.
[glibc/history.git] / sysdeps / ieee754 / ldbl-96 / e_jnl.c
blob3d715d36aada88f3e0feebf79da0f21e3eb95ffa
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
12 /* Modifications for long double are
13 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14 and are incorporated herein by permission of the author. The author
15 reserves the right to distribute this material elsewhere under different
16 copying permissions. These modifications are distributed here under
17 the following terms:
19 This library is free software; you can redistribute it and/or
20 modify it under the terms of the GNU Lesser General Public
21 License as published by the Free Software Foundation; either
22 version 2.1 of the License, or (at your option) any later version.
24 This library is distributed in the hope that it will be useful,
25 but WITHOUT ANY WARRANTY; without even the implied warranty of
26 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 Lesser General Public License for more details.
29 You should have received a copy of the GNU Lesser General Public
30 License along with this library; if not, write to the Free Software
31 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35 * floating point Bessel's function of the 1st and 2nd kind
36 * of order n
38 * Special cases:
39 * y0(0)=y1(0)=yn(n,0) = -inf with overflow signal;
40 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41 * Note 2. About jn(n,x), yn(n,x)
42 * For n=0, j0(x) is called,
43 * for n=1, j1(x) is called,
44 * for n<x, forward recursion us used starting
45 * from values of j0(x) and j1(x).
46 * for n>x, a continued fraction approximation to
47 * j(n,x)/j(n-1,x) is evaluated and then backward
48 * recursion is used starting from a supposed value
49 * for j(n,x). The resulting value of j(0,x) is
50 * compared with the actual value to correct the
51 * supposed value of j(n,x).
53 * yn(n,x) is similar in all respects, except
54 * that forward recursion is used for all
55 * values of n>1.
59 #include "math.h"
60 #include "math_private.h"
62 #ifdef __STDC__
63 static const long double
64 #else
65 static long double
66 #endif
67 invsqrtpi = 5.64189583547756286948079e-1L, two = 2.0e0L, one = 1.0e0L;
69 #ifdef __STDC__
70 static const long double zero = 0.0L;
71 #else
72 static long double zero = 0.0L;
73 #endif
75 #ifdef __STDC__
76 long double
77 __ieee754_jnl (int n, long double x)
78 #else
79 long double
80 __ieee754_jnl (n, x)
81 int n;
82 long double x;
83 #endif
85 u_int32_t se, i0, i1;
86 int32_t i, ix, sgn;
87 long double a, b, temp, di;
88 long double z, w;
90 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
91 * Thus, J(-n,x) = J(n,-x)
94 GET_LDOUBLE_WORDS (se, i0, i1, x);
95 ix = se & 0x7fff;
97 /* if J(n,NaN) is NaN */
98 if ((ix == 0x7fff) && ((i0 & 0x7fffffff) != 0))
99 return x + x;
100 if (n < 0)
102 n = -n;
103 x = -x;
104 se ^= 0x8000;
106 if (n == 0)
107 return (__ieee754_j0l (x));
108 if (n == 1)
109 return (__ieee754_j1l (x));
110 sgn = (n & 1) & (se >> 15); /* even n -- 0, odd n -- sign(x) */
111 x = fabsl (x);
112 if ((ix | i0 | i1) == 0 || ix >= 0x7fff) /* if x is 0 or inf */
113 b = zero;
114 else if ((long double) n <= x)
116 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
117 if (ix >= 0x412D)
118 { /* x > 2**302 */
120 /* ??? This might be a futile gesture.
121 If x exceeds X_TLOSS anyway, the wrapper function
122 will set the result to zero. */
124 /* (x >> n**2)
125 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
126 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
127 * Let s=sin(x), c=cos(x),
128 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
130 * n sin(xn)*sqt2 cos(xn)*sqt2
131 * ----------------------------------
132 * 0 s-c c+s
133 * 1 -s-c -c+s
134 * 2 -s+c -c-s
135 * 3 s+c c-s
137 long double s;
138 long double c;
139 __sincosl (x, &s, &c);
140 switch (n & 3)
142 case 0:
143 temp = c + s;
144 break;
145 case 1:
146 temp = -c + s;
147 break;
148 case 2:
149 temp = -c - s;
150 break;
151 case 3:
152 temp = c - s;
153 break;
155 b = invsqrtpi * temp / __ieee754_sqrtl (x);
157 else
159 a = __ieee754_j0l (x);
160 b = __ieee754_j1l (x);
161 for (i = 1; i < n; i++)
163 temp = b;
164 b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
165 a = temp;
169 else
171 if (ix < 0x3fde)
172 { /* x < 2**-33 */
173 /* x is tiny, return the first Taylor expansion of J(n,x)
174 * J(n,x) = 1/n!*(x/2)^n - ...
176 if (n >= 400) /* underflow, result < 10^-4952 */
177 b = zero;
178 else
180 temp = x * 0.5;
181 b = temp;
182 for (a = one, i = 2; i <= n; i++)
184 a *= (long double) i; /* a = n! */
185 b *= temp; /* b = (x/2)^n */
187 b = b / a;
190 else
192 /* use backward recurrence */
193 /* x x^2 x^2
194 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
195 * 2n - 2(n+1) - 2(n+2)
197 * 1 1 1
198 * (for large x) = ---- ------ ------ .....
199 * 2n 2(n+1) 2(n+2)
200 * -- - ------ - ------ -
201 * x x x
203 * Let w = 2n/x and h=2/x, then the above quotient
204 * is equal to the continued fraction:
206 * = -----------------------
208 * w - -----------------
210 * w+h - ---------
211 * w+2h - ...
213 * To determine how many terms needed, let
214 * Q(0) = w, Q(1) = w(w+h) - 1,
215 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
216 * When Q(k) > 1e4 good for single
217 * When Q(k) > 1e9 good for double
218 * When Q(k) > 1e17 good for quadruple
220 /* determine k */
221 long double t, v;
222 long double q0, q1, h, tmp;
223 int32_t k, m;
224 w = (n + n) / (long double) x;
225 h = 2.0L / (long double) x;
226 q0 = w;
227 z = w + h;
228 q1 = w * z - 1.0L;
229 k = 1;
230 while (q1 < 1.0e11L)
232 k += 1;
233 z += h;
234 tmp = z * q1 - q0;
235 q0 = q1;
236 q1 = tmp;
238 m = n + n;
239 for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
240 t = one / (i / x - t);
241 a = t;
242 b = one;
243 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
244 * Hence, if n*(log(2n/x)) > ...
245 * single 8.8722839355e+01
246 * double 7.09782712893383973096e+02
247 * long double 1.1356523406294143949491931077970765006170e+04
248 * then recurrent value may overflow and the result is
249 * likely underflow to zero
251 tmp = n;
252 v = two / x;
253 tmp = tmp * __ieee754_logl (fabsl (v * tmp));
255 if (tmp < 1.1356523406294143949491931077970765006170e+04L)
257 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
259 temp = b;
260 b *= di;
261 b = b / x - a;
262 a = temp;
263 di -= two;
266 else
268 for (i = n - 1, di = (long double) (i + i); i > 0; i--)
270 temp = b;
271 b *= di;
272 b = b / x - a;
273 a = temp;
274 di -= two;
275 /* scale b to avoid spurious overflow */
276 if (b > 1e100L)
278 a /= b;
279 t /= b;
280 b = one;
284 b = (t * __ieee754_j0l (x) / b);
287 if (sgn == 1)
288 return -b;
289 else
290 return b;
293 #ifdef __STDC__
294 long double
295 __ieee754_ynl (int n, long double x)
296 #else
297 long double
298 __ieee754_ynl (n, x)
299 int n;
300 long double x;
301 #endif
303 u_int32_t se, i0, i1;
304 int32_t i, ix;
305 int32_t sign;
306 long double a, b, temp;
309 GET_LDOUBLE_WORDS (se, i0, i1, x);
310 ix = se & 0x7fff;
311 /* if Y(n,NaN) is NaN */
312 if ((ix == 0x7fff) && ((i0 & 0x7fffffff) != 0))
313 return x + x;
314 if ((ix | i0 | i1) == 0)
315 return -HUGE_VALL + x; /* -inf and overflow exception. */
316 if (se & 0x8000)
317 return zero / (zero * x);
318 sign = 1;
319 if (n < 0)
321 n = -n;
322 sign = 1 - ((n & 1) << 1);
324 if (n == 0)
325 return (__ieee754_y0l (x));
326 if (n == 1)
327 return (sign * __ieee754_y1l (x));
328 if (ix == 0x7fff)
329 return zero;
330 if (ix >= 0x412D)
331 { /* x > 2**302 */
333 /* ??? See comment above on the possible futility of this. */
335 /* (x >> n**2)
336 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
337 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
338 * Let s=sin(x), c=cos(x),
339 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
341 * n sin(xn)*sqt2 cos(xn)*sqt2
342 * ----------------------------------
343 * 0 s-c c+s
344 * 1 -s-c -c+s
345 * 2 -s+c -c-s
346 * 3 s+c c-s
348 long double s;
349 long double c;
350 __sincosl (x, &s, &c);
351 switch (n & 3)
353 case 0:
354 temp = s - c;
355 break;
356 case 1:
357 temp = -s - c;
358 break;
359 case 2:
360 temp = -s + c;
361 break;
362 case 3:
363 temp = s + c;
364 break;
366 b = invsqrtpi * temp / __ieee754_sqrtl (x);
368 else
370 a = __ieee754_y0l (x);
371 b = __ieee754_y1l (x);
372 /* quit if b is -inf */
373 GET_LDOUBLE_WORDS (se, i0, i1, b);
374 for (i = 1; i < n && se != 0xffff; i++)
376 temp = b;
377 b = ((long double) (i + i) / x) * b - a;
378 GET_LDOUBLE_WORDS (se, i0, i1, b);
379 a = temp;
382 if (sign > 0)
383 return b;
384 else
385 return -b;