Updated to fedora-glibc-20090427T1419
[glibc/history.git] / sysdeps / ieee754 / ldbl-96 / e_asinl.c
blob1cad623d433ae798a791bc24c6dcbdbe129c1faa
1 /*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
18 the following terms:
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, write to the Free Software
32 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
34 /* __ieee754_asin(x)
35 * Method :
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
40 * For x in [0.5,1]
41 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
42 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
43 * then for x>0.98
44 * asin(x) = pi/2 - 2*(s+s*z*R(z))
45 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
46 * For x<=0.98, let pio4_hi = pio2_hi/2, then
47 * f = hi part of s;
48 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
49 * and
50 * asin(x) = pi/2 - 2*(s+s*z*R(z))
51 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
52 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
54 * Special cases:
55 * if x is NaN, return x itself;
56 * if |x|>1, return NaN with invalid signal.
61 #include "math.h"
62 #include "math_private.h"
64 #ifdef __STDC__
65 static const long double
66 #else
67 static long double
68 #endif
69 one = 1.0L,
70 huge = 1.0e+4932L,
71 pio2_hi = 1.5707963267948966192021943710788178805159986950457096099853515625L,
72 pio2_lo = 2.9127320560933561582586004641843300502121E-20L,
73 pio4_hi = 7.8539816339744830960109718553940894025800E-1L,
75 /* coefficient for R(x^2) */
77 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
78 0 <= x <= 0.5
79 peak relative error 1.9e-21 */
80 pS0 = -1.008714657938491626019651170502036851607E1L,
81 pS1 = 2.331460313214179572063441834101394865259E1L,
82 pS2 = -1.863169762159016144159202387315381830227E1L,
83 pS3 = 5.930399351579141771077475766877674661747E0L,
84 pS4 = -6.121291917696920296944056882932695185001E-1L,
85 pS5 = 3.776934006243367487161248678019350338383E-3L,
87 qS0 = -6.052287947630949712886794360635592886517E1L,
88 qS1 = 1.671229145571899593737596543114258558503E2L,
89 qS2 = -1.707840117062586426144397688315411324388E2L,
90 qS3 = 7.870295154902110425886636075950077640623E1L,
91 qS4 = -1.568433562487314651121702982333303458814E1L;
92 /* 1.000000000000000000000000000000000000000E0 */
94 #ifdef __STDC__
95 long double
96 __ieee754_asinl (long double x)
97 #else
98 double
99 __ieee754_asinl (x)
100 long double x;
101 #endif
103 long double t, w, p, q, c, r, s;
104 int32_t ix;
105 u_int32_t se, i0, i1, k;
107 GET_LDOUBLE_WORDS (se, i0, i1, x);
108 ix = se & 0x7fff;
109 ix = (ix << 16) | (i0 >> 16);
110 if (ix >= 0x3fff8000)
111 { /* |x|>= 1 */
112 if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0)
113 /* asin(1)=+-pi/2 with inexact */
114 return x * pio2_hi + x * pio2_lo;
115 return (x - x) / (x - x); /* asin(|x|>1) is NaN */
117 else if (ix < 0x3ffe8000)
118 { /* |x|<0.5 */
119 if (ix < 0x3fde8000)
120 { /* if |x| < 2**-33 */
121 if (huge + x > one)
122 return x; /* return x with inexact if x!=0 */
124 else
126 t = x * x;
128 t * (pS0 +
129 t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
130 q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
131 w = p / q;
132 return x + x * w;
135 /* 1> |x|>= 0.5 */
136 w = one - fabsl (x);
137 t = w * 0.5;
138 p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
139 q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
140 s = __ieee754_sqrtl (t);
141 if (ix >= 0x3ffef999)
142 { /* if |x| > 0.975 */
143 w = p / q;
144 t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
146 else
148 GET_LDOUBLE_WORDS (k, i0, i1, s);
149 i1 = 0;
150 SET_LDOUBLE_WORDS (w,k,i0,i1);
151 c = (t - w * w) / (s + w);
152 r = p / q;
153 p = 2.0 * s * r - (pio2_lo - 2.0 * c);
154 q = pio4_hi - 2.0 * w;
155 t = pio4_hi - (p - q);
157 if ((se & 0x8000) == 0)
158 return t;
159 else
160 return -t;