check for either iconv or libiconv.
[gnutls.git] / lib / nettle / ecc_projective_add_point_ng.c
blobc425143d9e6f55ec758f1e7e2375d2dd71a6e589
1 /*
2 * Copyright (C) 2011-2012 Free Software Foundation, Inc.
4 * Author: Ilya Tumaykin
6 * This file is part of GNUTLS.
8 * The GNUTLS library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public License
10 * as published by the Free Software Foundation; either version 3 of
11 * the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>
23 #include "ecc.h"
25 /* We use two algorithms for different cases.
26 * See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html
28 * The algorithm used for general case is "add-1998-cmo-2"
29 * It costs 12M + 4S.
31 * If Z2 = 1 we use "madd". It costs 8M + 3S.
33 * The original versions use a lot of vars:
34 * Z1Z1, Z2Z2, U1, U2, S1, S2, H, I, HHH, r, V, etc.
35 * We use only the needed minimum:
36 * S1, H, HHH(J), r, V.
37 * The rest of the vars are not needed for final
38 * computation, so we calculate them, but don't store.
39 * Follow the comments.
43 #define __WITH_EXTENDED_CHECKS
44 /* Check if H == 0
45 * In this case P + Q = neutral element.
47 * In all of the cases below when H == 0 then Z == 0
48 * and the resulting point lies at infinity.
50 * And the only point on the curve with Z == 0 MUST be
51 * the neutral point.
53 * Of course, if there wasn't a mistake somewhere before.
54 * We will be gullible and won't do any checks and simply
55 * return neutral point in that case.
60 Add two ECC points
61 @param P The point to add
62 @param Q The point to add
63 @param R [out] The destination of the double
64 @param a Curve's a value
65 @param modulus The modulus of the field the ECC curve is in
66 @return GNUTLS_E_SUCCESS on success
68 Note: this function WILL work when a != -3.
69 It will work in general case without a change.
71 int
72 ecc_projective_add_point (ecc_point * P, ecc_point * Q, ecc_point * R,
73 mpz_t a, mpz_t modulus)
75 mpz_t t0, t1, S1, H, HHH, r, V;
76 int err;
78 if (P == NULL || Q == NULL || R == NULL || modulus == NULL)
79 return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER;
81 /* check all special cases first */
83 /* check for neutral points */
84 if ((err = ecc_projective_isneutral (Q, modulus)) == 0)
86 /* P + Q = P + neutral = P */
88 mpz_set (R->x, P->x);
89 mpz_set (R->y, P->y);
90 mpz_set (R->z, P->z);
92 return GNUTLS_E_SUCCESS;
94 else if (err < 0)
96 return err;
99 if ((err = ecc_projective_isneutral (P, modulus)) == 0)
101 /* P + Q = neutral + Q = Q */
103 mpz_set (R->x, Q->x);
104 mpz_set (R->y, Q->y);
105 mpz_set (R->z, Q->z);
107 return GNUTLS_E_SUCCESS;
109 else if (err < 0)
111 return err;
114 if ((err = mp_init_multi (&S1, &H, &HHH, &r, &V, &t0, &t1, NULL)) != 0)
115 return err;
117 /* Check if P == Q and do doubling in that case
118 * If Q == -P then P + Q = neutral element */
119 if ((mpz_cmp (P->x, Q->x) == 0) && (mpz_cmp (P->z, Q->z) == 0))
122 /* x and z coordinates match.
123 * Check if P->y = Q->y, or P->y = -Q->y */
125 if (mpz_cmp (P->y, Q->y) == 0)
127 mp_clear_multi (&S1, &H, &HHH, &r, &V, &t0, &t1, NULL);
128 return ecc_projective_dbl_point (P, R, a, modulus);
131 mpz_sub (t1, modulus, Q->y);
132 if (mpz_cmp (P->y, t1) == 0)
134 mp_clear_multi (&S1, &H, &HHH, &r, &V, &t0, &t1, NULL);
135 mpz_set_ui (R->x, 1);
136 mpz_set_ui (R->y, 1);
137 mpz_set_ui (R->z, 0);
138 return GNUTLS_E_SUCCESS;
143 /* check if Z2 == 1 and do "madd" in that case */
144 if ((mpz_cmp_ui (Q->z, 1) == 0))
146 mp_clear_multi (&S1, &H, &HHH, &r, &V, &t0, &t1, NULL);
147 return ecc_projective_madd (P, Q, R, a, modulus);
150 /* no special cases occured
151 * do general routine */
153 /* t1 = Z1 * Z1 */
154 /* it is the original Z1Z1 */
155 mpz_mul (t1, P->z, P->z);
156 mpz_mod (t1, t1, modulus);
158 /* t0 = Z1 * Z1Z1 */
159 mpz_mul (t0, t1, P->z);
160 mpz_mod (t0, t0, modulus);
162 /* H = X2 * Z1Z1 */
163 /* it is the original U2 */
164 mpz_mul (H, t1, Q->x);
165 mpz_mod (H, H, modulus);
167 /* r = Y2 * Z1 * Z1Z1 */
168 /* it is the original S2 */
169 mpz_mul (r, t0, Q->y);
170 mpz_mod (r, r, modulus);
172 /* S1 = Z2 * Z2 */
173 /* it is the original Z2Z2 */
174 mpz_mul (S1, Q->z, Q->z);
175 mpz_mod (S1, S1, modulus);
177 /* t0 = X1 * Z2Z2 */
178 /* it is the original U1 */
179 mpz_mul (t0, S1, P->x);
180 mpz_mod (t0, t0, modulus);
182 /* H = U2 - U1 = H - t0 */
183 mpz_sub (H, H, t0);
184 #ifdef __WITH_EXTENDED_CHECKS
185 err = mpz_cmp_ui (H, 0);
186 if (err < 0)
188 mpz_add (H, H, modulus);
190 else if (!err)
192 mpz_set_ui (R->x, 1);
193 mpz_set_ui (R->y, 1);
194 mpz_set_ui (R->z, 0);
195 mp_clear_multi (&S1, &H, &HHH, &r, &V, &t0, &t1, NULL);
197 return GNUTLS_E_SUCCESS;
199 #else
200 if (mpz_cmp_ui (H, 0) < 0)
201 mpz_add (H, H, modulus);
202 #endif
203 /* t1 = H^2 */
204 /* it is the original HH */
205 mpz_mul (t1, H, H);
206 mpz_mod (t1, t1, modulus);
207 /* HHH = H * HH */
208 mpz_mul (HHH, t1, H);
209 mpz_mod (HHH, HHH, modulus);
211 /* V = U1 * HH = t0 * t1 */
212 mpz_mul (V, t1, t0);
213 mpz_mod (V, V, modulus);
215 /* t0 = Z2 * Z2Z2 */
216 mpz_mul (t0, S1, Q->z);
217 mpz_mod (t0, t0, modulus);
218 /* S1 = Y1 * Z2 * Z2Z2 */
219 mpz_mul (S1, t0, P->y);
220 mpz_mod (S1, S1, modulus);
222 /* r = S2 - S1 = r - S1 */
223 mpz_sub (r, r, S1);
224 if (mpz_cmp_ui (r, 0) < 0)
225 mpz_add (r, r, modulus);
227 /* we've calculated all needed vars:
228 * S1, H, HHH, r, V
229 * now, we will calculate the coordinates */
231 /* t0 = (r)^2 */
232 mpz_mul (t0, r, r);
233 mpz_mod (t0, t0, modulus);
234 /* t0 = t0 - HHH */
235 mpz_sub (t0, t0, HHH);
236 if (mpz_cmp_ui (t0, 0) < 0)
237 mpz_add (t0, t0, modulus);
238 /* t1 = 2V */
239 mpz_add (t1, V, V);
240 if (mpz_cmp (t1, modulus) >= 0)
241 mpz_sub (t1, t1, modulus);
242 /* X = r^2 - HHH - 2V = t0 - t1 */
243 mpz_sub (R->x, t0, t1);
244 if (mpz_cmp_ui (R->x, 0) < 0)
245 mpz_add (R->x, R->x, modulus);
248 /* t1 = V - X */
249 mpz_sub (t1, V, R->x);
250 if (mpz_cmp_ui (t1, 0) < 0)
251 mpz_add (t1, t1, modulus);
252 /* t0 = r * t1 */
253 mpz_mul (t0, r, t1);
254 mpz_mod (t0, t0, modulus);
255 /* t1 = S1 * HHH */
256 mpz_mul (t1, S1, HHH);
257 mpz_mod (t1, t1, modulus);
258 /* Y = r*(V - X) - S1*HHH = t0 - t1 */
259 mpz_sub (R->y, t0, t1);
260 if (mpz_cmp_ui (R->y, 0) < 0)
261 mpz_add (R->y, R->y, modulus);
264 /* t1 = Z1 * Z2 */
265 mpz_mul (t1, P->z, Q->z);
266 mpz_mod (t1, t1, modulus);
267 /* Z = Z1 * Z2 * H = t1 * H */
268 mpz_mul (R->z, t1, H);
269 mpz_mod (R->z, R->z, modulus);
271 mp_clear_multi (&S1, &H, &HHH, &r, &V, &t0, &t1, NULL);
273 return GNUTLS_E_SUCCESS;
277 Add two ECC points, when it is known that Z2 == 1
278 @param P The point to add
279 @param Q The point with Z == 1 to add
280 @param R [out] The destination of the double
281 @param a Curve's a value
282 @param modulus The modulus of the field the ECC curve is in
283 @return GNUTLS_E_SUCCESS on success
285 Note: this function will work when a != -3.
286 It will work in general case without a change.
289 ecc_projective_madd (ecc_point * P, ecc_point * Q, ecc_point * R,
290 mpz_t a, mpz_t modulus)
292 mpz_t t0, t1, H, J, r, V;
293 int err;
295 if (P == NULL || Q == NULL || R == NULL || modulus == NULL)
296 return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER;
298 /* check all special cases first */
300 /* check for neutral points */
301 /* Q is guaranteed not to be neutral since it has Z == 1 */
302 if ((err = ecc_projective_isneutral (P, modulus)) == 0)
304 /* P + Q = neutral + Q = Q */
306 mpz_set (R->x, Q->x);
307 mpz_set (R->y, Q->y);
308 mpz_set (R->z, Q->z);
310 return GNUTLS_E_SUCCESS;
312 else if (err < 0)
314 return err;
317 if ((err = mp_init_multi (&H, &J, &r, &V, &t0, &t1, NULL)) != 0)
318 return err;
320 /* Check if P == Q and do doubling in that case
321 * If Q == -P then P + Q = neutral element */
322 if ((mpz_cmp (P->x, Q->x) == 0) && (mpz_cmp (P->z, Q->z) == 0))
325 /* x and z coordinates match.
326 * Check if P->y = Q->y, or P->y = -Q->y */
328 if (mpz_cmp (P->y, Q->y) == 0)
330 mp_clear_multi (&H, &J, &r, &V, &t0, &t1, NULL);
331 return ecc_projective_dbl_point (P, R, a, modulus);
334 mpz_sub (t1, modulus, Q->y);
335 if (mpz_cmp (P->y, t1) == 0)
337 mp_clear_multi (&H, &J, &r, &V, &t0, &t1, NULL);
338 mpz_set_ui (R->x, 1);
339 mpz_set_ui (R->y, 1);
340 mpz_set_ui (R->z, 0);
341 return GNUTLS_E_SUCCESS;
345 /* no special cases occured
346 * do madd */
348 /* t1 = Z1 * Z1 */
349 /* it is the original Z1Z1 */
350 mpz_mul (t1, P->z, P->z);
351 mpz_mod (t1, t1, modulus);
353 /* t0 = Z1 * Z1Z1 */
354 mpz_mul (t0, t1, P->z);
355 mpz_mod (t0, t0, modulus);
357 /* r = Y2 * Z1 * Z1Z1 */
358 /* it is the original S2 */
359 mpz_mul (r, t0, Q->y);
360 mpz_mod (r, r, modulus);
361 /* r = S2 - Y1 = r - Y1 */
362 mpz_sub (r, r, P->y);
363 if (mpz_cmp_ui (r, 0) < 0)
364 mpz_add (r, r, modulus);
365 /* r = 2 * (S2 - Y1) */
366 mpz_add (r, r, r);
367 if (mpz_cmp (r, modulus) >= 0)
368 mpz_sub (r, r, modulus);
370 /* H = X2 * Z1Z1 */
371 /* it is the original U2 */
372 mpz_mul (H, t1, Q->x);
373 mpz_mod (H, H, modulus);
374 /* H = U2 - X1 = H - X1 */
375 mpz_sub (H, H, P->x);
376 #ifdef __WITH_EXTENDED_CHECKS
377 err = mpz_cmp_ui (H, 0);
378 if (err < 0)
380 mpz_add (H, H, modulus);
382 else if (!err)
384 mpz_set_ui (R->x, 1);
385 mpz_set_ui (R->y, 1);
386 mpz_set_ui (R->z, 0);
387 mp_clear_multi (&H, &J, &r, &V, &t0, &t1, NULL);
389 return GNUTLS_E_SUCCESS;
391 #else
392 if (mpz_cmp_ui (H, 0) < 0)
393 mpz_add (H, H, modulus);
394 #endif
396 /* t0 = 2H */
397 mpz_add (t0, H, H);
398 if (mpz_cmp (t0, modulus) >= 0)
399 mpz_sub (t0, t0, modulus);
400 /* t1 = (2H)^2 */
401 /* it is the original I */
402 mpz_mul (t1, t0, t0);
403 mpz_mod (t1, t1, modulus);
405 /* J = H * I = H * t1 */
406 mpz_mul (J, t1, H);
407 mpz_mod (J, J, modulus);
409 /* V = X1 * I = X1 * t1 */
410 mpz_mul (V, t1, P->x);
411 mpz_mod (V, V, modulus);
413 /* we've calculated all needed vars:
414 * H, J, r, V
415 * now, we will calculate the coordinates */
417 /* Z = 2 * Z1 * H = Z1 * t0 */
418 mpz_mul (R->z, P->z, t0);
419 mpz_mod (R->z, R->z, modulus);
422 /* t0 = (r)^2 */
423 mpz_mul (t0, r, r);
424 mpz_mod (t0, t0, modulus);
425 /* t0 = t0 - J */
426 mpz_sub (t0, t0, J);
427 if (mpz_cmp_ui (t0, 0) < 0)
428 mpz_add (t0, t0, modulus);
429 /* t1 = 2V */
430 mpz_add (t1, V, V);
431 if (mpz_cmp (t1, modulus) >= 0)
432 mpz_sub (t1, t1, modulus);
433 /* X = r^2 - J - 2V = t0 - t1 */
434 mpz_sub (R->x, t0, t1);
435 if (mpz_cmp_ui (R->x, 0) < 0)
436 mpz_add (R->x, R->x, modulus);
439 /* t1 = V - X */
440 mpz_sub (t1, V, R->x);
441 if (mpz_cmp_ui (t1, 0) < 0)
442 mpz_add (t1, t1, modulus);
443 /* t0 = r * t1 */
444 mpz_mul (t0, r, t1);
445 mpz_mod (t0, t0, modulus);
446 /* t1 = Y1 * J */
447 mpz_mul (t1, J, P->y);
448 mpz_mod (t1, t1, modulus);
449 /* t1 = 2 * t1 */
450 mpz_add (t1, t1, t1);
451 if (mpz_cmp (t1, modulus) >= 0)
452 mpz_sub (t1, t1, modulus);
453 /* Y = r * (V - X) - 2 * Y1 * J = t0 - t1 */
454 mpz_sub (R->y, t0, t1);
455 if (mpz_cmp_ui (R->y, 0) < 0)
456 mpz_add (R->y, R->y, modulus);
459 mp_clear_multi (&H, &J, &r, &V, &t0, &t1, NULL);
461 return GNUTLS_E_SUCCESS;