx*(sn3 +xx*sn5);
365 c = xx*(cs2 +xx*(cs4 + xx*cs6));
366 k=u.i[LOW_HALF]<<2;
367 sn=sincos.x[k];
368 ssn=sincos.x[k+1];
369 cs=sincos.x[k+2];
370 ccs=sincos.x[k+3];
371 cor=(ccs-s*ssn-cs*c)-sn*s;
372 res=cs+cor;
373 cor=(cs-res)+cor;
374 return (res==res+1.020*cor)? res : cslow2(x);
376 } /* else if (k < 0x3feb6000) */
378 else if (k < 0x400368fd ) {/* 0.855469 <|x|<2.426265 */;
379 y=hp0.x-ABS(x);
380 a=y+hp1.x;
381 da=(y-a)+hp1.x;
382 xx=a*a;
383 if (xx < 0.01588) {
384 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
385 res = a+t;
386 cor = (a-res)+t;
387 cor = (cor>0)? 1.02*cor+1.0e-31 : 1.02*cor -1.0e-31;
388 return (res == res + cor)? res : csloww(a,da,x);
390 else {
391 if (a>0) {m=1;t=a;db=da;}
392 else {m=0;t=-a;db=-da;}
393 u.x=big.x+t;
394 y=t-(u.x-big.x);
395 xx=y*y;
396 s = y + (db+y*xx*(sn3 +xx*sn5));
397 c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
398 k=u.i[LOW_HALF]<<2;
399 sn=sincos.x[k];
400 ssn=sincos.x[k+1];
401 cs=sincos.x[k+2];
402 ccs=sincos.x[k+3];
403 cor=(ssn+s*ccs-sn*c)+cs*s;
404 res=sn+cor;
405 cor=(sn-res)+cor;
406 cor = (cor>0)? 1.035*cor+1.0e-31 : 1.035*cor-1.0e-31;
407 return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);
410 } /* else if (k < 0x400368fd) */
413 else if (k < 0x419921FB ) {/* 2.426265<|x|< 105414350 */
414 t = (x*hpinv.x + toint.x);
415 xn = t - toint.x;
416 v.x = t;
417 y = (x - xn*mp1.x) - xn*mp2.x;
418 n =v.i[LOW_HALF]&3;
419 da = xn*mp3.x;
420 a=y-da;
421 da = (y-a)-da;
422 eps = ABS(x)*1.2e-30;
424 switch (n) {
425 case 1:
426 case 3:
427 xx = a*a;
428 if (n == 1) {a=-a;da=-da;}
429 if (xx < 0.01588) {
430 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
431 res = a+t;
432 cor = (a-res)+t;
433 cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;
434 return (res == res + cor)? res : csloww(a,da,x);
436 else {
437 if (a>0) {m=1;t=a;db=da;}
438 else {m=0;t=-a;db=-da;}
439 u.x=big.x+t;
440 y=t-(u.x-big.x);
441 xx=y*y;
442 s = y + (db+y*xx*(sn3 +xx*sn5));
443 c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
444 k=u.i[LOW_HALF]<<2;
445 sn=sincos.x[k];
446 ssn=sincos.x[k+1];
447 cs=sincos.x[k+2];
448 ccs=sincos.x[k+3];
449 cor=(ssn+s*ccs-sn*c)+cs*s;
450 res=sn+cor;
451 cor=(sn-res)+cor;
452 cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;
453 return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);
455 break;
457 case 0:
458 case 2:
459 if (a<0) {a=-a;da=-da;}
460 u.x=big.x+a;
461 y=a-(u.x-big.x)+da;
462 xx=y*y;
463 k=u.i[LOW_HALF]<<2;
464 sn=sincos.x[k];
465 ssn=sincos.x[k+1];
466 cs=sincos.x[k+2];
467 ccs=sincos.x[k+3];
468 s = y + y*xx*(sn3 +xx*sn5);
469 c = xx*(cs2 +xx*(cs4 + xx*cs6));
470 cor=(ccs-s*ssn-cs*c)-sn*s;
471 res=cs+cor;
472 cor=(cs-res)+cor;
473 cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
474 return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n);
476 break;
480 } /* else if (k < 0x419921FB ) */
483 else if (k < 0x42F00000 ) {
484 t = (x*hpinv.x + toint.x);
485 xn = t - toint.x;
486 v.x = t;
487 xn1 = (xn+8.0e22)-8.0e22;
488 xn2 = xn - xn1;
489 y = ((((x - xn1*mp1.x) - xn1*mp2.x)-xn2*mp1.x)-xn2*mp2.x);
490 n =v.i[LOW_HALF]&3;
491 da = xn1*pp3.x;
492 t=y-da;
493 da = (y-t)-da;
494 da = (da - xn2*pp3.x) -xn*pp4.x;
495 a = t+da;
496 da = (t-a)+da;
497 eps = 1.0e-24;
499 switch (n) {
500 case 1:
501 case 3:
502 xx = a*a;
503 if (n==1) {a=-a;da=-da;}
504 if (xx < 0.01588) {
505 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;
506 res = a+t;
507 cor = (a-res)+t;
508 cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;
509 return (res == res + cor)? res : bsloww(a,da,x,n);
511 else {
512 if (a>0) {m=1;t=a;db=da;}
513 else {m=0;t=-a;db=-da;}
514 u.x=big.x+t;
515 y=t-(u.x-big.x);
516 xx=y*y;
517 s = y + (db+y*xx*(sn3 +xx*sn5));
518 c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));
519 k=u.i[LOW_HALF]<<2;
520 sn=sincos.x[k];
521 ssn=sincos.x[k+1];
522 cs=sincos.x[k+2];
523 ccs=sincos.x[k+3];
524 cor=(ssn+s*ccs-sn*c)+cs*s;
525 res=sn+cor;
526 cor=(sn-res)+cor;
527 cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;
528 return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n);
530 break;
532 case 0:
533 case 2:
534 if (a<0) {a=-a;da=-da;}
535 u.x=big.x+a;
536 y=a-(u.x-big.x)+da;
537 xx=y*y;
538 k=u.i[LOW_HALF]<<2;
539 sn=sincos.x[k];
540 ssn=sincos.x[k+1];
541 cs=sincos.x[k+2];
542 ccs=sincos.x[k+3];
543 s = y + y*xx*(sn3 +xx*sn5);
544 c = xx*(cs2 +xx*(cs4 + xx*cs6));
545 cor=(ccs-s*ssn-cs*c)-sn*s;
546 res=cs+cor;
547 cor=(cs-res)+cor;
548 cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;
549 return (res==res+cor)? ((n)?-res:res) : bsloww2(a,da,x,n);
550 break;
554 } /* else if (k < 0x42F00000 ) */
556 else if (k < 0x7ff00000) {/* 281474976710656 <|x| <2^1024 */
558 n = __branred(x,&a,&da);
559 switch (n) {
560 case 1:
561 if (a*a < 0.01588) return bsloww(-a,-da,x,n);
562 else return bsloww1(-a,-da,x,n);
563 break;
564 case 3:
565 if (a*a < 0.01588) return bsloww(a,da,x,n);
566 else return bsloww1(a,da,x,n);
567 break;
569 case 0:
570 case 2:
571 return bsloww2(a,da,x,n);
572 break;
575 } /* else if (k < 0x7ff00000 ) */
580 else {
581 if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
582 __set_errno (EDOM);
583 return x / x; /* |x| > 2^1024 */
585 return 0;
589 /************************************************************************/
590 /* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */
591 /* precision and if still doesn't accurate enough by mpsin or dubsin */
592 /************************************************************************/
594 static double slow(double x) {
595 static const double th2_36 = 206158430208.0; /* 1.5*2**37 */
596 double y,x1,x2,xx,r,t,res,cor,w[2];
597 x1=(x+th2_36)-th2_36;
598 y = aa.x*x1*x1*x1;
599 r=x+y;
600 x2=x-x1;
601 xx=x*x;
602 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2;
603 t=((x-r)+y)+t;
604 res=r+t;
605 cor = (r-res)+t;
606 if (res == res + 1.0007*cor) return res;
607 else {
608 __dubsin(ABS(x),0,w);
609 if (w[0] == w[0]+1.000000001*w[1]) return (x>0)?w[0]:-w[0];
610 else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);
613 /*******************************************************************************/
614 /* Routine compute sin(x) for 0.25<|x|< 0.855469 by sincos.tbl and Taylor */
615 /* and if result still doesn't accurate enough by mpsin or dubsin */
616 /*******************************************************************************/
618 static double slow1(double x) {
619 mynumber u;
620 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;
621 static const double t22 = 6291456.0;
622 int4 k;
623 y=ABS(x);
624 u.x=big.x+y;
625 y=y-(u.x-big.x);
626 xx=y*y;
627 s = y*xx*(sn3 +xx*sn5);
628 c = xx*(cs2 +xx*(cs4 + xx*cs6));
629 k=u.i[LOW_HALF]<<2;
630 sn=sincos.x[k]; /* Data */
631 ssn=sincos.x[k+1]; /* from */
632 cs=sincos.x[k+2]; /* tables */
633 ccs=sincos.x[k+3]; /* sincos.tbl */
634 y1 = (y+t22)-t22;
635 y2 = y - y1;
636 c1 = (cs+t22)-t22;
637 c2=(cs-c1)+ccs;
638 cor=(ssn+s*ccs+cs*s+c2*y+c1*y2)-sn*c;
639 y=sn+c1*y1;
640 cor = cor+((sn-y)+c1*y1);
641 res=y+cor;
642 cor=(y-res)+cor;
643 if (res == res+1.0005*cor) return (x>0)?res:-res;
644 else {
645 __dubsin(ABS(x),0,w);
646 if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0];
647 else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);
650 /**************************************************************************/
651 /* Routine compute sin(x) for 0.855469 <|x|<2.426265 by sincos.tbl */
652 /* and if result still doesn't accurate enough by mpsin or dubsin */
653 /**************************************************************************/
654 static double slow2(double x) {
655 mynumber u;
656 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res,del;
657 static const double t22 = 6291456.0;
658 int4 k;
659 y=ABS(x);
660 y = hp0.x-y;
661 if (y>=0) {
662 u.x = big.x+y;
663 y = y-(u.x-big.x);
664 del = hp1.x;
666 else {
667 u.x = big.x-y;
668 y = -(y+(u.x-big.x));
669 del = -hp1.x;
671 xx=y*y;
672 s = y*xx*(sn3 +xx*sn5);
673 c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6));
674 k=u.i[LOW_HALF]<<2;
675 sn=sincos.x[k];
676 ssn=sincos.x[k+1];
677 cs=sincos.x[k+2];
678 ccs=sincos.x[k+3];
679 y1 = (y+t22)-t22;
680 y2 = (y - y1)+del;
681 e1 = (sn+t22)-t22;
682 e2=(sn-e1)+ssn;
683 cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;
684 y=cs-e1*y1;
685 cor = cor+((cs-y)-e1*y1);
686 res=y+cor;
687 cor=(y-res)+cor;
688 if (res == res+1.0005*cor) return (x>0)?res:-res;
689 else {
690 y=ABS(x)-hp0.x;
691 y1=y-hp1.x;
692 y2=(y-y1)-hp1.x;
693 __docos(y1,y2,w);
694 if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0];
695 else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);
698 /***************************************************************************/
699 /* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/
700 /* to use Taylor series around zero and (x+dx) */
701 /* in first or third quarter of unit circle.Routine receive also */
702 /* (right argument) the original value of x for computing error of */
703 /* result.And if result not accurate enough routine calls mpsin1 or dubsin */
704 /***************************************************************************/
706 static double sloww(double x,double dx, double orig) {
707 static const double th2_36 = 206158430208.0; /* 1.5*2**37 */
708 double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn;
709 union {int4 i[2]; double x;} v;
710 int4 n;
711 x1=(x+th2_36)-th2_36;
712 y = aa.x*x1*x1*x1;
713 r=x+y;
714 x2=(x-x1)+dx;
715 xx=x*x;
716 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx;
717 t=((x-r)+y)+t;
718 res=r+t;
719 cor = (r-res)+t;
720 cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30;
721 if (res == res + cor) return res;
722 else {
723 (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);
724 cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30;
725 if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
726 else {
727 t = (orig*hpinv.x + toint.x);
728 xn = t - toint.x;
729 v.x = t;
730 y = (orig - xn*mp1.x) - xn*mp2.x;
731 n =v.i[LOW_HALF]&3;
732 da = xn*pp3.x;
733 t=y-da;
734 da = (y-t)-da;
735 y = xn*pp4.x;
736 a = t - y;
737 da = ((t-a)-y)+da;
738 if (n&2) {a=-a; da=-da;}
739 (a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w);
740 cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40;
741 if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0];
742 else return __mpsin1(orig);
746 /***************************************************************************/
747 /* Routine compute sin(x+dx) (Double-Length number) where x in first or */
748 /* third quarter of unit circle.Routine receive also (right argument) the */
749 /* original value of x for computing error of result.And if result not */
750 /* accurate enough routine calls mpsin1 or dubsin */
751 /***************************************************************************/
753 static double sloww1(double x, double dx, double orig) {
754 mynumber u;
755 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;
756 static const double t22 = 6291456.0;
757 int4 k;
758 y=ABS(x);
759 u.x=big.x+y;
760 y=y-(u.x-big.x);
761 dx=(x>0)?dx:-dx;
762 xx=y*y;
763 s = y*xx*(sn3 +xx*sn5);
764 c = xx*(cs2 +xx*(cs4 + xx*cs6));
765 k=u.i[LOW_HALF]<<2;
766 sn=sincos.x[k];
767 ssn=sincos.x[k+1];
768 cs=sincos.x[k+2];
769 ccs=sincos.x[k+3];
770 y1 = (y+t22)-t22;
771 y2 = (y - y1)+dx;
772 c1 = (cs+t22)-t22;
773 c2=(cs-c1)+ccs;
774 cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c;
775 y=sn+c1*y1;
776 cor = cor+((sn-y)+c1*y1);
777 res=y+cor;
778 cor=(y-res)+cor;
779 cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);
780 if (res == res + cor) return (x>0)?res:-res;
781 else {
782 __dubsin(ABS(x),dx,w);
783 cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);
784 if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
785 else return __mpsin1(orig);
788 /***************************************************************************/
789 /* Routine compute sin(x+dx) (Double-Length number) where x in second or */
790 /* fourth quarter of unit circle.Routine receive also the original value */
791 /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
792 /* accurate enough routine calls mpsin1 or dubsin */
793 /***************************************************************************/
795 static double sloww2(double x, double dx, double orig, int n) {
796 mynumber u;
797 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;
798 static const double t22 = 6291456.0;
799 int4 k;
800 y=ABS(x);
801 u.x=big.x+y;
802 y=y-(u.x-big.x);
803 dx=(x>0)?dx:-dx;
804 xx=y*y;
805 s = y*xx*(sn3 +xx*sn5);
806 c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));
807 k=u.i[LOW_HALF]<<2;
808 sn=sincos.x[k];
809 ssn=sincos.x[k+1];
810 cs=sincos.x[k+2];
811 ccs=sincos.x[k+3];
813 y1 = (y+t22)-t22;
814 y2 = (y - y1)+dx;
815 e1 = (sn+t22)-t22;
816 e2=(sn-e1)+ssn;
817 cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;
818 y=cs-e1*y1;
819 cor = cor+((cs-y)-e1*y1);
820 res=y+cor;
821 cor=(y-res)+cor;
822 cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);
823 if (res == res + cor) return (n&2)?-res:res;
824 else {
825 __docos(ABS(x),dx,w);
826 cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);
827 if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0];
828 else return __mpsin1(orig);
831 /***************************************************************************/
832 /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
833 /* is small enough to use Taylor series around zero and (x+dx) */
834 /* in first or third quarter of unit circle.Routine receive also */
835 /* (right argument) the original value of x for computing error of */
836 /* result.And if result not accurate enough routine calls other routines */
837 /***************************************************************************/
839 static double bsloww(double x,double dx, double orig,int n) {
840 static const double th2_36 = 206158430208.0; /* 1.5*2**37 */
841 double y,x1,x2,xx,r,t,res,cor,w[2];
842 #if 0
843 double a,da,xn;
844 union {int4 i[2]; double x;} v;
845 #endif
846 x1=(x+th2_36)-th2_36;
847 y = aa.x*x1*x1*x1;
848 r=x+y;
849 x2=(x-x1)+dx;
850 xx=x*x;
851 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx;
852 t=((x-r)+y)+t;
853 res=r+t;
854 cor = (r-res)+t;
855 cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24;
856 if (res == res + cor) return res;
857 else {
858 (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);
859 cor = (w[1]>0)? 1.000000001*w[1] + 1.1e-24 : 1.000000001*w[1] - 1.1e-24;
860 if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
861 else return (n&1)?__mpcos1(orig):__mpsin1(orig);
865 /***************************************************************************/
866 /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
867 /* in first or third quarter of unit circle.Routine receive also */
868 /* (right argument) the original value of x for computing error of result.*/
869 /* And if result not accurate enough routine calls other routines */
870 /***************************************************************************/
872 static double bsloww1(double x, double dx, double orig,int n) {
873 mynumber u;
874 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;
875 static const double t22 = 6291456.0;
876 int4 k;
877 y=ABS(x);
878 u.x=big.x+y;
879 y=y-(u.x-big.x);
880 dx=(x>0)?dx:-dx;
881 xx=y*y;
882 s = y*xx*(sn3 +xx*sn5);
883 c = xx*(cs2 +xx*(cs4 + xx*cs6));
884 k=u.i[LOW_HALF]<<2;
885 sn=sincos.x[k];
886 ssn=sincos.x[k+1];
887 cs=sincos.x[k+2];
888 ccs=sincos.x[k+3];
889 y1 = (y+t22)-t22;
890 y2 = (y - y1)+dx;
891 c1 = (cs+t22)-t22;
892 c2=(cs-c1)+ccs;
893 cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c;
894 y=sn+c1*y1;
895 cor = cor+((sn-y)+c1*y1);
896 res=y+cor;
897 cor=(y-res)+cor;
898 cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24;
899 if (res == res + cor) return (x>0)?res:-res;
900 else {
901 __dubsin(ABS(x),dx,w);
902 cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24: 1.000000005*w[1]-1.1e-24;
903 if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
904 else return (n&1)?__mpcos1(orig):__mpsin1(orig);
908 /***************************************************************************/
909 /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */
910 /* in second or fourth quarter of unit circle.Routine receive also the */
911 /* original value and quarter(n= 1or 3)of x for computing error of result. */
912 /* And if result not accurate enough routine calls other routines */
913 /***************************************************************************/
915 static double bsloww2(double x, double dx, double orig, int n) {
916 mynumber u;
917 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;
918 static const double t22 = 6291456.0;
919 int4 k;
920 y=ABS(x);
921 u.x=big.x+y;
922 y=y-(u.x-big.x);
923 dx=(x>0)?dx:-dx;
924 xx=y*y;
925 s = y*xx*(sn3 +xx*sn5);
926 c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));
927 k=u.i[LOW_HALF]<<2;
928 sn=sincos.x[k];
929 ssn=sincos.x[k+1];
930 cs=sincos.x[k+2];
931 ccs=sincos.x[k+3];
933 y1 = (y+t22)-t22;
934 y2 = (y - y1)+dx;
935 e1 = (sn+t22)-t22;
936 e2=(sn-e1)+ssn;
937 cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;
938 y=cs-e1*y1;
939 cor = cor+((cs-y)-e1*y1);
940 res=y+cor;
941 cor=(y-res)+cor;
942 cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24;
943 if (res == res + cor) return (n&2)?-res:res;
944 else {
945 __docos(ABS(x),dx,w);
946 cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24 : 1.000000005*w[1]-1.1e-24;
947 if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0];
948 else return (n&1)?__mpsin1(orig):__mpcos1(orig);
952 /************************************************************************/
953 /* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */
954 /* precision and if still doesn't accurate enough by mpcos or docos */
955 /************************************************************************/
957 static double cslow2(double x) {
958 mynumber u;
959 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;
960 static const double t22 = 6291456.0;
961 int4 k;
962 y=ABS(x);
963 u.x = big.x+y;
964 y = y-(u.x-big.x);
965 xx=y*y;
966 s = y*xx*(sn3 +xx*sn5);
967 c = xx*(cs2 +xx*(cs4 + xx*cs6));
968 k=u.i[LOW_HALF]<<2;
969 sn=sincos.x[k];
970 ssn=sincos.x[k+1];
971 cs=sincos.x[k+2];
972 ccs=sincos.x[k+3];
973 y1 = (y+t22)-t22;
974 y2 = y - y1;
975 e1 = (sn+t22)-t22;
976 e2=(sn-e1)+ssn;
977 cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;
978 y=cs-e1*y1;
979 cor = cor+((cs-y)-e1*y1);
980 res=y+cor;
981 cor=(y-res)+cor;
982 if (res == res+1.0005*cor)
983 return res;
984 else {
985 y=ABS(x);
986 __docos(y,0,w);
987 if (w[0] == w[0]+1.000000005*w[1]) return w[0];
988 else return __mpcos(x,0);
992 /***************************************************************************/
993 /* Routine compute cos(x+dx) (Double-Length number) where x is small enough*/
994 /* to use Taylor series around zero and (x+dx) .Routine receive also */
995 /* (right argument) the original value of x for computing error of */
996 /* result.And if result not accurate enough routine calls other routines */
997 /***************************************************************************/
1000 static double csloww(double x,double dx, double orig) {
1001 static const double th2_36 = 206158430208.0; /* 1.5*2**37 */
1002 double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn;
1003 union {int4 i[2]; double x;} v;
1004 int4 n;
1005 x1=(x+th2_36)-th2_36;
1006 y = aa.x*x1*x1*x1;
1007 r=x+y;
1008 x2=(x-x1)+dx;
1009 xx=x*x;
1010 /* Taylor series */
1011 t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx;
1012 t=((x-r)+y)+t;
1013 res=r+t;
1014 cor = (r-res)+t;
1015 cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30;
1016 if (res == res + cor) return res;
1017 else {
1018 (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);
1019 cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30;
1020 if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
1021 else {
1022 t = (orig*hpinv.x + toint.x);
1023 xn = t - toint.x;
1024 v.x = t;
1025 y = (orig - xn*mp1.x) - xn*mp2.x;
1026 n =v.i[LOW_HALF]&3;
1027 da = xn*pp3.x;
1028 t=y-da;
1029 da = (y-t)-da;
1030 y = xn*pp4.x;
1031 a = t - y;
1032 da = ((t-a)-y)+da;
1033 if (n==1) {a=-a; da=-da;}
1034 (a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w);
1035 cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40;
1036 if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0];
1037 else return __mpcos1(orig);
1042 /***************************************************************************/
1043 /* Routine compute sin(x+dx) (Double-Length number) where x in first or */
1044 /* third quarter of unit circle.Routine receive also (right argument) the */
1045 /* original value of x for computing error of result.And if result not */
1046 /* accurate enough routine calls other routines */
1047 /***************************************************************************/
1049 static double csloww1(double x, double dx, double orig) {
1050 mynumber u;
1051 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;
1052 static const double t22 = 6291456.0;
1053 int4 k;
1054 y=ABS(x);
1055 u.x=big.x+y;
1056 y=y-(u.x-big.x);
1057 dx=(x>0)?dx:-dx;
1058 xx=y*y;
1059 s = y*xx*(sn3 +xx*sn5);
1060 c = xx*(cs2 +xx*(cs4 + xx*cs6));
1061 k=u.i[LOW_HALF]<<2;
1062 sn=sincos.x[k];
1063 ssn=sincos.x[k+1];
1064 cs=sincos.x[k+2];
1065 ccs=sincos.x[k+3];
1066 y1 = (y+t22)-t22;
1067 y2 = (y - y1)+dx;
1068 c1 = (cs+t22)-t22;
1069 c2=(cs-c1)+ccs;
1070 cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c;
1071 y=sn+c1*y1;
1072 cor = cor+((sn-y)+c1*y1);
1073 res=y+cor;
1074 cor=(y-res)+cor;
1075 cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);
1076 if (res == res + cor) return (x>0)?res:-res;
1077 else {
1078 __dubsin(ABS(x),dx,w);
1079 cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);
1080 if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];
1081 else return __mpcos1(orig);
1086 /***************************************************************************/
1087 /* Routine compute sin(x+dx) (Double-Length number) where x in second or */
1088 /* fourth quarter of unit circle.Routine receive also the original value */
1089 /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
1090 /* accurate enough routine calls other routines */
1091 /***************************************************************************/
1093 static double csloww2(double x, double dx, double orig, int n) {
1094 mynumber u;
1095 double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;
1096 static const double t22 = 6291456.0;
1097 int4 k;
1098 y=ABS(x);
1099 u.x=big.x+y;
1100 y=y-(u.x-big.x);
1101 dx=(x>0)?dx:-dx;
1102 xx=y*y;
1103 s = y*xx*(sn3 +xx*sn5);
1104 c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));
1105 k=u.i[LOW_HALF]<<2;
1106 sn=sincos.x[k];
1107 ssn=sincos.x[k+1];
1108 cs=sincos.x[k+2];
1109 ccs=sincos.x[k+3];
1111 y1 = (y+t22)-t22;
1112 y2 = (y - y1)+dx;
1113 e1 = (sn+t22)-t22;
1114 e2=(sn-e1)+ssn;
1115 cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;
1116 y=cs-e1*y1;
1117 cor = cor+((cs-y)-e1*y1);
1118 res=y+cor;
1119 cor=(y-res)+cor;
1120 cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);
1121 if (res == res + cor) return (n)?-res:res;
1122 else {
1123 __docos(ABS(x),dx,w);
1124 cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);
1125 if (w[0] == w[0]+cor) return (n)?-w[0]:w[0];
1126 else return __mpcos1(orig);
1130 weak_alias (__cos, cos)
1131 weak_alias (__sin, sin)
1133 #ifdef NO_LONG_DOUBLE
1134 strong_alias (__sin, __sinl)
1135 weak_alias (__sin, sinl)
1136 strong_alias (__cos, __cosl)
1137 weak_alias (__cos, cosl)
1138 #endif