3 TLS Working Group D. Taylor
4 Internet-Draft Forge Research Pty Ltd
5 Expires: December 6, 2004 T. Wu
12 Using SRP for TLS Authentication
17 This document is an Internet-Draft and is in full conformance with
18 all provisions of Section 10 of RFC2026.
20 Internet-Drafts are working documents of the Internet Engineering
21 Task Force (IETF), its areas, and its working groups. Note that
22 other groups may also distribute working documents as
25 Internet-Drafts are draft documents valid for a maximum of six months
26 and may be updated, replaced, or obsoleted by other documents at any
27 time. It is inappropriate to use Internet-Drafts as reference
28 material or to cite them other than as "work in progress."
30 The list of current Internet-Drafts can be accessed at
31 http://www.ietf.org/ietf/1id-abstracts.txt.
33 The list of Internet-Draft Shadow Directories can be accessed at
34 http://www.ietf.org/shadow.html.
36 This Internet-Draft will expire on December 6, 2004.
40 Copyright (C) The Internet Society (2004). All Rights Reserved.
44 This memo presents a technique for using the Secure Remote Password
45 protocol ([SRP], [SRP-6]) as an authentication method for the
46 Transport Layer Security protocol [TLS].
55 Taylor, et al. Expires December 6, 2004 [Page 1]
57 Internet-Draft Using SRP for TLS Authentication June 2004
62 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
63 2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . . 4
64 2.1 Notation and Terminology . . . . . . . . . . . . . . . . . 4
65 2.2 Handshake Protocol Overview . . . . . . . . . . . . . . . 4
66 2.3 Text Preparation . . . . . . . . . . . . . . . . . . . . . 5
67 2.4 SRP Verifier Creation . . . . . . . . . . . . . . . . . . 5
68 2.5 Changes to the Handshake Message Contents . . . . . . . . 5
69 2.5.1 Client Hello . . . . . . . . . . . . . . . . . . . . . 5
70 2.5.2 Server Certificate . . . . . . . . . . . . . . . . . . 7
71 2.5.3 Server Key Exchange . . . . . . . . . . . . . . . . . 7
72 2.5.4 Client Key Exchange . . . . . . . . . . . . . . . . . 8
73 2.6 Calculating the Pre-master Secret . . . . . . . . . . . . 8
74 2.7 Cipher Suite Definitions . . . . . . . . . . . . . . . . . 8
75 2.8 New Message Structures . . . . . . . . . . . . . . . . . . 9
76 2.8.1 Client Hello . . . . . . . . . . . . . . . . . . . . . 9
77 2.8.2 Server Key Exchange . . . . . . . . . . . . . . . . . 9
78 2.8.3 Client Key Exchange . . . . . . . . . . . . . . . . . 10
79 2.9 Error Alerts . . . . . . . . . . . . . . . . . . . . . . . 11
80 3. Security Considerations . . . . . . . . . . . . . . . . . . . 12
81 4. References . . . . . . . . . . . . . . . . . . . . . . . . . . 13
82 4.1 Normative References . . . . . . . . . . . . . . . . . . . . 13
83 4.2 Informative References . . . . . . . . . . . . . . . . . . . 13
84 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 14
85 A. SRP Group Parameters . . . . . . . . . . . . . . . . . . . . . 15
86 B. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 19
87 Intellectual Property and Copyright Statements . . . . . . . . 20
111 Taylor, et al. Expires December 6, 2004 [Page 2]
113 Internet-Draft Using SRP for TLS Authentication June 2004
118 At the time of writing TLS [TLS] uses public key certificates, or
119 Kerberos, for authentication.
121 These authentication methods do not seem well suited to the
122 applications now being adapted to use TLS ([IMAP] or [FTP], for
123 example). Given that these protocols are designed to use the user
124 name and password method of authentication, being able to safely use
125 user names and passwords provides an easier route to additional
128 SRP ([SRP], [SRP-6]) is an authentication method that allows the use
129 of user names and passwords over unencrypted channels without
130 revealing the password to an eavesdropper. SRP also supplies a
131 shared secret at the end of the authentication sequence that can be
132 used to generate encryption keys.
134 This document describes the use of the SRP authentication method for
137 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
138 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
139 document are to be interpreted as described in RFC 2119.
167 Taylor, et al. Expires December 6, 2004 [Page 3]
169 Internet-Draft Using SRP for TLS Authentication June 2004
172 2. SRP Authentication in TLS
174 2.1 Notation and Terminology
176 The version of SRP used here is sometimes referred to as "SRP-6"
177 [SRP-6]. This version is a slight improvement over "SRP-3", which
178 was described in [SRP] and [RFC2945].
180 This document uses the variable names defined in [SRP-6]:
182 N, g: group parameters (prime and generator)
184 B, b: server's public and private values
185 A, a: client's public and private values
186 I: user name (aka "identity")
190 The | symbol indicates string concatenation, the ^ operator is the
191 exponentiation operation, and the % operator is the integer remainder
192 operation. Conversion between integers and byte-strings assumes the
193 most-significant bytes are stored first, as per [TLS] and [RFC2945].
195 2.2 Handshake Protocol Overview
197 The advent of [SRP-6] allows the SRP protocol to be implemented using
198 the standard sequence of handshake messages defined in [TLS].
200 The parameters to various messages are given in the following
205 Client Hello (I) ------------------------> |
206 | <---------------------------- Server Hello
207 | <---------------------------- Certificate*
208 | <---------------------------- Server Key Exchange (N, g, s, B)
209 | <---------------------------- Server Hello Done
210 Client Key Exchange (A) -----------------> |
211 [Change cipher spec] |
212 Finished --------------------------------> |
213 | [Change cipher spec]
214 | <---------------------------- Finished
216 Application Data <--------------> Application Data
218 * Indicates an optional message which is not always sent.
223 Taylor, et al. Expires December 6, 2004 [Page 4]
225 Internet-Draft Using SRP for TLS Authentication June 2004
233 The user name and password strings shall be UTF-8 encoded Unicode,
234 prepared using the [SASLPrep] profile of [StringPrep].
236 2.4 SRP Verifier Creation
238 The verifier is calculated as described in section 3 of [RFC2945].
239 We give the algorithm here for convenience.
241 The verifier (v) is computed based on the salt (s), user name (I),
242 password (P), and group parameters (N, g). The computation uses the
243 [SHA1] hash algorithm:
245 x = SHA1(s | SHA1(I | ":" | P))
248 2.5 Changes to the Handshake Message Contents
250 This section describes the changes to the TLS handshake message
251 contents when SRP is being used for authentication. The definitions
252 of the new message contents and the on-the-wire changes are given in
257 The user name is appended to the standard client hello message using
258 the hello message extension mechanism defined in [TLSEXT] (see
261 2.5.1.1 Session Resumption
263 When a client attempts to resume a session that uses SRP
264 authentication, the client MUST include the user name extension in
265 the client hello message, in case the server cannot or will not allow
266 session resumption, meaning a full handshake is required.
268 If the server does agree to resume an existing session the server
269 MUST ignore the information in the SRP extension of the client hello
270 message, except for its inclusion in the finished message hashes.
271 This is to ensure attackers cannot replace the authenticated identity
272 without supplying the proper authentication information.
279 Taylor, et al. Expires December 6, 2004 [Page 5]
281 Internet-Draft Using SRP for TLS Authentication June 2004
284 2.5.1.2 Missing SRP Username
286 The client may offer SRP ciphersuites in the hello message but omit
287 the SRP extension. If the server would like to select an SRP
288 ciphersuite in this case, the server MAY return a
289 missing_srp_username alert (see Section 2.9) immediately after
290 processing the client hello message. This alert signals the client
291 to resend the hello message, this time with the SRP extension. This
292 allows the client to advertise that it supports SRP, but not have to
293 prompt the user for his user name and password, nor expose the user
294 name in the clear, unless necessary.
296 After sending the missing_srp_username alert, the server MUST leave
297 the TLS connection open, yet reset its handshake protocol state so it
298 is prepared to receive a second client hello message. Upon receiving
299 the missing_srp_username alert, the client MUST either send a second
300 client hello message, or send a fatal user_cancelled alert.
302 If the client sends a second hello message, the second hello message
303 MUST offer SRP ciphersuites, and MUST contain the SRP extension, and
304 the server MUST choose one of the SRP ciphersuites. Both client
305 hello messages MUST be treated as handshake messages and included in
306 the hash calculations for the TLS Finished message. The premaster
307 and master secret calculations will use the random value from the
308 second client hello message, not the first.
310 2.5.1.3 Unknown SRP Username
312 If the server doesn't have a verifier for the given user name, the
313 server MAY abort the handshake with an unknown_srp_username alert
314 (see Section 2.9). Alternatively, if the server wishes to hide the
315 fact that this user name doesn't have a verifier, the server MAY
316 simulate the protocol as if a verifier existed, but then reject the
317 client's finished message with a bad_record_mac alert, as if the
318 password was incorrect.
320 To simulate the existence of an entry for each user name, the server
321 must consistently return the same salt (s) and group (N, g) values
322 for the same user name. For example, the server could store a secret
323 "seed key" and then use HMAC-SHA1(seed_key, "salt" | user_name) to
324 generate the salts [HMAC]. For B, the server can return a random
325 value between 1 and N-1 inclusive. However, the server should take
326 care to simulate computation delays. One way to do this is to
327 generate a fake verifier using the "seed key" approach, and then
328 proceed with the protocol as usual.
335 Taylor, et al. Expires December 6, 2004 [Page 6]
337 Internet-Draft Using SRP for TLS Authentication June 2004
340 2.5.2 Server Certificate
342 The server MUST send a certificate if it agrees to an SRP cipher
343 suite that requires the server to provide additional authentication
344 in the form of a digital signature. See Section 2.7 for details of
345 which ciphersuites defined in this document require a server
346 certificate to be sent.
348 2.5.3 Server Key Exchange
350 The server key exchange message contains the prime (N), the generator
351 (g), and the salt value (s) read from the SRP password file based on
352 the user name (I) received in the client hello extension.
354 The server key exchange message also contains the server's public
355 value (B). The server calculates this value as B = k*v + g^b % N,
356 where b is a random number which SHOULD be at least 256 bits in
357 length, and k = SHA1(N | g).
359 If the server has sent a certificate message, the server key exchange
360 message MUST be signed.
362 The group parameters (N, g) sent in this message MUST have N as a
363 safe prime (a prime of the form N=2q+1, where q is also prime). The
364 integers from 1 to N-1 will form a group under multiplication % N,
365 and g MUST be a generator of this group. The SRP group parameters in
366 Appendix A are proven to have these properties, so the client SHOULD
367 accept any parameters from this Appendix which have large enough N
368 values to meet his security requirements. The client MAY accept
369 other group parameters from the server, either by prior arrangement,
370 or by checking the parameters himself.
372 To check that N is a safe prime, the client should use some method
373 such as performing 64 iterations of the Miller-Rabin test with random
374 bases (selected from 2 to N-2) on both N and q (by performing 64
375 iterations, the probability of a false positive is no more than
376 2^-128). To check that g is a generator of the group, the client can
377 check that 1 < g < N-1, and g^q % N equals N-1. Performing these
378 checks may be time-consuming; after checking new parameters, the
379 client may want to add them to a known-good list.
381 Group parameters that are not accepted via one of the above methods
382 MUST be rejected with an untrusted_srp_parameters alert (see Section
385 The client MUST abort the handshake with an illegal_parameter alert
391 Taylor, et al. Expires December 6, 2004 [Page 7]
393 Internet-Draft Using SRP for TLS Authentication June 2004
396 2.5.4 Client Key Exchange
398 The client key exchange message carries the client's public value
399 (A). The client calculates this value as A = g^a % N, where a is a
400 random number which SHOULD be at least 256 bits in length.
402 The server MUST abort the handshake with an illegal_parameter alert
405 2.6 Calculating the Pre-master Secret
407 The pre-master secret is calculated by the client as follows:
409 I, P = <read from user>
410 N, g, s, B = <read from server>
415 x = SHA1(s | SHA1(I | ":" | P))
416 <premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
418 The pre-master secret is calculated by the server as follows:
420 N, g, s, v = <read from password file>
424 A = <read from client>
426 <premaster secret> = (A * v^u) ^ b % N
428 The finished messages perform the same function as the client and
429 server evidence messages (M1 and M2) specified in [RFC2945]. If
430 either the client or the server calculate an incorrect premaster
431 secret, the finished messages will fail to decrypt properly, and the
432 other party will return a bad_record_mac alert.
434 If a client application receives a bad_record_mac alert when
435 performing an SRP handshake, it should inform the user that the
436 entered user name and password are incorrect.
438 2.7 Cipher Suite Definitions
440 The following cipher suites are added by this draft. The usage of
441 AES ciphersuites is as defined in [RFC3268].
447 Taylor, et al. Expires December 6, 2004 [Page 8]
449 Internet-Draft Using SRP for TLS Authentication June 2004
452 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x50 };
453 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x51 };
454 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x52 };
455 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0x00,0x53 };
456 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0x00,0x54 };
457 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0x00,0x55 };
458 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0x00,0x56 };
459 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0x00,0x57 };
460 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0x00,0x58 };
462 Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
463 require the server to send a certificate message containing a
464 certificate with the specified type of public key, and to sign the
465 server key exchange message using a matching private key.
467 Cipher suites that do not include a digital signature algorithm
468 identifier assume the server is authenticated by its possesion of the
471 Implementations conforming to this specification MUST implement the
472 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the
473 TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
474 ciphersuites, and MAY implement the remaining ciphersuites.
476 2.8 New Message Structures
478 This section shows the structure of the messages passed during a
479 handshake that uses SRP for authentication. The representation
480 language used is the same as that used in [TLS].
484 A new value, "srp(6)", has been added to the enumerated ExtensionType
485 defined in [TLSEXT]. This value MUST be used as the extension number
486 for the SRP extension.
488 The "extension_data" field of the SRP extension SHALL contain:
490 opaque srp_I<1..2^8-1>
492 where srp_I is the user name, encoded per Section 2.4.
494 2.8.2 Server Key Exchange
496 A new value, "srp", has been added to the enumerated
497 KeyExchangeAlgorithm originally defined in [TLS].
499 When the value of KeyExchangeAlgorithm is set to "srp", the server's
503 Taylor, et al. Expires December 6, 2004 [Page 9]
505 Internet-Draft Using SRP for TLS Authentication June 2004
508 SRP parameters are sent in the server key exchange message, encoded
509 in a ServerSRPParams structure.
511 If a certificate is sent to the client the server key exchange
512 message must be signed.
514 enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
517 select (KeyExchangeAlgorithm) {
519 ServerDHParams params;
520 Signature signed_params;
522 ServerRSAParams params;
523 Signature signed_params;
524 case srp: /* new entry */
525 ServerSRPParams params;
526 Signature signed_params;
531 opaque srp_N<1..2^16-1>;
532 opaque srp_g<1..2^16-1>;
533 opaque srp_s<1..2^8-1>
534 opaque srp_B<1..2^16-1>;
535 } ServerSRPParams; /* SRP parameters */
537 2.8.3 Client Key Exchange
539 When the value of KeyExchangeAlgorithm is set to "srp", the client's
540 public value (A) is sent in the client key exchange message, encoded
541 in a ClientSRPPublic structure.
544 select (KeyExchangeAlgorithm) {
545 case rsa: EncryptedPreMasterSecret;
546 case diffie_hellman: ClientDiffieHellmanPublic;
547 case srp: ClientSRPPublic; /* new entry */
552 opaque srp_A<1..2^16-1>;
559 Taylor, et al. Expires December 6, 2004 [Page 10]
561 Internet-Draft Using SRP for TLS Authentication June 2004
566 Three new error alerts are defined:
568 o "unknown_srp_username" (120) - this alert MAY be sent by a server
569 that receives an unknown user name. This alert is always fatal.
570 See Section 2.5.1.3 for details.
571 o "missing_srp_username" (121) - this alert MAY be sent by a server
572 that would like to select an offered SRP ciphersuite, if the SRP
573 extension is absent from the client's hello message. This alert
574 is always a warning. Upon receiving this alert, the client MAY
575 send a new hello message on the same connection, this time
576 including the SRP extension. See Section 2.5.1.2 for details.
577 o "untrusted_srp_parameters" (122) - this alert MUST be sent by a
578 client that receives unknown or untrusted (N, g) values. This
579 alert is always fatal. See Section 2.5.3 for details.
615 Taylor, et al. Expires December 6, 2004 [Page 11]
617 Internet-Draft Using SRP for TLS Authentication June 2004
620 3. Security Considerations
622 If an attacker is able to steal the SRP verifier file, the attacker
623 can masquerade as the real server, and can also use dictionary
624 attacks to recover client passwords.
626 An attacker could repeatedly contact an SRP server and try to guess a
627 legitimate user's password. Servers SHOULD take steps to prevent
628 this, such as limiting the rate of authentication attempts from a
629 particular IP address, or against a particular user account, or
630 locking the user account once a threshold of failed attempts is
633 The client's user name is sent in the clear in the Client Hello
634 message. To avoid sending the user name in the clear, the client
635 could first open a conventional anonymous, or server-authenticated
636 connection, then renegotiate an SRP-authenticated connection with the
637 handshake protected by the first connection.
639 The checks described in Section 2.5.3 and Section 2.5.4 on the
640 received values for A and B are crucial for security and MUST be
643 The private values a and b SHOULD be at least 256 bit random numbers,
644 to give approximately 128 bits of security against certain methods of
645 calculating discrete logarithms.
647 If the client receives a missing_srp_username alert, the client
648 should be aware that unless the handshake protocol is run to
649 completion, this alert may have been inserted by an attacker. If the
650 handshake protocol is not run to completion, the client should not
651 make any decisions, nor form any assumptions, based on receiving this
654 It is possible to choose a (user name, password) pair such that the
655 resulting verifier will also match other, related, (user name,
656 password) pairs. Thus, anyone using verifiers should be careful not
657 to assume that only a single (user name, password) pair matches the
671 Taylor, et al. Expires December 6, 2004 [Page 12]
673 Internet-Draft Using SRP for TLS Authentication June 2004
678 4.1 Normative References
680 [TLS] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246,
683 [SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the Secure
684 Remote Password Protocol", October 2002,
685 <http://srp.stanford.edu/srp6.ps>.
687 [TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.
688 and T. Wright, "TLS Extensions", RFC 3546, June 2003.
691 Hoffman, P. and M. Blanchet, "Preparation of
692 Internationalized Strings ("stringprep")", RFC 3454,
696 Zeilenga, K., "SASLprep: Stringprep profile for user names
697 and passwords", draft-ietf-sasl-saslprep-09 (work in
698 progress), April 2004.
700 [RFC2945] Wu, T., "The SRP Authentication and Key Exchange System",
701 RFC 2945, September 2000.
703 [SHA1] "Announcing the Secure Hash Standard", FIPS 180-1,
706 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
707 Keyed-Hashing for Message Authentication", RFC 2104,
710 [RFC3268] Chown, P., "Advanced Encryption Standard (AES)
711 Ciphersuites for Transport Layer Security (TLS)", RFC
714 [MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
715 (MODP) Diffie-Hellman groups for Internet Key Exchange
716 (IKE)", RFC 3526, May 2003.
718 4.2 Informative References
720 [IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
723 [FTP] Ford-Hutchinson, P., Carpenter, M., Hudson, T., Murray, E.
727 Taylor, et al. Expires December 6, 2004 [Page 13]
729 Internet-Draft Using SRP for TLS Authentication June 2004
732 and V. Wiegand, "Securing FTP with TLS",
733 draft-murray-auth-ftp-ssl-13 (work in progress), March 2004.
735 [SRP] Wu, T., "The Secure Remote Password Protocol", Proceedings of
736 the 1998 Internet Society Network and Distributed System
737 Security Symposium pp. 97-111, March 1998.
743 Forge Research Pty Ltd
745 EMail: DavidTaylor@forge.com.au
746 URI: http://www.forge.com.au/
753 URI: http://www.arcot.com/
756 Nikos Mavroyanopoulos
758 EMail: nmav@gnutls.org
759 URI: http://www.gnutls.org/
764 EMail: trevp@trevp.net
765 URI: http://trevp.net/
783 Taylor, et al. Expires December 6, 2004 [Page 14]
785 Internet-Draft Using SRP for TLS Authentication June 2004
788 Appendix A. SRP Group Parameters
790 The 1024, 1536, and 2048-bit groups are taken from software developed
791 by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
792 subsequently proven to be prime. The larger primes are taken from
793 [MODP], but generators have been calculated that are primitive roots
794 of N, unlike the generators in [MODP].
796 The 1024-bit and 1536-bit groups MUST be supported.
800 The hexadecimal value is:
801 EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
802 9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
803 8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
804 7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
805 FD5138FE 8376435B 9FC61D2F C0EB06E3
809 The hexadecimal value is:
810 9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
811 4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
812 80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
813 E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
814 6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
815 F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
816 8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
820 The hexadecimal value is:
821 AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
822 3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
823 CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
824 D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
825 7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
826 436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
827 5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
828 03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
829 94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
834 This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
839 Taylor, et al. Expires December 6, 2004 [Page 15]
842 Its hexadecimal value is:
843 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
844 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
845 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
846 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
847 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
848 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
849 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
850 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
851 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
852 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
853 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
854 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
855 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
856 E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
860 This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
863 Its hexadecimal value is:
864 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
865 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
866 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
867 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
868 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
869 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
870 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
871 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
872 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
873 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
874 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
875 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
876 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
877 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
878 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
879 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
880 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
881 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
886 This prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] +
889 Its hexadecimal value is:
890 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
891 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
895 Taylor, et al. Expires December 6, 2004 [Page 16]
897 Internet-Draft Using SRP for TLS Authentication June 2004
900 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
901 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
902 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
903 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
904 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
905 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
906 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
907 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
908 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
909 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
910 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
911 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
912 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
913 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
914 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
915 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
916 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
917 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
918 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
919 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
920 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
921 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
922 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
923 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
924 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
925 6DCC4024 FFFFFFFF FFFFFFFF
929 This prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] +
932 Its hexadecimal value is:
933 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
934 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
935 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
936 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
937 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
938 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
939 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
940 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
941 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
942 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
943 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
944 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
945 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
946 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
947 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
951 Taylor, et al. Expires December 6, 2004 [Page 17]
953 Internet-Draft Using SRP for TLS Authentication June 2004
956 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
957 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
958 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
959 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
960 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
961 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
962 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
963 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
964 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
965 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
966 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
967 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
968 6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
969 3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
970 5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
971 22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
972 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
973 6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
974 0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
975 359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
976 FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
977 60C980DD 98EDD3DF FFFFFFFF FFFFFFFF
978 The generator is: 19 (decimal).
1007 Taylor, et al. Expires December 6, 2004 [Page 18]
1009 Internet-Draft Using SRP for TLS Authentication June 2004
1012 Appendix B. Acknowledgements
1014 Thanks to all on the IETF tls mailing list for ideas and analysis.
1063 Taylor, et al. Expires December 6, 2004 [Page 19]
1065 Internet-Draft Using SRP for TLS Authentication June 2004
1068 Intellectual Property Statement
1070 The IETF takes no position regarding the validity or scope of any
1071 intellectual property or other rights that might be claimed to
1072 pertain to the implementation or use of the technology described in
1073 this document or the extent to which any license under such rights
1074 might or might not be available; neither does it represent that it
1075 has made any effort to identify any such rights. Information on the
1076 IETF's procedures with respect to rights in standards-track and
1077 standards-related documentation can be found in BCP-11. Copies of
1078 claims of rights made available for publication and any assurances of
1079 licenses to be made available, or the result of an attempt made to
1080 obtain a general license or permission for the use of such
1081 proprietary rights by implementors or users of this specification can
1082 be obtained from the IETF Secretariat.
1084 The IETF invites any interested party to bring to its attention any
1085 copyrights, patents or patent applications, or other proprietary
1086 rights which may cover technology that may be required to practice
1087 this standard. Please address the information to the IETF Executive
1091 Full Copyright Statement
1093 Copyright (C) The Internet Society (2004). All Rights Reserved.
1095 This document and translations of it may be copied and furnished to
1096 others, and derivative works that comment on or otherwise explain it
1097 or assist in its implementation may be prepared, copied, published
1098 and distributed, in whole or in part, without restriction of any
1099 kind, provided that the above copyright notice and this paragraph are
1100 included on all such copies and derivative works. However, this
1101 document itself may not be modified in any way, such as by removing
1102 the copyright notice or references to the Internet Society or other
1103 Internet organizations, except as needed for the purpose of
1104 developing Internet standards in which case the procedures for
1105 copyrights defined in the Internet Standards process must be
1106 followed, or as required to translate it into languages other than
1109 The limited permissions granted above are perpetual and will not be
1110 revoked by the Internet Society or its successors or assignees.
1112 This document and the information contained herein is provided on an
1113 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
1114 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
1115 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
1119 Taylor, et al. Expires December 6, 2004 [Page 20]
1121 Internet-Draft Using SRP for TLS Authentication June 2004
1124 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
1125 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1130 Funding for the RFC Editor function is currently provided by the
1175 Taylor, et al. Expires December 6, 2004 [Page 21]