2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
30 You should have received a copy of the GNU Lesser General Public
31 License along with this library; if not, write to the Free Software
32 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
41 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
42 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
44 * asin(x) = pi/2 - 2*(s+s*z*R(z))
45 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
46 * For x<=0.98, let pio4_hi = pio2_hi/2, then
48 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
50 * asin(x) = pi/2 - 2*(s+s*z*R(z))
51 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
52 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
55 * if x is NaN, return x itself;
56 * if |x|>1, return NaN with invalid signal.
62 #include "math_private.h"
65 static const long double
71 pio2_hi
= 1.5707963267948966192021943710788178805159986950457096099853515625L,
72 pio2_lo
= 2.9127320560933561582586004641843300502121E-20L,
73 pio4_hi
= 7.8539816339744830960109718553940894025800E-1L,
75 /* coefficient for R(x^2) */
77 /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
79 peak relative error 1.9e-21 */
80 pS0
= -1.008714657938491626019651170502036851607E1L
,
81 pS1
= 2.331460313214179572063441834101394865259E1L
,
82 pS2
= -1.863169762159016144159202387315381830227E1L
,
83 pS3
= 5.930399351579141771077475766877674661747E0L
,
84 pS4
= -6.121291917696920296944056882932695185001E-1L,
85 pS5
= 3.776934006243367487161248678019350338383E-3L,
87 qS0
= -6.052287947630949712886794360635592886517E1L
,
88 qS1
= 1.671229145571899593737596543114258558503E2L
,
89 qS2
= -1.707840117062586426144397688315411324388E2L
,
90 qS3
= 7.870295154902110425886636075950077640623E1L
,
91 qS4
= -1.568433562487314651121702982333303458814E1L
;
92 /* 1.000000000000000000000000000000000000000E0 */
96 __ieee754_asinl (long double x
)
103 long double t
, w
, p
, q
, c
, r
, s
;
105 u_int32_t se
, i0
, i1
, k
;
107 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
109 ix
= (ix
<< 16) | (i0
>> 16);
110 if (ix
>= 0x3fff8000)
112 if (ix
== 0x3fff8000 && ((i0
- 0x80000000) | i1
) == 0)
113 /* asin(1)=+-pi/2 with inexact */
114 return x
* pio2_hi
+ x
* pio2_lo
;
115 return (x
- x
) / (x
- x
); /* asin(|x|>1) is NaN */
117 else if (ix
< 0x3ffe8000)
120 { /* if |x| < 2**-33 */
122 return x
; /* return x with inexact if x!=0 */
129 t
* (pS1
+ t
* (pS2
+ t
* (pS3
+ t
* (pS4
+ t
* pS5
)))));
130 q
= qS0
+ t
* (qS1
+ t
* (qS2
+ t
* (qS3
+ t
* (qS4
+ t
))));
138 p
= t
* (pS0
+ t
* (pS1
+ t
* (pS2
+ t
* (pS3
+ t
* (pS4
+ t
* pS5
)))));
139 q
= qS0
+ t
* (qS1
+ t
* (qS2
+ t
* (qS3
+ t
* (qS4
+ t
))));
140 s
= __ieee754_sqrtl (t
);
141 if (ix
>= 0x3ffef999)
142 { /* if |x| > 0.975 */
144 t
= pio2_hi
- (2.0 * (s
+ s
* w
) - pio2_lo
);
148 GET_LDOUBLE_WORDS (k
, i0
, i1
, s
);
150 SET_LDOUBLE_WORDS (w
,k
,i0
,i1
);
151 c
= (t
- w
* w
) / (s
+ w
);
153 p
= 2.0 * s
* r
- (pio2_lo
- 2.0 * c
);
154 q
= pio4_hi
- 2.0 * w
;
155 t
= pio4_hi
- (p
- q
);
157 if ((se
& 0x8000) == 0)