1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997, 1998, 1999, 2001, 2004, 2007
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
22 #include <machine/asm.h>
31 ASM_TYPE_DIRECTIVE(infinity,@object)
34 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
35 ASM_SIZE_DIRECTIVE(infinity)
36 ASM_TYPE_DIRECTIVE(zero,@object)
38 ASM_SIZE_DIRECTIVE(zero)
39 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
42 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
44 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
45 ASM_SIZE_DIRECTIVE(minf_mzero)
46 ASM_TYPE_DIRECTIVE(one,@object)
48 ASM_SIZE_DIRECTIVE(one)
49 ASM_TYPE_DIRECTIVE(limit,@object)
51 ASM_SIZE_DIRECTIVE(limit)
52 ASM_TYPE_DIRECTIVE(p63,@object)
54 .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
55 ASM_SIZE_DIRECTIVE(p63)
58 #define MO(op) op##(%rip)
72 cmpb $0x40, %ah // is y == 0 ?
75 cmpb $0x05, %ah // is y == ±inf ?
78 cmpb $0x01, %ah // is y == NaN ?
95 /* fistpll raises invalid exception for |y| >= 1L<<63. */
96 fldl MO(p63) // 1L<<63 : y : x
97 fld %st(1) // y : 1L<<63 : y : x
98 fabs // |y| : 1L<<63 : y : x
99 fcomip %st(1), %st // 1L<<63 : y : x
103 /* First see whether `y' is a natural number. In this case we
104 can use a more precise algorithm. */
106 fistpll -8(%rsp) // y : x
107 fildll -8(%rsp) // int(y) : y : x
108 fucomip %st(1),%st // y : x
111 /* OK, we have an integer value for y. */
116 jns 4f // y >= 0, jump
117 fdivrl MO(one) // 1/x (now referred to as x)
121 4: fldl MO(one) // 1 : x
124 6: shrdl $1, %edx, %eax
127 fmul %st(1) // x : ST*x
129 5: fmul %st(0), %st // x*x : ST*x
138 30: fldt 8(%rsp) // x : y
139 fldl MO(one) // 1.0 : x : y
140 fucomip %st(1),%st // x : y
147 2: /* y is a real number. */
149 fldl MO(one) // 1.0 : x : y
150 fldl MO(limit) // 0.29 : 1.0 : x : y
151 fld %st(2) // x : 0.29 : 1.0 : x : y
152 fsub %st(2) // x-1 : 0.29 : 1.0 : x : y
153 fabs // |x-1| : 0.29 : 1.0 : x : y
154 fucompp // 1.0 : x : y
159 fsub %st(1) // x-1 : 1.0 : y
160 fyl2xp1 // log2(x) : y
163 7: fyl2x // log2(x) : y
164 8: fmul %st(1) // y*log2(x) : y
168 cmpb $0x05, %ah // is y*log2(x) == ±inf ?
170 fst %st(1) // y*log2(x) : y*log2(x)
171 frndint // int(y*log2(x)) : y*log2(x)
172 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
173 fxch // fract(y*log2(x)) : int(y*log2(x))
174 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
175 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
176 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
177 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
180 28: fstp %st(1) // y*log2(x)
181 fldl MO(one) // 1 : y*log2(x)
182 fscale // 2^(y*log2(x)) : y*log2(x)
183 fstp %st(1) // 2^(y*log2(x))
188 11: fstp %st(0) // pop y
194 12: fstp %st(0) // pop y
196 fldt 8(%rsp) // x : 1
198 fucompp // < 1, == 1, or > 1
202 je 13f // jump if x is NaN
205 je 14f // jump if |x| == 1
211 lea inf_zero(%rip),%rcx
214 fldl inf_zero(,%rdx, 4)
223 13: fldt 8(%rsp) // load x == NaN
230 jz 16f // jump if x == +inf
232 // We must find out whether y is an odd integer.
234 fistpll -8(%rsp) // y
235 fildll -8(%rsp) // int(y) : y
237 ffreep %st // <empty>
240 // OK, the value is an integer, but is it odd?
244 jz 18f // jump if not odd
245 // It's an odd integer.
248 lea minf_mzero(%rip),%rcx
251 fldl minf_mzero(,%rdx, 8)
261 lea inf_zero(%rip),%rcx
264 fldl inf_zero(,%rax, 1)
269 17: shll $30, %edx // sign bit for y in right position
272 lea inf_zero(%rip),%rcx
275 fldl inf_zero(,%rdx, 8)
285 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
290 fistpll -8(%rsp) // y
291 fildll -8(%rsp) // int(y) : y
293 ffreep %st // <empty>
296 // OK, the value is an integer, but is it odd?
300 jz 27f // jump if not odd
301 // It's an odd integer.
302 // Raise divide-by-zero exception and get minus infinity value.
310 27: // Raise divide-by-zero exception and get infinity value.
316 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
321 fistpll -8(%rsp) // y
322 fildll -8(%rsp) // int(y) : y
324 ffreep %st // <empty>
327 // OK, the value is an integer, but is it odd?
331 jz 24f // jump if not odd
332 // It's an odd integer.