.
[glibc/history.git] / stdlib / qsort.c
blobbc8d171b793b58b563c459d1bb42560008e490f5
1 /* Copyright (C) 1991, 1992 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
20 #include <ansidecl.h>
21 #include <stdlib.h>
22 #include <string.h>
24 /* Byte-wise swap two items of size SIZE. */
25 #define SWAP(a, b, size) \
26 do \
27 { \
28 register size_t __size = (size); \
29 register char *__a = (a), *__b = (b); \
30 do \
31 { \
32 char __tmp = *__a; \
33 *__a++ = *__b; \
34 *__b++ = __tmp; \
35 } while (--__size > 0); \
36 } while (0)
38 /* Discontinue quicksort algorithm when partition gets below this size.
39 This particular magic number was chosen to work best on a Sun 4/260. */
40 #define MAX_THRESH 4
42 /* Stack node declarations used to store unfulfilled partition obligations. */
43 typedef struct
45 char *lo;
46 char *hi;
47 } stack_node;
49 /* The next 4 #defines implement a very fast in-line stack abstraction. */
50 #define STACK_SIZE (8 * sizeof(unsigned long int))
51 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
52 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
53 #define STACK_NOT_EMPTY (stack < top)
56 /* Order size using quicksort. This implementation incorporates
57 four optimizations discussed in Sedgewick:
59 1. Non-recursive, using an explicit stack of pointer that store the
60 next array partition to sort. To save time, this maximum amount
61 of space required to store an array of MAX_INT is allocated on the
62 stack. Assuming a 32-bit integer, this needs only 32 *
63 sizeof(stack_node) == 136 bits. Pretty cheap, actually.
65 2. Chose the pivot element using a median-of-three decision tree.
66 This reduces the probability of selecting a bad pivot value and
67 eliminates certain extraneous comparisons.
69 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
70 insertion sort to order the MAX_THRESH items within each partition.
71 This is a big win, since insertion sort is faster for small, mostly
72 sorted array segements.
74 4. The larger of the two sub-partitions is always pushed onto the
75 stack first, with the algorithm then concentrating on the
76 smaller partition. This *guarantees* no more than log (n)
77 stack size is needed (actually O(1) in this case)! */
79 void
80 DEFUN(_quicksort, (pbase, total_elems, size, cmp),
81 PTR CONST pbase AND size_t total_elems AND size_t size AND
82 int EXFUN((*cmp), (CONST PTR, CONST PTR)))
84 register char *base_ptr = (char *) pbase;
86 /* Allocating SIZE bytes for a pivot buffer facilitates a better
87 algorithm below since we can do comparisons directly on the pivot. */
88 char *pivot_buffer = (char *) __alloca (size);
89 CONST size_t max_thresh = MAX_THRESH * size;
91 if (total_elems == 0)
92 /* Avoid lossage with unsigned arithmetic below. */
93 return;
95 if (total_elems > MAX_THRESH)
97 char *lo = base_ptr;
98 char *hi = &lo[size * (total_elems - 1)];
99 /* Largest size needed for 32-bit int!!! */
100 stack_node stack[STACK_SIZE];
101 stack_node *top = stack + 1;
103 while (STACK_NOT_EMPTY)
105 char *left_ptr;
106 char *right_ptr;
108 char *pivot = pivot_buffer;
110 /* Select median value from among LO, MID, and HI. Rearrange
111 LO and HI so the three values are sorted. This lowers the
112 probability of picking a pathological pivot value and
113 skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
115 char *mid = lo + size * ((hi - lo) / size >> 1);
117 if ((*cmp)((PTR) mid, (PTR) lo) < 0)
118 SWAP(mid, lo, size);
119 if ((*cmp)((PTR) hi, (PTR) mid) < 0)
120 SWAP(mid, hi, size);
121 else
122 goto jump_over;
123 if ((*cmp)((PTR) mid, (PTR) lo) < 0)
124 SWAP(mid, lo, size);
125 jump_over:;
126 memcpy(pivot, mid, size);
127 pivot = pivot_buffer;
129 left_ptr = lo + size;
130 right_ptr = hi - size;
132 /* Here's the famous ``collapse the walls'' section of quicksort.
133 Gotta like those tight inner loops! They are the main reason
134 that this algorithm runs much faster than others. */
137 while ((*cmp)((PTR) left_ptr, (PTR) pivot) < 0)
138 left_ptr += size;
140 while ((*cmp)((PTR) pivot, (PTR) right_ptr) < 0)
141 right_ptr -= size;
143 if (left_ptr < right_ptr)
145 SWAP(left_ptr, right_ptr, size);
146 left_ptr += size;
147 right_ptr -= size;
149 else if (left_ptr == right_ptr)
151 left_ptr += size;
152 right_ptr -= size;
153 break;
156 while (left_ptr <= right_ptr);
158 /* Set up pointers for next iteration. First determine whether
159 left and right partitions are below the threshold size. If so,
160 ignore one or both. Otherwise, push the larger partition's
161 bounds on the stack and continue sorting the smaller one. */
163 if ((size_t) (right_ptr - lo) <= max_thresh)
165 if ((size_t) (hi - left_ptr) <= max_thresh)
166 /* Ignore both small partitions. */
167 POP(lo, hi);
168 else
169 /* Ignore small left partition. */
170 lo = left_ptr;
172 else if ((size_t) (hi - left_ptr) <= max_thresh)
173 /* Ignore small right partition. */
174 hi = right_ptr;
175 else if ((right_ptr - lo) > (hi - left_ptr))
177 /* Push larger left partition indices. */
178 PUSH(lo, right_ptr);
179 lo = left_ptr;
181 else
183 /* Push larger right partition indices. */
184 PUSH(left_ptr, hi);
185 hi = right_ptr;
190 /* Once the BASE_PTR array is partially sorted by quicksort the rest
191 is completely sorted using insertion sort, since this is efficient
192 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
193 of the array to sort, and END_PTR points at the very last element in
194 the array (*not* one beyond it!). */
196 #define min(x, y) ((x) < (y) ? (x) : (y))
199 char *CONST end_ptr = &base_ptr[size * (total_elems - 1)];
200 char *tmp_ptr = base_ptr;
201 char *thresh = min(end_ptr, base_ptr + max_thresh);
202 register char *run_ptr;
204 /* Find smallest element in first threshold and place it at the
205 array's beginning. This is the smallest array element,
206 and the operation speeds up insertion sort's inner loop. */
208 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
209 if ((*cmp)((PTR) run_ptr, (PTR) tmp_ptr) < 0)
210 tmp_ptr = run_ptr;
212 if (tmp_ptr != base_ptr)
213 SWAP(tmp_ptr, base_ptr, size);
215 /* Insertion sort, running from left-hand-side up to right-hand-side. */
217 run_ptr = base_ptr + size;
218 while ((run_ptr += size) <= end_ptr)
220 tmp_ptr = run_ptr - size;
221 while ((*cmp)((PTR) run_ptr, (PTR) tmp_ptr) < 0)
222 tmp_ptr -= size;
224 tmp_ptr += size;
225 if (tmp_ptr != run_ptr)
227 char *trav;
229 trav = run_ptr + size;
230 while (--trav >= run_ptr)
232 char c = *trav;
233 char *hi, *lo;
235 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
236 *hi = *lo;
237 *hi = c;