Updated to fedora-glibc-20090427T1419
[glibc/history.git] / sysdeps / ieee754 / flt-32 / e_j1f.c
blob71bb2515afaedceadfd0e89391e56fb9f808dca9
1 /* e_j1f.c -- float version of e_j1.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #if defined(LIBM_SCCS) && !defined(lint)
17 static char rcsid[] = "$NetBSD: e_j1f.c,v 1.4 1995/05/10 20:45:31 jtc Exp $";
18 #endif
20 #include "math.h"
21 #include "math_private.h"
23 #ifdef __STDC__
24 static float ponef(float), qonef(float);
25 #else
26 static float ponef(), qonef();
27 #endif
29 #ifdef __STDC__
30 static const float
31 #else
32 static float
33 #endif
34 huge = 1e30,
35 one = 1.0,
36 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
37 tpi = 6.3661974669e-01, /* 0x3f22f983 */
38 /* R0/S0 on [0,2] */
39 r00 = -6.2500000000e-02, /* 0xbd800000 */
40 r01 = 1.4070566976e-03, /* 0x3ab86cfd */
41 r02 = -1.5995563444e-05, /* 0xb7862e36 */
42 r03 = 4.9672799207e-08, /* 0x335557d2 */
43 s01 = 1.9153760746e-02, /* 0x3c9ce859 */
44 s02 = 1.8594678841e-04, /* 0x3942fab6 */
45 s03 = 1.1771846857e-06, /* 0x359dffc2 */
46 s04 = 5.0463624390e-09, /* 0x31ad6446 */
47 s05 = 1.2354227016e-11; /* 0x2d59567e */
49 #ifdef __STDC__
50 static const float zero = 0.0;
51 #else
52 static float zero = 0.0;
53 #endif
55 #ifdef __STDC__
56 float __ieee754_j1f(float x)
57 #else
58 float __ieee754_j1f(x)
59 float x;
60 #endif
62 float z, s,c,ss,cc,r,u,v,y;
63 int32_t hx,ix;
65 GET_FLOAT_WORD(hx,x);
66 ix = hx&0x7fffffff;
67 if(ix>=0x7f800000) return one/x;
68 y = fabsf(x);
69 if(ix >= 0x40000000) { /* |x| >= 2.0 */
70 __sincosf (y, &s, &c);
71 ss = -s-c;
72 cc = s-c;
73 if(ix<0x7f000000) { /* make sure y+y not overflow */
74 z = __cosf(y+y);
75 if ((s*c)>zero) cc = z/ss;
76 else ss = z/cc;
79 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
80 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
82 if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y);
83 else {
84 u = ponef(y); v = qonef(y);
85 z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y);
87 if(hx<0) return -z;
88 else return z;
90 if(ix<0x32000000) { /* |x|<2**-27 */
91 if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
93 z = x*x;
94 r = z*(r00+z*(r01+z*(r02+z*r03)));
95 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
96 r *= x;
97 return(x*(float)0.5+r/s);
100 #ifdef __STDC__
101 static const float U0[5] = {
102 #else
103 static float U0[5] = {
104 #endif
105 -1.9605709612e-01, /* 0xbe48c331 */
106 5.0443872809e-02, /* 0x3d4e9e3c */
107 -1.9125689287e-03, /* 0xbafaaf2a */
108 2.3525259166e-05, /* 0x37c5581c */
109 -9.1909917899e-08, /* 0xb3c56003 */
111 #ifdef __STDC__
112 static const float V0[5] = {
113 #else
114 static float V0[5] = {
115 #endif
116 1.9916731864e-02, /* 0x3ca3286a */
117 2.0255257550e-04, /* 0x3954644b */
118 1.3560879779e-06, /* 0x35b602d4 */
119 6.2274145840e-09, /* 0x31d5f8eb */
120 1.6655924903e-11, /* 0x2d9281cf */
123 #ifdef __STDC__
124 float __ieee754_y1f(float x)
125 #else
126 float __ieee754_y1f(x)
127 float x;
128 #endif
130 float z, s,c,ss,cc,u,v;
131 int32_t hx,ix;
133 GET_FLOAT_WORD(hx,x);
134 ix = 0x7fffffff&hx;
135 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
136 if(ix>=0x7f800000) return one/(x+x*x);
137 if(ix==0) return -HUGE_VALF+x; /* -inf and overflow exception. */
138 if(hx<0) return zero/(zero*x);
139 if(ix >= 0x40000000) { /* |x| >= 2.0 */
140 __sincosf (x, &s, &c);
141 ss = -s-c;
142 cc = s-c;
143 if(ix<0x7f000000) { /* make sure x+x not overflow */
144 z = __cosf(x+x);
145 if ((s*c)>zero) cc = z/ss;
146 else ss = z/cc;
148 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
149 * where x0 = x-3pi/4
150 * Better formula:
151 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
152 * = 1/sqrt(2) * (sin(x) - cos(x))
153 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
154 * = -1/sqrt(2) * (cos(x) + sin(x))
155 * To avoid cancellation, use
156 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
157 * to compute the worse one.
159 if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
160 else {
161 u = ponef(x); v = qonef(x);
162 z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
164 return z;
166 if(ix<=0x24800000) { /* x < 2**-54 */
167 return(-tpi/x);
169 z = x*x;
170 u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
171 v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
172 return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
175 /* For x >= 8, the asymptotic expansions of pone is
176 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
177 * We approximate pone by
178 * pone(x) = 1 + (R/S)
179 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
180 * S = 1 + ps0*s^2 + ... + ps4*s^10
181 * and
182 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
185 #ifdef __STDC__
186 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
187 #else
188 static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
189 #endif
190 0.0000000000e+00, /* 0x00000000 */
191 1.1718750000e-01, /* 0x3df00000 */
192 1.3239480972e+01, /* 0x4153d4ea */
193 4.1205184937e+02, /* 0x43ce06a3 */
194 3.8747453613e+03, /* 0x45722bed */
195 7.9144794922e+03, /* 0x45f753d6 */
197 #ifdef __STDC__
198 static const float ps8[5] = {
199 #else
200 static float ps8[5] = {
201 #endif
202 1.1420736694e+02, /* 0x42e46a2c */
203 3.6509309082e+03, /* 0x45642ee5 */
204 3.6956207031e+04, /* 0x47105c35 */
205 9.7602796875e+04, /* 0x47bea166 */
206 3.0804271484e+04, /* 0x46f0a88b */
209 #ifdef __STDC__
210 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
211 #else
212 static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
213 #endif
214 1.3199052094e-11, /* 0x2d68333f */
215 1.1718749255e-01, /* 0x3defffff */
216 6.8027510643e+00, /* 0x40d9b023 */
217 1.0830818176e+02, /* 0x42d89dca */
218 5.1763616943e+02, /* 0x440168b7 */
219 5.2871520996e+02, /* 0x44042dc6 */
221 #ifdef __STDC__
222 static const float ps5[5] = {
223 #else
224 static float ps5[5] = {
225 #endif
226 5.9280597687e+01, /* 0x426d1f55 */
227 9.9140142822e+02, /* 0x4477d9b1 */
228 5.3532670898e+03, /* 0x45a74a23 */
229 7.8446904297e+03, /* 0x45f52586 */
230 1.5040468750e+03, /* 0x44bc0180 */
233 #ifdef __STDC__
234 static const float pr3[6] = {
235 #else
236 static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
237 #endif
238 3.0250391081e-09, /* 0x314fe10d */
239 1.1718686670e-01, /* 0x3defffab */
240 3.9329774380e+00, /* 0x407bb5e7 */
241 3.5119403839e+01, /* 0x420c7a45 */
242 9.1055007935e+01, /* 0x42b61c2a */
243 4.8559066772e+01, /* 0x42423c7c */
245 #ifdef __STDC__
246 static const float ps3[5] = {
247 #else
248 static float ps3[5] = {
249 #endif
250 3.4791309357e+01, /* 0x420b2a4d */
251 3.3676245117e+02, /* 0x43a86198 */
252 1.0468714600e+03, /* 0x4482dbe3 */
253 8.9081134033e+02, /* 0x445eb3ed */
254 1.0378793335e+02, /* 0x42cf936c */
257 #ifdef __STDC__
258 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
259 #else
260 static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
261 #endif
262 1.0771083225e-07, /* 0x33e74ea8 */
263 1.1717621982e-01, /* 0x3deffa16 */
264 2.3685150146e+00, /* 0x401795c0 */
265 1.2242610931e+01, /* 0x4143e1bc */
266 1.7693971634e+01, /* 0x418d8d41 */
267 5.0735230446e+00, /* 0x40a25a4d */
269 #ifdef __STDC__
270 static const float ps2[5] = {
271 #else
272 static float ps2[5] = {
273 #endif
274 2.1436485291e+01, /* 0x41ab7dec */
275 1.2529022980e+02, /* 0x42fa9499 */
276 2.3227647400e+02, /* 0x436846c7 */
277 1.1767937469e+02, /* 0x42eb5bd7 */
278 8.3646392822e+00, /* 0x4105d590 */
281 #ifdef __STDC__
282 static float ponef(float x)
283 #else
284 static float ponef(x)
285 float x;
286 #endif
288 #ifdef __STDC__
289 const float *p,*q;
290 #else
291 float *p,*q;
292 #endif
293 float z,r,s;
294 int32_t ix;
295 GET_FLOAT_WORD(ix,x);
296 ix &= 0x7fffffff;
297 if(ix>=0x41000000) {p = pr8; q= ps8;}
298 else if(ix>=0x40f71c58){p = pr5; q= ps5;}
299 else if(ix>=0x4036db68){p = pr3; q= ps3;}
300 else if(ix>=0x40000000){p = pr2; q= ps2;}
301 z = one/(x*x);
302 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
303 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
304 return one+ r/s;
308 /* For x >= 8, the asymptotic expansions of qone is
309 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
310 * We approximate pone by
311 * qone(x) = s*(0.375 + (R/S))
312 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
313 * S = 1 + qs1*s^2 + ... + qs6*s^12
314 * and
315 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
318 #ifdef __STDC__
319 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
320 #else
321 static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
322 #endif
323 0.0000000000e+00, /* 0x00000000 */
324 -1.0253906250e-01, /* 0xbdd20000 */
325 -1.6271753311e+01, /* 0xc1822c8d */
326 -7.5960174561e+02, /* 0xc43de683 */
327 -1.1849806641e+04, /* 0xc639273a */
328 -4.8438511719e+04, /* 0xc73d3683 */
330 #ifdef __STDC__
331 static const float qs8[6] = {
332 #else
333 static float qs8[6] = {
334 #endif
335 1.6139537048e+02, /* 0x43216537 */
336 7.8253862305e+03, /* 0x45f48b17 */
337 1.3387534375e+05, /* 0x4802bcd6 */
338 7.1965775000e+05, /* 0x492fb29c */
339 6.6660125000e+05, /* 0x4922be94 */
340 -2.9449025000e+05, /* 0xc88fcb48 */
343 #ifdef __STDC__
344 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
345 #else
346 static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
347 #endif
348 -2.0897993405e-11, /* 0xadb7d219 */
349 -1.0253904760e-01, /* 0xbdd1fffe */
350 -8.0564479828e+00, /* 0xc100e736 */
351 -1.8366960144e+02, /* 0xc337ab6b */
352 -1.3731937256e+03, /* 0xc4aba633 */
353 -2.6124443359e+03, /* 0xc523471c */
355 #ifdef __STDC__
356 static const float qs5[6] = {
357 #else
358 static float qs5[6] = {
359 #endif
360 8.1276550293e+01, /* 0x42a28d98 */
361 1.9917987061e+03, /* 0x44f8f98f */
362 1.7468484375e+04, /* 0x468878f8 */
363 4.9851425781e+04, /* 0x4742bb6d */
364 2.7948074219e+04, /* 0x46da5826 */
365 -4.7191835938e+03, /* 0xc5937978 */
368 #ifdef __STDC__
369 static const float qr3[6] = {
370 #else
371 static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
372 #endif
373 -5.0783124372e-09, /* 0xb1ae7d4f */
374 -1.0253783315e-01, /* 0xbdd1ff5b */
375 -4.6101160049e+00, /* 0xc0938612 */
376 -5.7847221375e+01, /* 0xc267638e */
377 -2.2824453735e+02, /* 0xc3643e9a */
378 -2.1921012878e+02, /* 0xc35b35cb */
380 #ifdef __STDC__
381 static const float qs3[6] = {
382 #else
383 static float qs3[6] = {
384 #endif
385 4.7665153503e+01, /* 0x423ea91e */
386 6.7386511230e+02, /* 0x4428775e */
387 3.3801528320e+03, /* 0x45534272 */
388 5.5477290039e+03, /* 0x45ad5dd5 */
389 1.9031191406e+03, /* 0x44ede3d0 */
390 -1.3520118713e+02, /* 0xc3073381 */
393 #ifdef __STDC__
394 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
395 #else
396 static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
397 #endif
398 -1.7838172539e-07, /* 0xb43f8932 */
399 -1.0251704603e-01, /* 0xbdd1f475 */
400 -2.7522056103e+00, /* 0xc0302423 */
401 -1.9663616180e+01, /* 0xc19d4f16 */
402 -4.2325313568e+01, /* 0xc2294d1f */
403 -2.1371921539e+01, /* 0xc1aaf9b2 */
405 #ifdef __STDC__
406 static const float qs2[6] = {
407 #else
408 static float qs2[6] = {
409 #endif
410 2.9533363342e+01, /* 0x41ec4454 */
411 2.5298155212e+02, /* 0x437cfb47 */
412 7.5750280762e+02, /* 0x443d602e */
413 7.3939318848e+02, /* 0x4438d92a */
414 1.5594900513e+02, /* 0x431bf2f2 */
415 -4.9594988823e+00, /* 0xc09eb437 */
418 #ifdef __STDC__
419 static float qonef(float x)
420 #else
421 static float qonef(x)
422 float x;
423 #endif
425 #ifdef __STDC__
426 const float *p,*q;
427 #else
428 float *p,*q;
429 #endif
430 float s,r,z;
431 int32_t ix;
432 GET_FLOAT_WORD(ix,x);
433 ix &= 0x7fffffff;
434 if(ix>=0x40200000) {p = qr8; q= qs8;}
435 else if(ix>=0x40f71c58){p = qr5; q= qs5;}
436 else if(ix>=0x4036db68){p = qr3; q= qs3;}
437 else if(ix>=0x40000000){p = qr2; q= qs2;}
438 z = one/(x*x);
439 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
440 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
441 return ((float).375 + r/s)/x;