2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
12 /* Modifications for long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
39 * y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
60 #include "math_private.h"
63 static const long double
67 invsqrtpi
= 5.64189583547756286948079e-1L, two
= 2.0e0L
, one
= 1.0e0L
;
70 static const long double zero
= 0.0L;
72 static long double zero
= 0.0L;
77 __ieee754_jnl (int n
, long double x
)
87 long double a
, b
, temp
, di
;
90 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
91 * Thus, J(-n,x) = J(n,-x)
94 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
97 /* if J(n,NaN) is NaN */
98 if ((ix
== 0x7fff) && ((i0
& 0x7fffffff) != 0))
107 return (__ieee754_j0l (x
));
109 return (__ieee754_j1l (x
));
110 sgn
= (n
& 1) & (se
>> 15); /* even n -- 0, odd n -- sign(x) */
112 if ((ix
| i0
| i1
) == 0 || ix
>= 0x7fff) /* if x is 0 or inf */
114 else if ((long double) n
<= x
)
116 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
120 /* ??? This might be a futile gesture.
121 If x exceeds X_TLOSS anyway, the wrapper function
122 will set the result to zero. */
125 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
126 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
127 * Let s=sin(x), c=cos(x),
128 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
130 * n sin(xn)*sqt2 cos(xn)*sqt2
131 * ----------------------------------
139 __sincosl (x
, &s
, &c
);
155 b
= invsqrtpi
* temp
/ __ieee754_sqrtl (x
);
159 a
= __ieee754_j0l (x
);
160 b
= __ieee754_j1l (x
);
161 for (i
= 1; i
< n
; i
++)
164 b
= b
* ((long double) (i
+ i
) / x
) - a
; /* avoid underflow */
173 /* x is tiny, return the first Taylor expansion of J(n,x)
174 * J(n,x) = 1/n!*(x/2)^n - ...
176 if (n
>= 400) /* underflow, result < 10^-4952 */
182 for (a
= one
, i
= 2; i
<= n
; i
++)
184 a
*= (long double) i
; /* a = n! */
185 b
*= temp
; /* b = (x/2)^n */
192 /* use backward recurrence */
194 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
195 * 2n - 2(n+1) - 2(n+2)
198 * (for large x) = ---- ------ ------ .....
200 * -- - ------ - ------ -
203 * Let w = 2n/x and h=2/x, then the above quotient
204 * is equal to the continued fraction:
206 * = -----------------------
208 * w - -----------------
213 * To determine how many terms needed, let
214 * Q(0) = w, Q(1) = w(w+h) - 1,
215 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
216 * When Q(k) > 1e4 good for single
217 * When Q(k) > 1e9 good for double
218 * When Q(k) > 1e17 good for quadruple
222 long double q0
, q1
, h
, tmp
;
224 w
= (n
+ n
) / (long double) x
;
225 h
= 2.0L / (long double) x
;
239 for (t
= zero
, i
= 2 * (n
+ k
); i
>= m
; i
-= 2)
240 t
= one
/ (i
/ x
- t
);
243 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
244 * Hence, if n*(log(2n/x)) > ...
245 * single 8.8722839355e+01
246 * double 7.09782712893383973096e+02
247 * long double 1.1356523406294143949491931077970765006170e+04
248 * then recurrent value may overflow and the result is
249 * likely underflow to zero
253 tmp
= tmp
* __ieee754_logl (fabsl (v
* tmp
));
255 if (tmp
< 1.1356523406294143949491931077970765006170e+04L)
257 for (i
= n
- 1, di
= (long double) (i
+ i
); i
> 0; i
--)
268 for (i
= n
- 1, di
= (long double) (i
+ i
); i
> 0; i
--)
275 /* scale b to avoid spurious overflow */
284 b
= (t
* __ieee754_j0l (x
) / b
);
295 __ieee754_ynl (int n
, long double x
)
303 u_int32_t se
, i0
, i1
;
306 long double a
, b
, temp
;
309 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
311 /* if Y(n,NaN) is NaN */
312 if ((ix
== 0x7fff) && ((i0
& 0x7fffffff) != 0))
314 if ((ix
| i0
| i1
) == 0)
315 return -HUGE_VALL
+ x
; /* -inf and overflow exception. */
317 return zero
/ (zero
* x
);
322 sign
= 1 - ((n
& 1) << 1);
325 return (__ieee754_y0l (x
));
327 return (sign
* __ieee754_y1l (x
));
333 /* ??? See comment above on the possible futility of this. */
336 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
337 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
338 * Let s=sin(x), c=cos(x),
339 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
341 * n sin(xn)*sqt2 cos(xn)*sqt2
342 * ----------------------------------
350 __sincosl (x
, &s
, &c
);
366 b
= invsqrtpi
* temp
/ __ieee754_sqrtl (x
);
370 a
= __ieee754_y0l (x
);
371 b
= __ieee754_y1l (x
);
372 /* quit if b is -inf */
373 GET_LDOUBLE_WORDS (se
, i0
, i1
, b
);
374 for (i
= 1; i
< n
&& se
!= 0xffff; i
++)
377 b
= ((long double) (i
+ i
) / x
) * b
- a
;
378 GET_LDOUBLE_WORDS (se
, i0
, i1
, b
);