5 TLS Working Group D. Taylor
6 Internet-Draft Forge Research Pty Ltd
7 Expires: April 9, 2006 T. Wu
14 Using SRP for TLS Authentication
19 By submitting this Internet-Draft, each author represents that any
20 applicable patent or other IPR claims of which he or she is aware
21 have been or will be disclosed, and any of which he or she becomes
22 aware will be disclosed, in accordance with Section 6 of BCP 79.
24 Internet-Drafts are working documents of the Internet Engineering
25 Task Force (IETF), its areas, and its working groups. Note that
26 other groups may also distribute working documents as Internet-
29 Internet-Drafts are draft documents valid for a maximum of six months
30 and may be updated, replaced, or obsoleted by other documents at any
31 time. It is inappropriate to use Internet-Drafts as reference
32 material or to cite them other than as "work in progress."
34 The list of current Internet-Drafts can be accessed at
35 http://www.ietf.org/ietf/1id-abstracts.txt.
37 The list of Internet-Draft Shadow Directories can be accessed at
38 http://www.ietf.org/shadow.html.
40 This Internet-Draft will expire on April 9, 2006.
44 Copyright (C) The Internet Society (2005).
48 This memo presents a technique for using the Secure Remote Password
49 protocol ([SRP], [SRP-6]) as an authentication method for the
50 Transport Layer Security protocol [TLS].
56 Taylor, et al. Expires April 9, 2006 [Page 1]
58 Internet-Draft Using SRP for TLS Authentication October 2005
63 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
64 2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . . 4
65 2.1. Notation and Terminology . . . . . . . . . . . . . . . . . 4
66 2.2. Handshake Protocol Overview . . . . . . . . . . . . . . . 4
67 2.3. Text Preparation . . . . . . . . . . . . . . . . . . . . . 5
68 2.4. SRP Verifier Creation . . . . . . . . . . . . . . . . . . 5
69 2.5. Changes to the Handshake Message Contents . . . . . . . . 5
70 2.5.1. Client Hello . . . . . . . . . . . . . . . . . . . . . 5
71 2.5.2. Server Certificate . . . . . . . . . . . . . . . . . . 7
72 2.5.3. Server Key Exchange . . . . . . . . . . . . . . . . . 7
73 2.5.4. Client Key Exchange . . . . . . . . . . . . . . . . . 8
74 2.6. Calculating the Pre-master Secret . . . . . . . . . . . . 8
75 2.7. Cipher Suite Definitions . . . . . . . . . . . . . . . . . 9
76 2.8. New Message Structures . . . . . . . . . . . . . . . . . . 9
77 2.8.1. Client Hello . . . . . . . . . . . . . . . . . . . . . 10
78 2.8.2. Server Key Exchange . . . . . . . . . . . . . . . . . 10
79 2.8.3. Client Key Exchange . . . . . . . . . . . . . . . . . 11
80 2.9. Error Alerts . . . . . . . . . . . . . . . . . . . . . . . 11
81 3. Security Considerations . . . . . . . . . . . . . . . . . . . 12
82 4. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14
83 4.1. Normative References . . . . . . . . . . . . . . . . . . . 14
84 4.2. Informative References . . . . . . . . . . . . . . . . . . 14
85 Appendix A. SRP Group Parameters . . . . . . . . . . . . . . . . 16
86 Appendix B. SRP Test Vectors . . . . . . . . . . . . . . . . . . 21
87 Appendix C. Acknowledgements . . . . . . . . . . . . . . . . . . 23
88 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 24
89 Intellectual Property and Copyright Statements . . . . . . . . . . 25
112 Taylor, et al. Expires April 9, 2006 [Page 2]
114 Internet-Draft Using SRP for TLS Authentication October 2005
119 At the time of writing TLS [TLS] uses public key certificates, pre-
120 shared keys, or Kerberos for authentication.
122 These authentication methods do not seem well suited to certain
123 applications now being adapted to use TLS ([IMAP] for example).
124 Given that many protocols are designed to use the user name and
125 password method of authentication, being able to safely use user
126 names and passwords provides an easier route to additional security.
128 SRP ([SRP], [SRP-6]) is an authentication method that allows the use
129 of user names and passwords over unencrypted channels without
130 revealing the password to an eavesdropper. SRP also supplies a
131 shared secret at the end of the authentication sequence that can be
132 used to generate encryption keys.
134 This document describes the use of the SRP authentication method for
137 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
138 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
139 document are to be interpreted as described in RFC 2119.
168 Taylor, et al. Expires April 9, 2006 [Page 3]
170 Internet-Draft Using SRP for TLS Authentication October 2005
173 2. SRP Authentication in TLS
175 2.1. Notation and Terminology
177 The version of SRP used here is sometimes referred to as "SRP-6"
178 [SRP-6]. This version is a slight improvement over "SRP-3", which
179 was described in [SRP] and [SRP-RFC].
181 This document uses the variable names defined in [SRP-6]:
183 N, g: group parameters (prime and generator)
187 B, b: server's public and private values
189 A, a: client's public and private values
191 I: user name (aka "identity")
199 The | symbol indicates string concatenation, the ^ operator is the
200 exponentiation operation, and the % operator is the integer remainder
203 Conversion between integers and byte-strings assumes the most-
204 significant bytes are stored first, as per [TLS] and [SRP-RFC]. In
205 the following text, if a conversion from integer to byte-string is
206 implicit, the most-significant byte in the resultant byte-string MUST
207 be non-zero. If a conversion is explicitly specified with the
208 operator PAD(), the integer will first be implicitly converted, then
209 the resultant byte-string will be left-padded with zeros (if
210 necessary) until its length equals the implicitly-converted length of
213 2.2. Handshake Protocol Overview
215 The advent of [SRP-6] allows the SRP protocol to be implemented using
216 the standard sequence of handshake messages defined in [TLS].
218 The parameters to various messages are given in the following
224 Taylor, et al. Expires April 9, 2006 [Page 4]
226 Internet-Draft Using SRP for TLS Authentication October 2005
231 Client Hello (I) ------------------------> |
232 | <---------------------------- Server Hello
233 | <---------------------------- Certificate*
234 | <---------------------------- Server Key Exchange (N, g, s, B)
235 | <---------------------------- Server Hello Done
236 Client Key Exchange (A) -----------------> |
237 [Change cipher spec] |
238 Finished --------------------------------> |
239 | [Change cipher spec]
240 | <---------------------------- Finished
242 Application Data <--------------> Application Data
244 * Indicates an optional message which is not always sent.
248 2.3. Text Preparation
250 The user name and password strings shall be UTF-8 encoded Unicode,
251 prepared using the [SASLPREP] profile of [STRINGPREP].
253 2.4. SRP Verifier Creation
255 The verifier is calculated as described in section 3 of [SRP-RFC].
256 We give the algorithm here for convenience.
258 The verifier (v) is computed based on the salt (s), user name (I),
259 password (P), and group parameters (N, g). The computation uses the
260 [SHA1] hash algorithm:
262 x = SHA1(s | SHA1(I | ":" | P))
265 2.5. Changes to the Handshake Message Contents
267 This section describes the changes to the TLS handshake message
268 contents when SRP is being used for authentication. The definitions
269 of the new message contents and the on-the-wire changes are given in
274 The user name is appended to the standard client hello message using
275 the hello message extension mechanism defined in [TLSEXT] (see
280 Taylor, et al. Expires April 9, 2006 [Page 5]
282 Internet-Draft Using SRP for TLS Authentication October 2005
285 2.5.1.1. Session Resumption
287 When a client attempts to resume a session that uses SRP
288 authentication, the client MUST include the user name extension in
289 the client hello message, in case the server cannot or will not allow
290 session resumption, meaning a full handshake is required.
292 If the server does agree to resume an existing session the server
293 MUST ignore the information in the SRP extension of the client hello
294 message, except for its inclusion in the finished message hashes.
295 This is to ensure attackers cannot replace the authenticated identity
296 without supplying the proper authentication information.
298 2.5.1.2. Missing SRP Username
300 The client may offer SRP ciphersuites in the hello message but omit
301 the SRP extension. If the server would like to select an SRP
302 ciphersuite in this case, the server MAY return a
303 missing_srp_username alert (see Section 2.9) immediately after
304 processing the client hello message. This alert signals the client
305 to resend the hello message, this time with the SRP extension. This
306 allows the client to advertise that it supports SRP, but not have to
307 prompt the user for his user name and password, nor expose the user
308 name in the clear, unless necessary.
310 After sending the missing_srp_username alert, the server MUST leave
311 the TLS connection open, yet reset its handshake protocol state so it
312 is prepared to receive a second client hello message. Upon receiving
313 the missing_srp_username alert, the client MUST either send a second
314 client hello message, or send a fatal user_cancelled alert.
316 If the client sends a second hello message, the second hello message
317 MUST offer SRP ciphersuites, and MUST contain the SRP extension, and
318 the server MUST choose one of the SRP ciphersuites. Both client
319 hello messages MUST be treated as handshake messages and included in
320 the hash calculations for the TLS Finished message. The premaster
321 and master secret calculations will use the random value from the
322 second client hello message, not the first.
324 2.5.1.3. Unknown SRP Username
326 If the server doesn't have a verifier for the given user name, the
327 server MAY abort the handshake with an unknown_srp_username alert
328 (see Section 2.9). Alternatively, if the server wishes to hide the
329 fact that this user name doesn't have a verifier, the server MAY
330 simulate the protocol as if a verifier existed, but then reject the
331 client's finished message with a bad_record_mac alert, as if the
332 password was incorrect.
336 Taylor, et al. Expires April 9, 2006 [Page 6]
338 Internet-Draft Using SRP for TLS Authentication October 2005
341 To simulate the existence of an entry for each user name, the server
342 must consistently return the same salt (s) and group (N, g) values
343 for the same user name. For example, the server could store a secret
344 "seed key" and then use HMAC-SHA1(seed_key, "salt" | user_name) to
345 generate the salts [HMAC]. For B, the server can return a random
346 value between 1 and N-1 inclusive. However, the server should take
347 care to simulate computation delays. One way to do this is to
348 generate a fake verifier using the "seed key" approach, and then
349 proceed with the protocol as usual.
351 2.5.2. Server Certificate
353 The server MUST send a certificate if it agrees to an SRP cipher
354 suite that requires the server to provide additional authentication
355 in the form of a digital signature. See Section 2.7 for details of
356 which ciphersuites defined in this document require a server
357 certificate to be sent.
359 2.5.3. Server Key Exchange
361 The server key exchange message contains the prime (N), the generator
362 (g), and the salt value (s) read from the SRP password file based on
363 the user name (I) received in the client hello extension.
365 The server key exchange message also contains the server's public
366 value (B). The server calculates this value as B = k*v + g^b % N,
367 where b is a random number which SHOULD be at least 256 bits in
368 length, and k = SHA1(N | PAD(g)).
370 If the server has sent a certificate message, the server key exchange
371 message MUST be signed.
373 The group parameters (N, g) sent in this message MUST have N as a
374 safe prime (a prime of the form N=2q+1, where q is also prime). The
375 integers from 1 to N-1 will form a group under multiplication % N,
376 and g MUST be a generator of this group. In addition, the group
377 parameters MUST NOT be specially chosen to allow efficient
378 computation of discrete logarithms.
380 The SRP group parameters in Appendix A satisfy the above
381 requirements, so the client SHOULD accept any parameters from this
382 Appendix which have large enough N values to meet her security
385 The client MAY accept other group parameters from the server, if the
386 client has reason to believe these parameters satisfy the above
387 requirements, and the parameters have large enough N values. For
388 example, if the parameters transmitted by the server match parameters
392 Taylor, et al. Expires April 9, 2006 [Page 7]
394 Internet-Draft Using SRP for TLS Authentication October 2005
397 on a "known-good" list, the client may choose to accept them. See
398 Section 3 for additional security considerations relevant to the
399 acceptance of the group parameters.
401 Group parameters that are not accepted via one of the above methods
402 MUST be rejected with an untrusted_srp_parameters alert (see
405 The client MUST abort the handshake with an illegal_parameter alert
408 2.5.4. Client Key Exchange
410 The client key exchange message carries the client's public value
411 (A). The client calculates this value as A = g^a % N, where a is a
412 random number which SHOULD be at least 256 bits in length.
414 The server MUST abort the handshake with an illegal_parameter alert
417 2.6. Calculating the Pre-master Secret
419 The pre-master secret is calculated by the client as follows:
421 I, P = <read from user>
422 N, g, s, B = <read from server>
425 u = SHA1(PAD(A) | PAD(B))
427 x = SHA1(s | SHA1(I | ":" | P))
428 <premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
430 The pre-master secret is calculated by the server as follows:
432 N, g, s, v = <read from password file>
436 A = <read from client>
437 u = SHA1(PAD(A) | PAD(B))
438 <premaster secret> = (A * v^u) ^ b % N
440 The finished messages perform the same function as the client and
441 server evidence messages (M1 and M2) specified in [SRP-RFC]. If
442 either the client or the server calculate an incorrect premaster
443 secret, the finished messages will fail to decrypt properly, and the
444 other party will return a bad_record_mac alert.
448 Taylor, et al. Expires April 9, 2006 [Page 8]
450 Internet-Draft Using SRP for TLS Authentication October 2005
453 If a client application receives a bad_record_mac alert when
454 performing an SRP handshake, it should inform the user that the
455 entered user name and password are incorrect.
457 2.7. Cipher Suite Definitions
459 The following cipher suites are added by this draft. The usage of
460 AES ciphersuites is as defined in [AESCIPH].
462 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x50 };
464 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x51 };
466 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x52 };
468 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0x00,0x53 };
470 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0x00,0x54 };
472 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0x00,0x55 };
474 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0x00,0x56 };
476 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0x00,0x57 };
478 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0x00,0x58 };
480 Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
481 require the server to send a certificate message containing a
482 certificate with the specified type of public key, and to sign the
483 server key exchange message using a matching private key.
485 Cipher suites that do not include a digital signature algorithm
486 identifier assume the server is authenticated by its possesion of the
489 Implementations conforming to this specification MUST implement the
490 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the
491 TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
492 ciphersuites, and MAY implement the remaining ciphersuites.
494 2.8. New Message Structures
496 This section shows the structure of the messages passed during a
497 handshake that uses SRP for authentication. The representation
498 language used is the same as that used in [TLS].
504 Taylor, et al. Expires April 9, 2006 [Page 9]
506 Internet-Draft Using SRP for TLS Authentication October 2005
511 A new value, "srp(6)", has been added to the enumerated ExtensionType
512 defined in [TLSEXT]. This value MUST be used as the extension number
513 for the SRP extension.
515 The "extension_data" field of the SRP extension SHALL contain:
517 opaque srp_I<1..2^8-1>
519 where srp_I is the user name, encoded per Section 2.4.
521 2.8.2. Server Key Exchange
523 A new value, "srp", has been added to the enumerated
524 KeyExchangeAlgorithm originally defined in [TLS].
526 When the value of KeyExchangeAlgorithm is set to "srp", the server's
527 SRP parameters are sent in the server key exchange message, encoded
528 in a ServerSRPParams structure.
530 If a certificate is sent to the client the server key exchange
531 message must be signed.
533 enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
536 select (KeyExchangeAlgorithm) {
538 ServerDHParams params;
539 Signature signed_params;
541 ServerRSAParams params;
542 Signature signed_params;
543 case srp: /* new entry */
544 ServerSRPParams params;
545 Signature signed_params;
550 opaque srp_N<1..2^16-1>;
551 opaque srp_g<1..2^16-1>;
552 opaque srp_s<1..2^8-1>
553 opaque srp_B<1..2^16-1>;
554 } ServerSRPParams; /* SRP parameters */
560 Taylor, et al. Expires April 9, 2006 [Page 10]
562 Internet-Draft Using SRP for TLS Authentication October 2005
565 2.8.3. Client Key Exchange
567 When the value of KeyExchangeAlgorithm is set to "srp", the client's
568 public value (A) is sent in the client key exchange message, encoded
569 in a ClientSRPPublic structure.
572 select (KeyExchangeAlgorithm) {
573 case rsa: EncryptedPreMasterSecret;
574 case diffie_hellman: ClientDiffieHellmanPublic;
575 case srp: ClientSRPPublic; /* new entry */
580 opaque srp_A<1..2^16-1>;
585 Three new error alerts are defined:
587 o "unknown_srp_username" (120) - this alert MAY be sent by a server
588 that receives an unknown user name. This alert is always fatal.
589 See Section 2.5.1.3 for details.
591 o "missing_srp_username" (121) - this alert MAY be sent by a server
592 that would like to select an offered SRP ciphersuite, if the SRP
593 extension is absent from the client's hello message. This alert
594 is always a warning. Upon receiving this alert, the client MAY
595 send a new hello message on the same connection, this time
596 including the SRP extension. See Section 2.5.1.2 for details.
598 o "untrusted_srp_parameters" (122) - this alert MUST be sent by a
599 client that receives unknown or untrusted (N, g) values. This
600 alert is always fatal. See Section 2.5.3 for details.
616 Taylor, et al. Expires April 9, 2006 [Page 11]
618 Internet-Draft Using SRP for TLS Authentication October 2005
621 3. Security Considerations
623 If an attacker is able to steal the SRP verifier file, the attacker
624 can masquerade as the real server, and can also use dictionary
625 attacks to recover client passwords.
627 An attacker could repeatedly contact an SRP server and try to guess a
628 legitimate user's password. Servers SHOULD take steps to prevent
629 this, such as limiting the rate of authentication attempts from a
630 particular IP address, or against a particular user account, or
631 locking the user account once a threshold of failed attempts is
634 The client's user name is sent in the clear in the Client Hello
635 message. To avoid sending the user name in the clear, the client
636 could first open a conventional anonymous, or server-authenticated
637 connection, then renegotiate an SRP-authenticated connection with the
638 handshake protected by the first connection.
640 An attacker who could calculate discrete logarithms in the
641 multiplicative group % N could compromise user passwords, and could
642 also compromise the the confidentiality and integrity of TLS
643 sessions. Clients MUST ensure that the received parameter N is large
644 enough to make calculating discrete logarithms computationally
647 An attacker may try to send a prime value N which is large enough to
648 be secure, but which has a special form for which the attacker can
649 more easily compute discrete logarithms (e.g., using the algorithm
650 discussed in [TRAPDOOR]). If the client executes the protocol using
651 such a prime, the client's password could be compromised. Because of
652 the difficulty of checking for such special primes in real-time,
653 clients SHOULD only accept group parameters that come from a trusted
654 source, such as those listed in Appendix A, or parameters configured
655 locally by a trusted administrator.
657 The checks described in Section 2.5.3 and Section 2.5.4 on the
658 received values for A and B are crucial for security and MUST be
661 The private values a and b SHOULD be at least 256 bit random numbers,
662 to give approximately 128 bits of security against certain methods of
663 calculating discrete logarithms.
665 If the client receives a missing_srp_username alert, the client
666 should be aware that unless the handshake protocol is run to
667 completion, this alert may have been inserted by an attacker. If the
668 handshake protocol is not run to completion, the client should not
672 Taylor, et al. Expires April 9, 2006 [Page 12]
674 Internet-Draft Using SRP for TLS Authentication October 2005
677 make any decisions, nor form any assumptions, based on receiving this
680 It is possible to choose a (user name, password) pair such that the
681 resulting verifier will also match other, related, (user name,
682 password) pairs. Thus, anyone using verifiers should be careful not
683 to assume that only a single (user name, password) pair matches the
728 Taylor, et al. Expires April 9, 2006 [Page 13]
730 Internet-Draft Using SRP for TLS Authentication October 2005
735 4.1. Normative References
737 [TLS] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
740 [SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the Secure
741 Remote Password Protocol", October 2002,
742 <http://srp.stanford.edu/srp6.ps>.
744 [TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
745 and T. Wright, "TLS Extensions", RFC 3546, June 2003.
748 Hoffman, P. and M. Blanchet, "Preparation of
749 Internationalized Strings ("stringprep")", RFC 3454,
753 Zeilenga, K., "SASLprep: Stringprep profile for user names
754 and passwords", RFC 4013, February 2005.
756 [SRP-RFC] Wu, T., "The SRP Authentication and Key Exchange System",
757 RFC 2945, September 2000.
759 [SHA1] "Announcing the Secure Hash Standard", FIPS 180-1,
762 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
763 Hashing for Message Authentication", RFC 2104,
766 [AESCIPH] Chown, P., "Advanced Encryption Standard (AES)
767 Ciphersuites for Transport Layer Security (TLS)",
770 [MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
771 (MODP) Diffie-Hellman groups for Internet Key Exchange
772 (IKE)", RFC 3526, May 2003.
774 4.2. Informative References
776 [IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
779 [SRP] Wu, T., "The Secure Remote Password Protocol", Proceedings
780 of the 1998 Internet Society Network and Distributed
784 Taylor, et al. Expires April 9, 2006 [Page 14]
786 Internet-Draft Using SRP for TLS Authentication October 2005
789 System Security Symposium pp. 97-111, March 1998.
792 Gordon, D., "Designing and Detecting Trapdoors for
793 Discrete Log Cryptosystems", Springer-Verlag Advances in
794 Cryptology - Crypto '92, pp. 66-75, 1993.
840 Taylor, et al. Expires April 9, 2006 [Page 15]
842 Internet-Draft Using SRP for TLS Authentication October 2005
845 Appendix A. SRP Group Parameters
847 The 1024, 1536, and 2048-bit groups are taken from software developed
848 by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
849 subsequently proven to be prime. The larger primes are taken from
850 [MODP], but generators have been calculated that are primitive roots
851 of N, unlike the generators in [MODP].
853 The 1024-bit and 1536-bit groups MUST be supported.
857 The hexadecimal value for the prime is:
859 EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
860 9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
861 8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
862 7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
863 FD5138FE 8376435B 9FC61D2F C0EB06E3
871 The hexadecimal value for the prime is:
873 9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
874 4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
875 80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
876 E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
877 6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
878 F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
879 8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
887 The hexadecimal value for the prime is:
889 AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
890 3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
891 CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
892 D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
896 Taylor, et al. Expires April 9, 2006 [Page 16]
898 Internet-Draft Using SRP for TLS Authentication October 2005
901 7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
902 436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
903 5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
904 03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
905 94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
914 This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
917 Its hexadecimal value is:
919 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
920 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
921 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
922 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
923 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
924 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
925 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
926 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
927 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
928 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
929 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
930 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
931 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
932 E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
940 This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
943 Its hexadecimal value is:
945 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
946 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
947 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
948 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
952 Taylor, et al. Expires April 9, 2006 [Page 17]
954 Internet-Draft Using SRP for TLS Authentication October 2005
957 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
958 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
959 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
960 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
961 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
962 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
963 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
964 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
965 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
966 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
967 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
968 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
969 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
970 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
979 This prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] +
982 Its hexadecimal value is:
984 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
985 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
986 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
987 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
988 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
989 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
990 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
991 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
992 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
993 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
994 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
995 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
996 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
997 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
998 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
999 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
1000 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
1001 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
1002 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
1003 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
1004 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
1008 Taylor, et al. Expires April 9, 2006 [Page 18]
1010 Internet-Draft Using SRP for TLS Authentication October 2005
1013 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
1014 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
1015 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
1016 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
1017 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
1018 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
1019 6DCC4024 FFFFFFFF FFFFFFFF
1022 The generator is: 5.
1027 This prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] +
1030 Its hexadecimal value is:
1032 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
1033 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
1034 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
1035 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
1036 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
1037 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
1038 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
1039 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
1040 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
1041 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
1042 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1043 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
1044 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
1045 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
1046 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
1047 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
1048 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
1049 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
1050 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
1051 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
1052 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
1053 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
1054 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
1055 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
1056 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
1057 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
1058 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
1059 6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
1060 3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
1064 Taylor, et al. Expires April 9, 2006 [Page 19]
1066 Internet-Draft Using SRP for TLS Authentication October 2005
1069 5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
1070 22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
1071 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
1072 6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
1073 0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
1074 359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
1075 FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
1076 60C980DD 98EDD3DF FFFFFFFF FFFFFFFF
1079 The generator is: 19 (decimal).
1120 Taylor, et al. Expires April 9, 2006 [Page 20]
1122 Internet-Draft Using SRP for TLS Authentication October 2005
1125 Appendix B. SRP Test Vectors
1127 The following test vectors demonstrate calculation of the verifier
1128 and premaster secret.
1134 s = BEB25379 D1A8581E B5A72767 3A2441EE
1136 N, g = <1024-bit parameters from Appendix A>
1138 k = 7556AA04 5AEF2CDD 07ABAF0F 665C3E81 8913186F
1140 x = 94B7555A ABE9127C C58CCF49 93DB6CF8 4D16C124
1144 7E273DE8 696FFC4F 4E337D05 B4B375BE B0DDE156 9E8FA00A 9886D812
1145 9BADA1F1 822223CA 1A605B53 0E379BA4 729FDC59 F105B478 7E5186F5
1146 C671085A 1447B52A 48CF1970 B4FB6F84 00BBF4CE BFBB1681 52E08AB5
1147 EA53D15C 1AFF87B2 B9DA6E04 E058AD51 CC72BFC9 033B564E 26480D78
1148 E955A5E2 9E7AB245 DB2BE315 E2099AFB
1152 60975527 035CF2AD 1989806F 0407210B C81EDC04 E2762A56 AFD529DD
1157 E487CB59 D31AC550 471E81F0 0F6928E0 1DDA08E9 74A004F4 9E61F5D1
1162 61D5E490 F6F1B795 47B0704C 436F523D D0E560F0 C64115BB 72557EC4
1163 4352E890 3211C046 92272D8B 2D1A5358 A2CF1B6E 0BFCF99F 921530EC
1164 8E393561 79EAE45E 42BA92AE ACED8251 71E1E8B9 AF6D9C03 E1327F44
1165 BE087EF0 6530E69F 66615261 EEF54073 CA11CF58 58F0EDFD FE15EFEA
1166 B349EF5D 76988A36 72FAC47B 0769447B
1170 BD0C6151 2C692C0C B6D041FA 01BB152D 4916A1E7 7AF46AE1 05393011
1171 BAF38964 DC46A067 0DD125B9 5A981652 236F99D9 B681CBF8 7837EC99
1172 6C6DA044 53728610 D0C6DDB5 8B318885 D7D82C7F 8DEB75CE 7BD4FBAA
1176 Taylor, et al. Expires April 9, 2006 [Page 21]
1178 Internet-Draft Using SRP for TLS Authentication October 2005
1181 37089E6F 9C6059F3 88838E7A 00030B33 1EB76840 910440B1 B27AAEAE
1182 EB4012B7 D7665238 A8E3FB00 4B117B58
1186 CE38B959 3487DA98 554ED47D 70A7AE5F 462EF019
1188 <premaster secret> =
1190 B0DC82BA BCF30674 AE450C02 87745E79 90A3381F 63B387AA F271A10D
1191 233861E3 59B48220 F7C4693C 9AE12B0A 6F67809F 0876E2D0 13800D6C
1192 41BB59B6 D5979B5C 00A172B4 A2A5903A 0BDCAF8A 709585EB 2AFAFA8F
1193 3499B200 210DCC1F 10EB3394 3CD67FC8 8A2F39A4 BE5BEC4E C0A3212D
1194 C346D7E4 74B29EDE 8A469FFE CA686E5A
1232 Taylor, et al. Expires April 9, 2006 [Page 22]
1234 Internet-Draft Using SRP for TLS Authentication October 2005
1237 Appendix C. Acknowledgements
1239 Thanks to all on the IETF TLS mailing list for ideas and analysis.
1288 Taylor, et al. Expires April 9, 2006 [Page 23]
1290 Internet-Draft Using SRP for TLS Authentication October 2005
1296 Forge Research Pty Ltd
1298 Email: DavidTaylor@forge.com.au
1299 URI: http://www.forge.com.au/
1305 Email: tjw@cs.stanford.edu
1308 Nikos Mavrogiannopoulos
1310 Email: nmav@gnutls.org
1311 URI: http://www.gnutls.org/
1316 Email: trevp@trevp.net
1317 URI: http://trevp.net/
1344 Taylor, et al. Expires April 9, 2006 [Page 24]
1346 Internet-Draft Using SRP for TLS Authentication October 2005
1349 Intellectual Property Statement
1351 The IETF takes no position regarding the validity or scope of any
1352 Intellectual Property Rights or other rights that might be claimed to
1353 pertain to the implementation or use of the technology described in
1354 this document or the extent to which any license under such rights
1355 might or might not be available; nor does it represent that it has
1356 made any independent effort to identify any such rights. Information
1357 on the procedures with respect to rights in RFC documents can be
1358 found in BCP 78 and BCP 79.
1360 Copies of IPR disclosures made to the IETF Secretariat and any
1361 assurances of licenses to be made available, or the result of an
1362 attempt made to obtain a general license or permission for the use of
1363 such proprietary rights by implementers or users of this
1364 specification can be obtained from the IETF on-line IPR repository at
1365 http://www.ietf.org/ipr.
1367 The IETF invites any interested party to bring to its attention any
1368 copyrights, patents or patent applications, or other proprietary
1369 rights that may cover technology that may be required to implement
1370 this standard. Please address the information to the IETF at
1374 Disclaimer of Validity
1376 This document and the information contained herein are provided on an
1377 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
1378 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
1379 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
1380 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
1381 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
1382 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1387 Copyright (C) The Internet Society (2005). This document is subject
1388 to the rights, licenses and restrictions contained in BCP 78, and
1389 except as set forth therein, the authors retain all their rights.
1394 Funding for the RFC Editor function is currently provided by the
1400 Taylor, et al. Expires April 9, 2006 [Page 25]