Updated to fedora-glibc-20090427T1419
[glibc/history.git] / crypt / sha256-crypt.c
blob0131c803ca2bec3485500f94fa3628be6ec792ae
1 /* One way encryption based on SHA256 sum.
2 Copyright (C) 2007, 2009 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 #include <assert.h>
22 #include <errno.h>
23 #include <stdbool.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/param.h>
28 #include "sha256.h"
31 #ifdef USE_NSS
32 typedef int PRBool;
33 # include <hasht.h>
34 # include <nsslowhash.h>
36 # define sha256_init_ctx(ctxp, nss_ctxp) \
37 do \
38 { \
39 if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256)) \
40 == NULL)) \
41 { \
42 if (nss_ctx != NULL) \
43 NSSLOWHASH_Destroy (nss_ctx); \
44 if (nss_alt_ctx != NULL) \
45 NSSLOWHASH_Destroy (nss_alt_ctx); \
46 return NULL; \
47 } \
48 NSSLOWHASH_Begin (nss_ctxp); \
49 } \
50 while (0)
52 # define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
53 NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
55 # define sha256_finish_ctx(ctxp, nss_ctxp, result) \
56 do \
57 { \
58 unsigned int ret; \
59 NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result)); \
60 assert (ret == sizeof (result)); \
61 NSSLOWHASH_Destroy (nss_ctxp); \
62 nss_ctxp = NULL; \
63 } \
64 while (0)
65 #else
66 # define sha256_init_ctx(ctxp, nss_ctxp) \
67 __sha256_init_ctx (ctxp)
69 # define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
70 __sha256_process_bytes(buf, len, ctxp)
72 # define sha256_finish_ctx(ctxp, nss_ctxp, result) \
73 __sha256_finish_ctx (ctxp, result)
74 #endif
77 /* Define our magic string to mark salt for SHA256 "encryption"
78 replacement. */
79 static const char sha256_salt_prefix[] = "$5$";
81 /* Prefix for optional rounds specification. */
82 static const char sha256_rounds_prefix[] = "rounds=";
84 /* Maximum salt string length. */
85 #define SALT_LEN_MAX 16
86 /* Default number of rounds if not explicitly specified. */
87 #define ROUNDS_DEFAULT 5000
88 /* Minimum number of rounds. */
89 #define ROUNDS_MIN 1000
90 /* Maximum number of rounds. */
91 #define ROUNDS_MAX 999999999
93 /* Table with characters for base64 transformation. */
94 static const char b64t[64] =
95 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
98 /* Prototypes for local functions. */
99 extern char *__sha256_crypt_r (const char *key, const char *salt,
100 char *buffer, int buflen);
101 extern char *__sha256_crypt (const char *key, const char *salt);
104 char *
105 __sha256_crypt_r (key, salt, buffer, buflen)
106 const char *key;
107 const char *salt;
108 char *buffer;
109 int buflen;
111 unsigned char alt_result[32]
112 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
113 unsigned char temp_result[32]
114 __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
115 size_t salt_len;
116 size_t key_len;
117 size_t cnt;
118 char *cp;
119 char *copied_key = NULL;
120 char *copied_salt = NULL;
121 char *p_bytes;
122 char *s_bytes;
123 /* Default number of rounds. */
124 size_t rounds = ROUNDS_DEFAULT;
125 bool rounds_custom = false;
127 /* Find beginning of salt string. The prefix should normally always
128 be present. Just in case it is not. */
129 if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
130 /* Skip salt prefix. */
131 salt += sizeof (sha256_salt_prefix) - 1;
133 if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
134 == 0)
136 const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
137 char *endp;
138 unsigned long int srounds = strtoul (num, &endp, 10);
139 if (*endp == '$')
141 salt = endp + 1;
142 rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
143 rounds_custom = true;
147 salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
148 key_len = strlen (key);
150 if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
152 char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
153 key = copied_key =
154 memcpy (tmp + __alignof__ (uint32_t)
155 - (tmp - (char *) 0) % __alignof__ (uint32_t),
156 key, key_len);
157 assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0);
160 if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
162 char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
163 salt = copied_salt =
164 memcpy (tmp + __alignof__ (uint32_t)
165 - (tmp - (char *) 0) % __alignof__ (uint32_t),
166 salt, salt_len);
167 assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
170 #ifdef USE_NSS
171 /* Initialize libfreebl3. */
172 NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
173 if (nss_ictx == NULL)
174 return NULL;
175 NSSLOWHASHContext *nss_ctx = NULL;
176 NSSLOWHASHContext *nss_alt_ctx = NULL;
177 #else
178 struct sha256_ctx ctx;
179 struct sha256_ctx alt_ctx;
180 #endif
182 /* Prepare for the real work. */
183 sha256_init_ctx (&ctx, nss_ctx);
185 /* Add the key string. */
186 sha256_process_bytes (key, key_len, &ctx, nss_ctx);
188 /* The last part is the salt string. This must be at most 16
189 characters and it ends at the first `$' character. */
190 sha256_process_bytes (salt, salt_len, &ctx, nss_ctx);
193 /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
194 final result will be added to the first context. */
195 sha256_init_ctx (&alt_ctx, nss_alt_ctx);
197 /* Add key. */
198 sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
200 /* Add salt. */
201 sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
203 /* Add key again. */
204 sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
206 /* Now get result of this (32 bytes) and add it to the other
207 context. */
208 sha256_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);
210 /* Add for any character in the key one byte of the alternate sum. */
211 for (cnt = key_len; cnt > 32; cnt -= 32)
212 sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
213 sha256_process_bytes (alt_result, cnt, &ctx, nss_ctx);
215 /* Take the binary representation of the length of the key and for every
216 1 add the alternate sum, for every 0 the key. */
217 for (cnt = key_len; cnt > 0; cnt >>= 1)
218 if ((cnt & 1) != 0)
219 sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
220 else
221 sha256_process_bytes (key, key_len, &ctx, nss_ctx);
223 /* Create intermediate result. */
224 sha256_finish_ctx (&ctx, nss_ctx, alt_result);
226 /* Start computation of P byte sequence. */
227 sha256_init_ctx (&alt_ctx, nss_alt_ctx);
229 /* For every character in the password add the entire password. */
230 for (cnt = 0; cnt < key_len; ++cnt)
231 sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
233 /* Finish the digest. */
234 sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
236 /* Create byte sequence P. */
237 cp = p_bytes = alloca (key_len);
238 for (cnt = key_len; cnt >= 32; cnt -= 32)
239 cp = mempcpy (cp, temp_result, 32);
240 memcpy (cp, temp_result, cnt);
242 /* Start computation of S byte sequence. */
243 sha256_init_ctx (&alt_ctx, nss_alt_ctx);
245 /* For every character in the password add the entire password. */
246 for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
247 sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
249 /* Finish the digest. */
250 sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
252 /* Create byte sequence S. */
253 cp = s_bytes = alloca (salt_len);
254 for (cnt = salt_len; cnt >= 32; cnt -= 32)
255 cp = mempcpy (cp, temp_result, 32);
256 memcpy (cp, temp_result, cnt);
258 /* Repeatedly run the collected hash value through SHA256 to burn
259 CPU cycles. */
260 for (cnt = 0; cnt < rounds; ++cnt)
262 /* New context. */
263 sha256_init_ctx (&ctx, nss_ctx);
265 /* Add key or last result. */
266 if ((cnt & 1) != 0)
267 sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
268 else
269 sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
271 /* Add salt for numbers not divisible by 3. */
272 if (cnt % 3 != 0)
273 sha256_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);
275 /* Add key for numbers not divisible by 7. */
276 if (cnt % 7 != 0)
277 sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
279 /* Add key or last result. */
280 if ((cnt & 1) != 0)
281 sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
282 else
283 sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
285 /* Create intermediate result. */
286 sha256_finish_ctx (&ctx, nss_ctx, alt_result);
289 #ifdef USE_NSS
290 /* Free libfreebl3 resources. */
291 NSSLOW_Shutdown (nss_ictx);
292 #endif
294 /* Now we can construct the result string. It consists of three
295 parts. */
296 cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
297 buflen -= sizeof (sha256_salt_prefix) - 1;
299 if (rounds_custom)
301 int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
302 sha256_rounds_prefix, rounds);
303 cp += n;
304 buflen -= n;
307 cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
308 buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
310 if (buflen > 0)
312 *cp++ = '$';
313 --buflen;
316 void b64_from_24bit (unsigned int b2, unsigned int b1, unsigned int b0,
317 int n)
319 unsigned int w = (b2 << 16) | (b1 << 8) | b0;
320 while (n-- > 0 && buflen > 0)
322 *cp++ = b64t[w & 0x3f];
323 --buflen;
324 w >>= 6;
328 b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
329 b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
330 b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
331 b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
332 b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
333 b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
334 b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
335 b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
336 b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
337 b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
338 b64_from_24bit (0, alt_result[31], alt_result[30], 3);
339 if (buflen <= 0)
341 __set_errno (ERANGE);
342 buffer = NULL;
344 else
345 *cp = '\0'; /* Terminate the string. */
347 /* Clear the buffer for the intermediate result so that people
348 attaching to processes or reading core dumps cannot get any
349 information. We do it in this way to clear correct_words[]
350 inside the SHA256 implementation as well. */
351 #ifndef USE_NSS
352 __sha256_init_ctx (&ctx);
353 __sha256_finish_ctx (&ctx, alt_result);
354 memset (&ctx, '\0', sizeof (ctx));
355 memset (&alt_ctx, '\0', sizeof (alt_ctx));
356 #endif
357 memset (temp_result, '\0', sizeof (temp_result));
358 memset (p_bytes, '\0', key_len);
359 memset (s_bytes, '\0', salt_len);
360 if (copied_key != NULL)
361 memset (copied_key, '\0', key_len);
362 if (copied_salt != NULL)
363 memset (copied_salt, '\0', salt_len);
365 return buffer;
368 #ifndef _LIBC
369 # define libc_freeres_ptr(decl) decl
370 #endif
371 libc_freeres_ptr (static char *buffer);
373 /* This entry point is equivalent to the `crypt' function in Unix
374 libcs. */
375 char *
376 __sha256_crypt (const char *key, const char *salt)
378 /* We don't want to have an arbitrary limit in the size of the
379 password. We can compute an upper bound for the size of the
380 result in advance and so we can prepare the buffer we pass to
381 `sha256_crypt_r'. */
382 static int buflen;
383 int needed = (sizeof (sha256_salt_prefix) - 1
384 + sizeof (sha256_rounds_prefix) + 9 + 1
385 + strlen (salt) + 1 + 43 + 1);
387 if (buflen < needed)
389 char *new_buffer = (char *) realloc (buffer, needed);
390 if (new_buffer == NULL)
391 return NULL;
393 buffer = new_buffer;
394 buflen = needed;
397 return __sha256_crypt_r (key, salt, buffer, buflen);
400 #ifndef _LIBC
401 static void
402 __attribute__ ((__destructor__))
403 free_mem (void)
405 free (buffer);
407 #endif