.
[glibc/history.git] / sysdeps / ieee754 / flt-32 / e_jnf.c
blobde2e53de83834d371cc6d0917e10d6f71bf0ede6
1 /* e_jnf.c -- float version of e_jn.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: e_jnf.c,v 1.5 1995/05/10 20:45:37 jtc Exp $";
18 #endif
20 #include "math.h"
21 #include "math_private.h"
23 #ifdef __STDC__
24 static const float
25 #else
26 static float
27 #endif
28 two = 2.0000000000e+00, /* 0x40000000 */
29 one = 1.0000000000e+00; /* 0x3F800000 */
31 #ifdef __STDC__
32 static const float zero = 0.0000000000e+00;
33 #else
34 static float zero = 0.0000000000e+00;
35 #endif
37 #ifdef __STDC__
38 float __ieee754_jnf(int n, float x)
39 #else
40 float __ieee754_jnf(n,x)
41 int n; float x;
42 #endif
44 int32_t i,hx,ix, sgn;
45 float a, b, temp, di;
46 float z, w;
48 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
49 * Thus, J(-n,x) = J(n,-x)
51 GET_FLOAT_WORD(hx,x);
52 ix = 0x7fffffff&hx;
53 /* if J(n,NaN) is NaN */
54 if(ix>0x7f800000) return x+x;
55 if(n<0){
56 n = -n;
57 x = -x;
58 hx ^= 0x80000000;
60 if(n==0) return(__ieee754_j0f(x));
61 if(n==1) return(__ieee754_j1f(x));
62 sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
63 x = fabsf(x);
64 if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
65 b = zero;
66 else if((float)n<=x) {
67 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
68 a = __ieee754_j0f(x);
69 b = __ieee754_j1f(x);
70 for(i=1;i<n;i++){
71 temp = b;
72 b = b*((float)(i+i)/x) - a; /* avoid underflow */
73 a = temp;
75 } else {
76 if(ix<0x30800000) { /* x < 2**-29 */
77 /* x is tiny, return the first Taylor expansion of J(n,x)
78 * J(n,x) = 1/n!*(x/2)^n - ...
80 if(n>33) /* underflow */
81 b = zero;
82 else {
83 temp = x*(float)0.5; b = temp;
84 for (a=one,i=2;i<=n;i++) {
85 a *= (float)i; /* a = n! */
86 b *= temp; /* b = (x/2)^n */
88 b = b/a;
90 } else {
91 /* use backward recurrence */
92 /* x x^2 x^2
93 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
94 * 2n - 2(n+1) - 2(n+2)
96 * 1 1 1
97 * (for large x) = ---- ------ ------ .....
98 * 2n 2(n+1) 2(n+2)
99 * -- - ------ - ------ -
100 * x x x
102 * Let w = 2n/x and h=2/x, then the above quotient
103 * is equal to the continued fraction:
105 * = -----------------------
107 * w - -----------------
109 * w+h - ---------
110 * w+2h - ...
112 * To determine how many terms needed, let
113 * Q(0) = w, Q(1) = w(w+h) - 1,
114 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
115 * When Q(k) > 1e4 good for single
116 * When Q(k) > 1e9 good for double
117 * When Q(k) > 1e17 good for quadruple
119 /* determine k */
120 float t,v;
121 float q0,q1,h,tmp; int32_t k,m;
122 w = (n+n)/(float)x; h = (float)2.0/(float)x;
123 q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
124 while(q1<(float)1.0e9) {
125 k += 1; z += h;
126 tmp = z*q1 - q0;
127 q0 = q1;
128 q1 = tmp;
130 m = n+n;
131 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
132 a = t;
133 b = one;
134 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
135 * Hence, if n*(log(2n/x)) > ...
136 * single 8.8722839355e+01
137 * double 7.09782712893383973096e+02
138 * long double 1.1356523406294143949491931077970765006170e+04
139 * then recurrent value may overflow and the result is
140 * likely underflow to zero
142 tmp = n;
143 v = two/x;
144 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
145 if(tmp<(float)8.8721679688e+01) {
146 for(i=n-1,di=(float)(i+i);i>0;i--){
147 temp = b;
148 b *= di;
149 b = b/x - a;
150 a = temp;
151 di -= two;
153 } else {
154 for(i=n-1,di=(float)(i+i);i>0;i--){
155 temp = b;
156 b *= di;
157 b = b/x - a;
158 a = temp;
159 di -= two;
160 /* scale b to avoid spurious overflow */
161 if(b>(float)1e10) {
162 a /= b;
163 t /= b;
164 b = one;
168 b = (t*__ieee754_j0f(x)/b);
171 if(sgn==1) return -b; else return b;
174 #ifdef __STDC__
175 float __ieee754_ynf(int n, float x)
176 #else
177 float __ieee754_ynf(n,x)
178 int n; float x;
179 #endif
181 int32_t i,hx,ix;
182 u_int32_t ib;
183 int32_t sign;
184 float a, b, temp;
186 GET_FLOAT_WORD(hx,x);
187 ix = 0x7fffffff&hx;
188 /* if Y(n,NaN) is NaN */
189 if(ix>0x7f800000) return x+x;
190 if(ix==0) return -HUGE_VALF+x; /* -inf and overflow exception. */
191 if(hx<0) return zero/(zero*x);
192 sign = 1;
193 if(n<0){
194 n = -n;
195 sign = 1 - ((n&1)<<1);
197 if(n==0) return(__ieee754_y0f(x));
198 if(n==1) return(sign*__ieee754_y1f(x));
199 if(ix==0x7f800000) return zero;
201 a = __ieee754_y0f(x);
202 b = __ieee754_y1f(x);
203 /* quit if b is -inf */
204 GET_FLOAT_WORD(ib,b);
205 for(i=1;i<n&&ib!=0xff800000;i++){
206 temp = b;
207 b = ((float)(i+i)/x)*b - a;
208 GET_FLOAT_WORD(ib,b);
209 a = temp;
211 if(sign>0) return b; else return -b;