openat: don’t close (-1)
[gnulib.git] / lib / expm1l.c
blobac9c3a5d6860224302c0eb6626be02c7e834336a
1 /* Exponential function minus one.
2 Copyright (C) 2011-2024 Free Software Foundation, Inc.
4 This file is free software: you can redistribute it and/or modify
5 it under the terms of the GNU Lesser General Public License as
6 published by the Free Software Foundation, either version 3 of the
7 License, or (at your option) any later version.
9 This file is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU Lesser General Public License for more details.
14 You should have received a copy of the GNU Lesser General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
17 #include <config.h>
19 /* Specification. */
20 #include <math.h>
22 #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
24 long double
25 expm1l (long double x)
27 return expm1 (x);
30 #else
32 # include <float.h>
34 /* A value slightly larger than log(2). */
35 #define LOG2_PLUS_EPSILON 0.6931471805599454L
37 /* Best possible approximation of log(2) as a 'long double'. */
38 #define LOG2 0.693147180559945309417232121458176568075L
40 /* Best possible approximation of 1/log(2) as a 'long double'. */
41 #define LOG2_INVERSE 1.44269504088896340735992468100189213743L
43 /* Best possible approximation of log(2)/256 as a 'long double'. */
44 #define LOG2_BY_256 0.00270760617406228636491106297444600221904L
46 /* Best possible approximation of 256/log(2) as a 'long double'. */
47 #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L
49 /* The upper 32 bits of log(2)/256. */
50 #define LOG2_BY_256_HI_PART 0.0027076061733168899081647396087646484375L
51 /* log(2)/256 - LOG2_HI_PART. */
52 #define LOG2_BY_256_LO_PART \
53 0.000000000000745396456746323365681353781544922399845L
55 long double
56 expm1l (long double x)
58 if (isnanl (x))
59 return x;
61 if (x >= (long double) LDBL_MAX_EXP * LOG2_PLUS_EPSILON)
62 /* x > LDBL_MAX_EXP * log(2)
63 hence exp(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */
64 return HUGE_VALL;
66 if (x <= (long double) (- LDBL_MANT_DIG) * LOG2_PLUS_EPSILON)
67 /* x < (- LDBL_MANT_DIG) * log(2)
68 hence 0 < exp(x) < 2^-LDBL_MANT_DIG,
69 hence -1 < exp(x)-1 < -1 + 2^-LDBL_MANT_DIG
70 rounds to -1. */
71 return -1.0L;
73 if (x <= - LOG2_PLUS_EPSILON)
74 /* 0 < exp(x) < 1/2.
75 Just compute exp(x), then subtract 1. */
76 return expl (x) - 1.0L;
78 if (x == 0.0L)
79 /* Return a zero with the same sign as x. */
80 return x;
82 /* Decompose x into
83 x = n * log(2) + m * log(2)/256 + y
84 where
85 n is an integer, n >= -1,
86 m is an integer, -128 <= m <= 128,
87 y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
88 Then
89 exp(x) = 2^n * exp(m * log(2)/256) * exp(y)
90 Compute each factor minus one, then combine them through the
91 formula (1+a)*(1+b) = 1 + (a+b*(1+a)),
92 that is (1+a)*(1+b) - 1 = a + b*(1+a).
93 The first factor is an ldexpl() call.
94 The second factor is a table lookup.
95 The third factor minus one is computed
96 - either as sinh(y) + sinh(y)^2 / (cosh(y) + 1)
97 where sinh(y) is computed through the power series:
98 sinh(y) = y + y^3/3! + y^5/5! + ...
99 and cosh(y) is computed as hypot(1, sinh(y)),
100 - or as exp(2*z) - 1 = 2 * tanh(z) / (1 - tanh(z))
101 where z = y/2
102 and tanh(z) is computed through its power series:
103 tanh(z) = z
104 - 1/3 * z^3
105 + 2/15 * z^5
106 - 17/315 * z^7
107 + 62/2835 * z^9
108 - 1382/155925 * z^11
109 + 21844/6081075 * z^13
110 - 929569/638512875 * z^15
111 + ...
112 Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
113 z^13 term is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we
114 can truncate the series after the z^11 term.
116 Given the usual bounds LDBL_MAX_EXP <= 16384, LDBL_MANT_DIG <= 120, we
117 can estimate x: -84 <= x <= 11357.
118 This means, when dividing x by log(2), where we want x mod log(2)
119 to be precise to LDBL_MANT_DIG bits, we have to use an approximation
120 to log(2) that has 14+LDBL_MANT_DIG bits. */
123 long double nm = roundl (x * LOG2_BY_256_INVERSE); /* = 256 * n + m */
124 /* n has at most 15 bits, nm therefore has at most 23 bits, therefore
125 n * LOG2_HI_PART is computed exactly, and n * LOG2_LO_PART is computed
126 with an absolute error < 2^15 * 2e-10 * 2^-LDBL_MANT_DIG. */
127 long double y_tmp = x - nm * LOG2_BY_256_HI_PART;
128 long double y = y_tmp - nm * LOG2_BY_256_LO_PART;
129 long double z = 0.5L * y;
131 /* Coefficients of the power series for tanh(z). */
132 #define TANH_COEFF_1 1.0L
133 #define TANH_COEFF_3 -0.333333333333333333333333333333333333334L
134 #define TANH_COEFF_5 0.133333333333333333333333333333333333334L
135 #define TANH_COEFF_7 -0.053968253968253968253968253968253968254L
136 #define TANH_COEFF_9 0.0218694885361552028218694885361552028218L
137 #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L
138 #define TANH_COEFF_13 0.00359212803657248101692546136990581435026L
139 #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L
141 long double z2 = z * z;
142 long double tanh_z =
143 (((((TANH_COEFF_11
144 * z2 + TANH_COEFF_9)
145 * z2 + TANH_COEFF_7)
146 * z2 + TANH_COEFF_5)
147 * z2 + TANH_COEFF_3)
148 * z2 + TANH_COEFF_1)
149 * z;
151 long double exp_y_minus_1 = 2.0L * tanh_z / (1.0L - tanh_z);
153 int n = (int) roundl (nm * (1.0L / 256.0L));
154 int m = (int) nm - 256 * n;
156 /* expm1l_table[i] = exp((i - 128) * log(2)/256) - 1.
157 Computed in GNU clisp through
158 (setf (long-float-digits) 128)
159 (setq a 0L0)
160 (setf (long-float-digits) 256)
161 (dotimes (i 257)
162 (format t " ~D,~%"
163 (float (- (exp (* (/ (- i 128) 256) (log 2L0))) 1) a))) */
164 static const long double expm1l_table[257] =
166 -0.292893218813452475599155637895150960716L,
167 -0.290976057839792401079436677742323809165L,
168 -0.289053698915417220095325702647879950038L,
169 -0.287126127947252846596498423285616993819L,
170 -0.285193330804014994382467110862430046956L,
171 -0.283255293316105578740250215722626632811L,
172 -0.281312001275508837198386957752147486471L,
173 -0.279363440435687168635744042695052413926L,
174 -0.277409596511476689981496879264164547161L,
175 -0.275450455178982509740597294512888729286L,
176 -0.273486002075473717576963754157712706214L,
177 -0.271516222799278089184548475181393238264L,
178 -0.269541102909676505674348554844689233423L,
179 -0.267560627926797086703335317887720824384L,
180 -0.265574783331509036569177486867109287348L,
181 -0.263583554565316202492529493866889713058L,
182 -0.261586927030250344306546259812975038038L,
183 -0.259584886088764114771170054844048746036L,
184 -0.257577417063623749727613604135596844722L,
185 -0.255564505237801467306336402685726757248L,
186 -0.253546135854367575399678234256663229163L,
187 -0.251522294116382286608175138287279137577L,
188 -0.2494929651867872398674385184702356751864L,
189 -0.247458134188296727960327722100283867508L,
190 -0.24541778620328863011699022448340323429L,
191 -0.243371906273695048903181511842366886387L,
192 -0.24132047940089265059510885341281062657L,
193 -0.239263490545592708236869372901757573532L,
194 -0.237200924627730846574373155241529522695L,
195 -0.23513276652635648805745654063657412692L,
196 -0.233059001079521999099699248246140670544L,
197 -0.230979613084171535783261520405692115669L,
198 -0.228894587296029588193854068954632579346L,
199 -0.226803908429489222568744221853864674729L,
200 -0.224707561157500020438486294646580877171L,
201 -0.222605530111455713940842831198332609562L,
202 -0.2204977998810815164831359552625710592544L,
203 -0.218384355014321147927034632426122058645L,
204 -0.2162651800172235534675441445217774245016L,
205 -0.214140259353829315375718509234297186439L,
206 -0.212009577446056756772364919909047495547L,
207 -0.209873118673587736597751517992039478005L,
208 -0.2077308673737531349400659265343210916196L,
209 -0.205582807841418027883101951185666435317L,
210 -0.2034289243288665510313756784404656320656L,
211 -0.201269201045686450868589852895683430425L,
212 -0.199103622158653323103076879204523186316L,
213 -0.196932171791614537151556053482436428417L,
214 -0.19475483402537284591023966632129970827L,
215 -0.192571592897569679960015418424270885733L,
216 -0.190382432402568125350119133273631796029L,
217 -0.188187336491335584102392022226559177731L,
218 -0.185986289071326116575890738992992661386L,
219 -0.183779274006362464829286135533230759947L,
220 -0.181566275116517756116147982921992768975L,
221 -0.17934727617799688564586793151548689933L,
222 -0.1771222609230175777406216376370887771665L,
223 -0.1748912130396911245164132617275148983224L,
224 -0.1726541161719028012138814282020908791644L,
225 -0.170410953919191957302175212789218768074L,
226 -0.168161709836631782476831771511804777363L,
227 -0.165906367434708746670203829291463807099L,
228 -0.1636449101792017131905953879307692887046L,
229 -0.161377321491060724103867675441291294819L,
230 -0.15910358474628545696887452376678510496L,
231 -0.15682368327580335203567701228614769857L,
232 -0.154537600365347409013071332406381692911L,
233 -0.152245319255333652509541396360635796882L,
234 -0.149946823140738265249318713251248832456L,
235 -0.147642095170974388162796469615281683674L,
236 -0.145331118449768586448102562484668501975L,
237 -0.143013876035036980698187522160833990549L,
238 -0.140690350938761042185327811771843747742L,
239 -0.138360526126863051392482883127641270248L,
240 -0.136024384519081218878475585385633792948L,
241 -0.133681908988844467561490046485836530346L,
242 -0.131333082363146875502898959063916619876L,
243 -0.128977887422421778270943284404535317759L,
244 -0.126616306900415529961291721709773157771L,
245 -0.1242483234840609219490048572320697039866L,
246 -0.121873919813350258443919690312343389353L,
247 -0.1194930784812080879189542126763637438278L,
248 -0.11710578203336358947830887503073906297L,
249 -0.1147120129682226132300120925687579825894L,
250 -0.1123117537367393737247203999003383961205L,
251 -0.1099049867422877955201404475637647649574L,
252 -0.1074916943405325099278897180135900838485L,
253 -0.1050718588392995019970556101123417014993L,
254 -0.102645462498446406786148378936109092823L,
255 -0.1002124875297324539725723033374854302454L,
256 -0.097772916096688059846161368344495155786L,
257 -0.0953267303144840657307406742107731280055L,
258 -0.092873912249800621875082699818829828767L,
259 -0.0904144439206957158520284361718212536293L,
260 -0.0879483072964733445019372468353990225585L,
261 -0.0854754842975513284540160873038416459095L,
262 -0.0829959567953287682564584052058555719614L,
263 -0.080509706612053141143695628825336081184L,
264 -0.078016715520687037466429613329061550362L,
265 -0.075516965244774535807472733052603963221L,
266 -0.073010437458307215803773464831151680239L,
267 -0.070497113785589807692349282254427317595L,
268 -0.067976975801105477595185454402763710658L,
269 -0.0654500050293807475554878955602008567352L,
270 -0.06291618294485004933500052502277673278L,
271 -0.0603754909717199109794126487955155117284L,
272 -0.0578279104838327751561896480162548451191L,
273 -0.055273422804530448266460732621318468453L,
274 -0.0527120092065171793298906732865376926237L,
275 -0.0501436509117223676387482401930039000769L,
276 -0.0475683290911628981746625337821392744829L,
277 -0.044986024864805103778829470427200864833L,
278 -0.0423967193014263530636943648520845560749L,
279 -0.0398003934184762630513928111129293882558L,
280 -0.0371970281819375355214808849088086316225L,
281 -0.0345866045061864160477270517354652168038L,
282 -0.0319691032538527747009720477166542375817L,
283 -0.0293445052356798073922893825624102948152L,
284 -0.0267127912103833568278979766786970786276L,
285 -0.0240739418845108520444897665995250062307L,
286 -0.0214279379122998654908388741865642544049L,
287 -0.018774759895536286618755114942929674984L,
288 -0.016114388383412110943633198761985316073L,
289 -0.01344680387238284353202993186779328685225L,
290 -0.0107719868060245158708750409344163322253L,
291 -0.00808991757489031507008688867384418356197L,
292 -0.00540057651636682434752231377783368554176L,
293 -0.00270394391452987374234008615207739887604L,
294 0.0L,
295 0.00271127505020248543074558845036204047301L,
296 0.0054299011128028213513839559347998147001L,
297 0.00815589811841751578309489081720103927357L,
298 0.0108892860517004600204097905618605243881L,
299 0.01363008495148943884025892906393992959584L,
300 0.0163783149109530379404931137862940627635L,
301 0.0191339960777379496848780958207928793998L,
302 0.0218971486541166782344801347832994397821L,
303 0.0246677928971356451482890762708149276281L,
304 0.0274459491187636965388611939222137814994L,
305 0.0302316376860410128717079024539045670944L,
306 0.0330248790212284225001082839704609180866L,
307 0.0358256936019571200299832090180813718441L,
308 0.0386341019613787906124366979546397325796L,
309 0.0414501246883161412645460790118931264803L,
310 0.0442737824274138403219664787399290087847L,
311 0.0471050958792898661299072502271122405627L,
312 0.049944085800687266082038126515907909062L,
313 0.0527907730046263271198912029807463031904L,
314 0.05564517836055715880834132515293865216L,
315 0.0585073227945126901057721096837166450754L,
316 0.0613772272892620809505676780038837262945L,
317 0.0642549128844645497886112570015802206798L,
318 0.0671404006768236181695211209928091626068L,
319 0.070033711820241773542411936757623568504L,
320 0.0729348675259755513850354508738275853402L,
321 0.0758438890627910378032286484760570740623L,
322 0.0787607977571197937406800374384829584908L,
323 0.081685614993215201942115594422531125645L,
324 0.0846183622133092378161051719066143416095L,
325 0.0875590609177696653467978309440397078697L,
326 0.090507732665257659207010655760707978993L,
327 0.0934643990728858542282201462504471620805L,
328 0.096429081816376823386138295859248481766L,
329 0.099401802630221985463696968238829904039L,
330 0.1023825833078409435564142094256468575113L,
331 0.1053714457017412555882746962569503110404L,
332 0.1083684117236786380094236494266198501387L,
333 0.111373503344817603850149254228916637444L,
334 0.1143867425958925363088129569196030678004L,
335 0.1174081515673691990545799630857802666544L,
336 0.120437752409606684429003879866313012766L,
337 0.1234755673330198007337297397753214319548L,
338 0.1265216186082418997947986437870347776336L,
339 0.12957592856628814599726498884024982591L,
340 0.1326385195987192279870737236776230843835L,
341 0.135709414157805514240390330676117013429L,
342 0.1387886347566916537038302838415112547204L,
343 0.14187620396956162271229760828788093894L,
344 0.144972144431804219394413888222915895793L,
345 0.148076478840179006778799662697342680031L,
346 0.15118922995298270581775963520198253612L,
347 0.154310420590216039548221528724806960684L,
348 0.157440073633751029613085766293796821108L,
349 0.160578212027498746369459472576090986253L,
350 0.163724858777577513813573599092185312343L,
351 0.166880036952481570555516298414089287832L,
352 0.1700437696832501880802590357927385730016L,
353 0.1732160801636372475348043545132453888896L,
354 0.176396991650281276284645728483848641053L,
355 0.1795865274628759454861005667694405189764L,
356 0.182784710984341029924457204693850757963L,
357 0.185991565660993831371265649534215563735L,
358 0.189207115002721066717499970560475915293L,
359 0.192431382583151222142727558145431011481L,
360 0.1956643920398273745838370498654519757025L,
361 0.1989061670743804817703025579763002069494L,
362 0.202156731452703142096396957497765876L,
363 0.205416109005123825604211432558411335666L,
364 0.208684323626581577354792255889216998483L,
365 0.211961399276801194468168917732493045449L,
366 0.2152473599804688781165202513387984576236L,
367 0.218542229827408361758207148117394510722L,
368 0.221846032972757516903891841911570785834L,
369 0.225158793637145437709464594384845353705L,
370 0.2284805361068700056940089577927818403626L,
371 0.231811284734075935884556653212794816605L,
372 0.235151063936933305692912507415415760296L,
373 0.238499898199816567833368865859612431546L,
374 0.241857812073484048593677468726595605511L,
375 0.245224830175257932775204967486152674173L,
376 0.248600977189204736621766097302495545187L,
377 0.251986277866316270060206031789203597321L,
378 0.255380757024691089579390657442301194598L,
379 0.258784439549716443077860441815162618762L,
380 0.262197350394250708014010258518416459672L,
381 0.265619514578806324196273999873453036297L,
382 0.269050957191733222554419081032338004715L,
383 0.272491703389402751236692044184602176772L,
384 0.27594177839639210038120243475928938891L,
385 0.279401207505669226913587970027852545961L,
386 0.282870016078778280726669781021514051111L,
387 0.286348229546025533601482208069738348358L,
388 0.289835873406665812232747295491552189677L,
389 0.293332973229089436725559789048704304684L,
390 0.296839554651009665933754117792451159835L,
391 0.300355643379650651014140567070917791291L,
392 0.303881265191935898574523648951997368331L,
393 0.30741644593467724479715157747196172848L,
394 0.310961211524764341922991786330755849366L,
395 0.314515587949354658485983613383997794966L,
396 0.318079601266063994690185647066116617661L,
397 0.321653277603157514326511812330609226158L,
398 0.325236643159741294629537095498721674113L,
399 0.32882972420595439547865089632866510792L,
400 0.33243254708316144935164337949073577407L,
401 0.336045138204145773442627904371869759286L,
402 0.339667524053303005360030669724352576023L,
403 0.343299731186835263824217146181630875424L,
404 0.346941786232945835788173713229537282073L,
405 0.350593715892034391408522196060133960038L,
406 0.354255546936892728298014740140702804344L,
407 0.357927306212901046494536695671766697444L,
408 0.361609020638224755585535938831941474643L,
409 0.365300717204011815430698360337542855432L,
410 0.369002422974590611929601132982192832168L,
411 0.372714165087668369284997857144717215791L,
412 0.376435970754530100216322805518686960261L,
413 0.380167867260238095581945274358283464698L,
414 0.383909881963831954872659527265192818003L,
415 0.387662042298529159042861017950775988895L,
416 0.391424375771926187149835529566243446678L,
417 0.395196909966200178275574599249220994717L,
418 0.398979672538311140209528136715194969206L,
419 0.402772691220204706374713524333378817108L,
420 0.40657599381901544248361973255451684411L,
421 0.410389608217270704414375128268675481146L,
422 0.414213562373095048801688724209698078569L
425 long double t = expm1l_table[128 + m];
427 /* (1+t) * (1+exp_y_minus_1) - 1 = t + (1+t)*exp_y_minus_1 */
428 long double p_minus_1 = t + (1.0L + t) * exp_y_minus_1;
430 long double s = ldexpl (1.0L, n) - 1.0L;
432 /* (1+s) * (1+p_minus_1) - 1 = s + (1+s)*p_minus_1 */
433 return s + (1.0L + s) * p_minus_1;
437 #endif