4 TLS Working Group D. Taylor
5 Internet-Draft Independent
6 Expires: December 15, 2007 T. Wu
14 Using SRP for TLS Authentication
19 By submitting this Internet-Draft, each author represents that any
20 applicable patent or other IPR claims of which he or she is aware
21 have been or will be disclosed, and any of which he or she becomes
22 aware will be disclosed, in accordance with Section 6 of BCP 79.
24 Internet-Drafts are working documents of the Internet Engineering
25 Task Force (IETF), its areas, and its working groups. Note that
26 other groups may also distribute working documents as Internet-
29 Internet-Drafts are draft documents valid for a maximum of six months
30 and may be updated, replaced, or obsoleted by other documents at any
31 time. It is inappropriate to use Internet-Drafts as reference
32 material or to cite them other than as "work in progress."
34 The list of current Internet-Drafts can be accessed at
35 http://www.ietf.org/ietf/1id-abstracts.txt.
37 The list of Internet-Draft Shadow Directories can be accessed at
38 http://www.ietf.org/shadow.html.
40 This Internet-Draft will expire on December 15, 2007.
44 Copyright (C) The IETF Trust (2007).
55 Taylor, et al. Expires December 15, 2007 [Page 1]
57 Internet-Draft Using SRP for TLS Authentication June 2007
62 This memo presents a technique for using the Secure Remote Password
63 protocol as an authentication method for the Transport Layer Security
69 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
70 2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . . 4
71 2.1. Notation and Terminology . . . . . . . . . . . . . . . . . 4
72 2.2. Handshake Protocol Overview . . . . . . . . . . . . . . . 4
73 2.3. Text Preparation . . . . . . . . . . . . . . . . . . . . . 5
74 2.4. SRP Verifier Creation . . . . . . . . . . . . . . . . . . 5
75 2.5. Changes to the Handshake Message Contents . . . . . . . . 5
76 2.5.1. Client Hello . . . . . . . . . . . . . . . . . . . . . 5
77 2.5.2. Server Certificate . . . . . . . . . . . . . . . . . . 7
78 2.5.3. Server Key Exchange . . . . . . . . . . . . . . . . . 7
79 2.5.4. Client Key Exchange . . . . . . . . . . . . . . . . . 8
80 2.6. Calculating the Pre-master Secret . . . . . . . . . . . . 8
81 2.7. Cipher Suite Definitions . . . . . . . . . . . . . . . . . 8
82 2.8. New Message Structures . . . . . . . . . . . . . . . . . . 9
83 2.8.1. Client Hello . . . . . . . . . . . . . . . . . . . . . 9
84 2.8.2. Server Key Exchange . . . . . . . . . . . . . . . . . 10
85 2.8.3. Client Key Exchange . . . . . . . . . . . . . . . . . 10
86 2.9. Error Alerts . . . . . . . . . . . . . . . . . . . . . . . 11
87 3. Security Considerations . . . . . . . . . . . . . . . . . . . 12
88 3.1. General Considerations for Implementors . . . . . . . . . 12
89 3.2. Accepting Group Parameters . . . . . . . . . . . . . . . . 12
90 3.3. Protocol Characteristics . . . . . . . . . . . . . . . . . 12
91 3.4. Hash Function Considerations . . . . . . . . . . . . . . . 13
92 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14
93 5. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
94 5.1. Normative References . . . . . . . . . . . . . . . . . . . 15
95 5.2. Informative References . . . . . . . . . . . . . . . . . . 15
96 Appendix A. SRP Group Parameters . . . . . . . . . . . . . . . . 17
97 Appendix B. SRP Test Vectors . . . . . . . . . . . . . . . . . . 22
98 Appendix C. Acknowledgements . . . . . . . . . . . . . . . . . . 24
99 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 25
100 Intellectual Property and Copyright Statements . . . . . . . . . . 26
111 Taylor, et al. Expires December 15, 2007 [Page 2]
113 Internet-Draft Using SRP for TLS Authentication June 2007
118 At the time of writing TLS [TLS] uses public key certificates, pre-
119 shared keys, or Kerberos for authentication.
121 These authentication methods do not seem well suited to certain
122 applications now being adapted to use TLS ([IMAP] for example).
123 Given that many protocols are designed to use the user name and
124 password method of authentication, being able to safely use user
125 names and passwords provides an easier route to additional security.
127 SRP ([SRP], [SRP-6]) is an authentication method that allows the use
128 of user names and passwords over unencrypted channels without
129 revealing the password to an eavesdropper. SRP also supplies a
130 shared secret at the end of the authentication sequence that can be
131 used to generate encryption keys.
133 This document describes the use of the SRP authentication method for
136 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
137 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
138 document are to be interpreted as described in RFC 2119 [REQ].
167 Taylor, et al. Expires December 15, 2007 [Page 3]
169 Internet-Draft Using SRP for TLS Authentication June 2007
172 2. SRP Authentication in TLS
174 2.1. Notation and Terminology
176 The version of SRP used here is sometimes referred to as "SRP-6"
177 [SRP-6]. This version is a slight improvement over "SRP-3", which
178 was described in [SRP] and [SRP-RFC].
180 This document uses the variable names defined in [SRP-6]:
182 N, g: group parameters (prime and generator)
186 B, b: server's public and private values
188 A, a: client's public and private values
190 I: user name (aka "identity")
198 The | symbol indicates string concatenation, the ^ operator is the
199 exponentiation operation, and the % operator is the integer remainder
202 Conversion between integers and byte-strings assumes the most-
203 significant bytes are stored first, as per [TLS] and [SRP-RFC]. In
204 the following text, if a conversion from integer to byte-string is
205 implicit, the most-significant byte in the resultant byte-string MUST
206 be non-zero. If a conversion is explicitly specified with the
207 operator PAD(), the integer will first be implicitly converted, then
208 the resultant byte-string will be left-padded with zeros (if
209 necessary) until its length equals the implicitly-converted length of
212 2.2. Handshake Protocol Overview
214 The advent of [SRP-6] allows the SRP protocol to be implemented using
215 the standard sequence of handshake messages defined in [TLS].
217 The parameters to various messages are given in the following
223 Taylor, et al. Expires December 15, 2007 [Page 4]
225 Internet-Draft Using SRP for TLS Authentication June 2007
230 Client Hello (I) -------->
233 Server Key Exchange (N, g, s, B)
234 <-------- Server Hello Done
235 Client Key Exchange (A) -------->
241 Application Data <-------> Application Data
243 * Indicates an optional message which is not always sent.
247 2.3. Text Preparation
249 The user name and password strings SHALL be UTF-8 encoded Unicode,
250 prepared using the [SASLPREP] profile of [STRINGPREP].
252 2.4. SRP Verifier Creation
254 The verifier is calculated as described in section 3 of [SRP-RFC].
255 We give the algorithm here for convenience.
257 The verifier (v) is computed based on the salt (s), user name (I),
258 password (P), and group parameters (N, g). The computation uses the
259 [SHA1] hash algorithm:
261 x = SHA1(s | SHA1(I | ":" | P))
264 2.5. Changes to the Handshake Message Contents
266 This section describes the changes to the TLS handshake message
267 contents when SRP is being used for authentication. The definitions
268 of the new message contents and the on-the-wire changes are given in
273 The user name is appended to the standard client hello message using
274 the extension mechanism defined in [TLSEXT] (see Section 2.8.1).
275 This user name extension is henceforth called the "SRP extension".
279 Taylor, et al. Expires December 15, 2007 [Page 5]
281 Internet-Draft Using SRP for TLS Authentication June 2007
284 The following subsections give details of its use.
286 2.5.1.1. Session Resumption
288 When a client attempts to resume a session that uses SRP
289 authentication, the client MUST include the SRP extension in the
290 client hello message, in case the server cannot or will not allow
291 session resumption, meaning a full handshake is required.
293 If the server does agree to resume an existing session the server
294 MUST ignore the information in the SRP extension of the client hello
295 message, except for its inclusion in the finished message hashes.
296 This is to ensure attackers cannot replace the authenticated identity
297 without supplying the proper authentication information.
299 2.5.1.2. Missing SRP Extension
301 The client may offer SRP ciphersuites in the hello message but omit
302 the SRP extension. If the server would like to select an SRP
303 ciphersuite in this case, the server SHOULD return a fatal
304 "unknown_psk_identity" alert (see Section 2.9) immediately after
305 processing the client hello message.
307 A client receiving this alert MAY choose to reconnect and resend the
308 hello message, this time with the SRP extension. This allows the
309 client to advertise that it supports SRP, but not have to prompt the
310 user for his user name and password, nor expose the user name in the
311 clear, unless necessary.
313 2.5.1.3. Unknown SRP Username
315 If the server doesn't have a verifier for the user name in the SRP
316 extension, the server MAY abort the handshake with an
317 "unknown_psk_identity" alert (see Section 2.9). Alternatively, if
318 the server wishes to hide the fact that this user name doesn't have a
319 verifier, the server MAY simulate the protocol as if a verifier
320 existed, but then reject the client's finished message with a
321 "bad_record_mac" alert, as if the password was incorrect.
323 To simulate the existence of an entry for each user name, the server
324 must consistently return the same salt (s) and group (N, g) values
325 for the same user name. For example, the server could store a secret
326 "seed key" and then use HMAC-SHA1(seed_key, "salt" | user_name) to
327 generate the salts [HMAC]. For B, the server can return a random
328 value between 1 and N-1 inclusive. However, the server should take
329 care to simulate computation delays. One way to do this is to
330 generate a fake verifier using the "seed key" approach, and then
331 proceed with the protocol as usual.
335 Taylor, et al. Expires December 15, 2007 [Page 6]
337 Internet-Draft Using SRP for TLS Authentication June 2007
340 2.5.2. Server Certificate
342 The server MUST send a certificate if it agrees to an SRP cipher
343 suite that requires the server to provide additional authentication
344 in the form of a digital signature. See Section 2.7 for details of
345 which ciphersuites defined in this document require a server
346 certificate to be sent.
348 2.5.3. Server Key Exchange
350 The server key exchange message contains the prime (N), the generator
351 (g), and the salt value (s) read from the SRP password file based on
352 the user name (I) received in the client hello extension.
354 The server key exchange message also contains the server's public
355 value (B). The server calculates this value as B = k*v + g^b % N,
356 where b is a random number which SHOULD be at least 256 bits in
357 length, and k = SHA1(N | PAD(g)).
359 If the server has sent a certificate message, the server key exchange
360 message MUST be signed.
362 The group parameters (N, g) sent in this message MUST have N as a
363 safe prime (a prime of the form N=2q+1, where q is also prime). The
364 integers from 1 to N-1 will form a group under multiplication % N,
365 and g MUST be a generator of this group. In addition, the group
366 parameters MUST NOT be specially chosen to allow efficient
367 computation of discrete logarithms.
369 The SRP group parameters in Appendix A satisfy the above
370 requirements, so the client SHOULD accept any parameters from this
371 Appendix which have large enough N values to meet her security
374 The client MAY accept other group parameters from the server, if the
375 client has reason to believe these parameters satisfy the above
376 requirements, and the parameters have large enough N values. For
377 example, if the parameters transmitted by the server match parameters
378 on a "known-good" list, the client may choose to accept them. See
379 Section 3 for additional security considerations relevant to the
380 acceptance of the group parameters.
382 Group parameters that are not accepted via one of the above methods
383 MUST be rejected with an "insufficient_security" alert (see
386 The client MUST abort the handshake with an "illegal_parameter" alert
391 Taylor, et al. Expires December 15, 2007 [Page 7]
393 Internet-Draft Using SRP for TLS Authentication June 2007
396 2.5.4. Client Key Exchange
398 The client key exchange message carries the client's public value
399 (A). The client calculates this value as A = g^a % N, where a is a
400 random number which SHOULD be at least 256 bits in length.
402 The server MUST abort the handshake with an "illegal_parameter" alert
405 2.6. Calculating the Pre-master Secret
407 The pre-master secret is calculated by the client as follows:
409 I, P = <read from user>
410 N, g, s, B = <read from server>
413 u = SHA1(PAD(A) | PAD(B))
415 x = SHA1(s | SHA1(I | ":" | P))
416 <premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
418 The pre-master secret is calculated by the server as follows:
420 N, g, s, v = <read from password file>
424 A = <read from client>
425 u = SHA1(PAD(A) | PAD(B))
426 <premaster secret> = (A * v^u) ^ b % N
428 The finished messages perform the same function as the client and
429 server evidence messages (M1 and M2) specified in [SRP-RFC]. If
430 either the client or the server calculate an incorrect premaster
431 secret, the finished messages will fail to decrypt properly, and the
432 other party will return a "bad_record_mac" alert.
434 If a client application receives a "bad_record_mac" alert when
435 performing an SRP handshake, it should inform the user that the
436 entered user name and password are incorrect.
438 2.7. Cipher Suite Definitions
440 The following cipher suites are added by this draft. The usage of
441 AES ciphersuites is as defined in [AESCIPH].
447 Taylor, et al. Expires December 15, 2007 [Page 8]
449 Internet-Draft Using SRP for TLS Authentication June 2007
452 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0xTBD2 };
454 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0xTBD3
457 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0xC0,0xTBD4
460 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0xC0,0xTBD5 };
462 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0xC0,0xTBD6
465 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0xC0,0xTBD7
468 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0xC0,0xTBD8 };
470 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0xC0,0xTBD9
473 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0xC0,0xTBD10
476 Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
477 require the server to send a certificate message containing a
478 certificate with the specified type of public key, and to sign the
479 server key exchange message using a matching private key.
481 Cipher suites that do not include a digital signature algorithm
482 identifier assume the server is authenticated by its possesion of the
485 Implementations conforming to this specification MUST implement the
486 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the
487 TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
488 ciphersuites, and MAY implement the remaining ciphersuites.
490 2.8. New Message Structures
492 This section shows the structure of the messages passed during a
493 handshake that uses SRP for authentication. The representation
494 language used is the same as that used in [TLS].
498 A new extension "srp" with value TBD1, has been added to the
499 enumerated ExtensionType defined in [TLSEXT]. This value MUST be
503 Taylor, et al. Expires December 15, 2007 [Page 9]
505 Internet-Draft Using SRP for TLS Authentication June 2007
508 used as the extension number for the SRP extension.
510 The "extension_data" field of the SRP extension SHALL contain:
512 opaque srp_I<1..2^8-1>;
514 where srp_I is the user name, encoded per Section 2.3.
516 2.8.2. Server Key Exchange
518 A new value, "srp", has been added to the enumerated
519 KeyExchangeAlgorithm originally defined in [TLS].
521 When the value of KeyExchangeAlgorithm is set to "srp", the server's
522 SRP parameters are sent in the server key exchange message, encoded
523 in a ServerSRPParams structure.
525 If a certificate is sent to the client the server key exchange
526 message must be signed.
528 enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
531 select (KeyExchangeAlgorithm) {
533 ServerDHParams params;
534 Signature signed_params;
536 ServerRSAParams params;
537 Signature signed_params;
538 case srp: /* new entry */
539 ServerSRPParams params;
540 Signature signed_params;
545 opaque srp_N<1..2^16-1>;
546 opaque srp_g<1..2^16-1>;
547 opaque srp_s<1..2^8-1>;
548 opaque srp_B<1..2^16-1>;
549 } ServerSRPParams; /* SRP parameters */
551 2.8.3. Client Key Exchange
553 When the value of KeyExchangeAlgorithm is set to "srp", the client's
554 public value (A) is sent in the client key exchange message, encoded
555 in a ClientSRPPublic structure.
559 Taylor, et al. Expires December 15, 2007 [Page 10]
561 Internet-Draft Using SRP for TLS Authentication June 2007
565 select (KeyExchangeAlgorithm) {
566 case rsa: EncryptedPreMasterSecret;
567 case diffie_hellman: ClientDiffieHellmanPublic;
568 case srp: ClientSRPPublic; /* new entry */
573 opaque srp_A<1..2^16-1>;
578 This document introduces four new uses of alerts:
580 o "unknown_psk_identity" (115) - this alert MAY be sent by a server
581 that would like to select an offered SRP ciphersuite, if the SRP
582 extension is absent from the client's hello message. This alert
583 is always fatal. See Section 2.5.1.2 for details.
585 o "unknown_psk_identity" (115) - this alert MAY be sent by a server
586 that receives an unknown user name. This alert is always fatal.
587 See Section 2.5.1.3 for details.
589 o "insufficient_security" (71) - this alert MUST be sent by a client
590 that receives unknown or untrusted (N, g) values. This alert is
591 always fatal. See Section 2.5.3 for details.
593 o "illegal_parameter" (47) - this alert MUST be sent by a client or
594 server that receives a key exchange message with A % N = 0 or B %
595 N = 0. This alert is always fatal. See Section 2.5.3 and
596 Section 2.5.4 and for details.
598 The "insufficient_security" and "illegal_parameter" alerts are
599 defined in [TLS]. The "unknown_psk_identity" alert is defined in
615 Taylor, et al. Expires December 15, 2007 [Page 11]
617 Internet-Draft Using SRP for TLS Authentication June 2007
620 3. Security Considerations
622 3.1. General Considerations for Implementors
624 The checks described in Section 2.5.3 and Section 2.5.4 on the
625 received values for A and B are CRUCIAL for security and MUST be
628 The private values a and b SHOULD be at least 256 bit random numbers,
629 to give approximately 128 bits of security against certain methods of
630 calculating discrete logarithms. See [TLS] section D.1 for advice on
631 choosing cryptographically secure random numbers.
633 3.2. Accepting Group Parameters
635 An attacker who could calculate discrete logarithms % N could
636 compromise user passwords, and could also compromise the the
637 confidentiality and integrity of TLS sessions. Clients MUST ensure
638 that the received parameter N is large enough to make calculating
639 discrete logarithms computationally infeasible.
641 An attacker may try to send a prime value N which is large enough to
642 be secure, but which has a special form for which the attacker can
643 more easily compute discrete logarithms (e.g., using the algorithm
644 discussed in [TRAPDOOR]). If the client executes the protocol using
645 such a prime, the client's password could be compromised. Because of
646 the difficulty of checking for such primes in real-time, clients
647 SHOULD only accept group parameters that come from a trusted source,
648 such as those listed in Appendix A, or parameters configured locally
649 by a trusted administrator.
651 3.3. Protocol Characteristics
653 If an attacker learns a user's SRP verifier (e.g., by gaining access
654 to a server's password file), the attacker can masquerade as the real
655 server to that user, and can also attempt a dictionary attack to
656 recover that user's password.
658 An attacker could repeatedly contact an SRP server and try to guess a
659 legitimate user's password. Servers SHOULD take steps to prevent
660 this, such as limiting the rate of authentication attempts from a
661 particular IP address, or against a particular user name.
663 The client's user name is sent in the clear in the Client Hello
664 message. To avoid sending the user name in the clear, the client
665 could first open a conventional anonymous or server-authenticated
666 connection, then renegotiate an SRP-authenticated connection with the
667 handshake protected by the first connection.
671 Taylor, et al. Expires December 15, 2007 [Page 12]
673 Internet-Draft Using SRP for TLS Authentication June 2007
676 If the client receives an "unknown_psk_identity" alert in response to
677 a client hello, this alert may have been inserted by an attacker.
678 The client should be careful about making any decisions, or forming
679 any conclusions, based on receiving this alert.
681 It is possible to choose a (user name, password) pair such that the
682 resulting verifier will also match other, related, (user name,
683 password) pairs. Thus, anyone using verifiers should be careful not
684 to assume that only a single (user name, password) pair matches the
687 3.4. Hash Function Considerations
689 This protocol uses SHA-1 to derive several values:
691 o u prevents an attacker who learns a user's verifier from being
692 able to authenticate as that user (see [SRP-6]).
694 o k prevents an attacker who can select group parameters from being
695 able to launch a 2-for-1 guessing attack (see [SRP-6]).
697 o x contains the user's password mixed with a salt.
699 Cryptanalytic attacks against SHA-1 which only affect its collision-
700 resistance do not compromise these uses. If attacks against SHA-1
701 are discovered which do compromise these uses, new ciphersuites
702 should be specified to use a different hash algorithm.
704 In this situation, clients could send a Client Hello message
705 containing new and/or old SRP ciphersuites along with a single SRP
706 extension. The server could then select the appropriate ciphersuite
707 based on the type of verifier it has stored for this user.
727 Taylor, et al. Expires December 15, 2007 [Page 13]
729 Internet-Draft Using SRP for TLS Authentication June 2007
732 4. IANA Considerations
734 This document defines a new TLS extension "srp" (value TBD1), whose
735 value is to be assigned from the TLS ExtensionType Registry defined
738 This document defines nine new ciphersuites, whose values are to be
739 assigned from the TLS Cipher Suite registry defined in [TLS].
741 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0xTBD2 };
743 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0xC0,0xTBD3
746 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0xC0,0xTBD4
749 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0xC0,0xTBD5 };
751 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0xC0,0xTBD6
754 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0xC0,0xTBD7
757 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0xC0,0xTBD8 };
759 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0xC0,0xTBD9
762 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0xC0,0xTBD10
783 Taylor, et al. Expires December 15, 2007 [Page 14]
785 Internet-Draft Using SRP for TLS Authentication June 2007
790 5.1. Normative References
792 [REQ] Bradner, S., "Key words for use in RFCs to Indicate
793 Requirement Levels", BCP 14, RFC 2119, March 1997.
795 [TLS] Dierks, T. and E. Rescorla, "The TLS Protocol version
796 1.1", RFC 4346, April 2006.
798 [TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
799 and T. Wright, "Transport Layer Security (TLS)
800 Extensions", RFC 4366, April 2006.
803 Hoffman, P. and M. Blanchet, "Preparation of
804 Internationalized Strings ("stringprep")", RFC 3454,
808 Zeilenga, K., "SASLprep: Stringprep profile for user names
809 and passwords", RFC 4013, February 2005.
811 [SRP-RFC] Wu, T., "The SRP Authentication and Key Exchange System",
812 RFC 2945, September 2000.
814 [SHA1] "Secure Hash Standard (SHS)", FIPS 180-2, August 2002.
816 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
817 Hashing for Message Authentication", RFC 2104,
820 [AESCIPH] Chown, P., "Advanced Encryption Standard (AES)
821 Ciphersuites for Transport Layer Security (TLS)",
824 [PSK] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
825 for Transport Layer Security (TLS)", RFC 4279,
828 [MODP] Kivinen, T. and M. Kojo, "More Modular Exponentiation
829 (MODP) Diffie-Hellman groups for Internet Key Exchange
830 (IKE)", RFC 3526, May 2003.
832 5.2. Informative References
834 [IMAP] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
839 Taylor, et al. Expires December 15, 2007 [Page 15]
841 Internet-Draft Using SRP for TLS Authentication June 2007
844 [SRP-6] Wu, T., "SRP-6: Improvements and Refinements to the Secure
845 Remote Password Protocol", Submission to IEEE P1363.2
846 working group, October 2002,
847 <http://grouper.ieee.org/groups/1363/>.
849 [SRP] Wu, T., "The Secure Remote Password Protocol", Proceedings
850 of the 1998 Internet Society Network and Distributed
851 System Security Symposium pp. 97-111, March 1998.
854 Gordon, D., "Designing and Detecting Trapdoors for
855 Discrete Log Cryptosystems", Springer-Verlag Advances in
856 Cryptology - Crypto '92, pp. 66-75, 1993.
895 Taylor, et al. Expires December 15, 2007 [Page 16]
897 Internet-Draft Using SRP for TLS Authentication June 2007
900 Appendix A. SRP Group Parameters
902 The 1024, 1536, and 2048-bit groups are taken from software developed
903 by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
904 subsequently proven to be prime. The larger primes are taken from
905 [MODP], but generators have been calculated that are primitive roots
906 of N, unlike the generators in [MODP].
908 The 1024-bit and 1536-bit groups MUST be supported.
912 The hexadecimal value for the prime is:
914 EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
915 9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
916 8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
917 7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
918 FD5138FE 8376435B 9FC61D2F C0EB06E3
926 The hexadecimal value for the prime is:
928 9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
929 4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
930 80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
931 E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
932 6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
933 F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
934 8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
942 The hexadecimal value for the prime is:
944 AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
945 3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
946 CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
947 D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
951 Taylor, et al. Expires December 15, 2007 [Page 17]
953 Internet-Draft Using SRP for TLS Authentication June 2007
956 7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
957 436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
958 5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
959 03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
960 94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
969 This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
972 Its hexadecimal value is:
974 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
975 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
976 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
977 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
978 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
979 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
980 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
981 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
982 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
983 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
984 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
985 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
986 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
987 E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
995 This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
998 Its hexadecimal value is:
1000 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
1001 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
1002 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
1003 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
1007 Taylor, et al. Expires December 15, 2007 [Page 18]
1009 Internet-Draft Using SRP for TLS Authentication June 2007
1012 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
1013 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
1014 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
1015 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
1016 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
1017 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
1018 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1019 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
1020 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
1021 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
1022 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
1023 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
1024 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
1025 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
1029 The generator is: 5.
1034 This prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] +
1037 Its hexadecimal value is:
1039 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
1040 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
1041 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
1042 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
1043 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
1044 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
1045 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
1046 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
1047 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
1048 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
1049 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1050 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
1051 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
1052 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
1053 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
1054 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
1055 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
1056 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
1057 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
1058 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
1059 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
1063 Taylor, et al. Expires December 15, 2007 [Page 19]
1065 Internet-Draft Using SRP for TLS Authentication June 2007
1068 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
1069 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
1070 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
1071 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
1072 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
1073 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
1074 6DCC4024 FFFFFFFF FFFFFFFF
1077 The generator is: 5.
1082 This prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] +
1085 Its hexadecimal value is:
1087 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
1088 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
1089 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
1090 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
1091 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
1092 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
1093 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
1094 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
1095 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
1096 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
1097 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
1098 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
1099 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
1100 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
1101 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
1102 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
1103 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
1104 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
1105 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
1106 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
1107 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
1108 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
1109 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
1110 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
1111 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
1112 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
1113 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
1114 6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
1115 3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
1119 Taylor, et al. Expires December 15, 2007 [Page 20]
1121 Internet-Draft Using SRP for TLS Authentication June 2007
1124 5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
1125 22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
1126 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
1127 6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
1128 0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
1129 359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
1130 FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
1131 60C980DD 98EDD3DF FFFFFFFF FFFFFFFF
1134 The generator is: 19 (decimal).
1175 Taylor, et al. Expires December 15, 2007 [Page 21]
1177 Internet-Draft Using SRP for TLS Authentication June 2007
1180 Appendix B. SRP Test Vectors
1182 The following test vectors demonstrate calculation of the verifier
1183 and premaster secret.
1189 s = BEB25379 D1A8581E B5A72767 3A2441EE
1191 N, g = <1024-bit parameters from Appendix A>
1193 k = 7556AA04 5AEF2CDD 07ABAF0F 665C3E81 8913186F
1195 x = 94B7555A ABE9127C C58CCF49 93DB6CF8 4D16C124
1199 7E273DE8 696FFC4F 4E337D05 B4B375BE B0DDE156 9E8FA00A 9886D812
1200 9BADA1F1 822223CA 1A605B53 0E379BA4 729FDC59 F105B478 7E5186F5
1201 C671085A 1447B52A 48CF1970 B4FB6F84 00BBF4CE BFBB1681 52E08AB5
1202 EA53D15C 1AFF87B2 B9DA6E04 E058AD51 CC72BFC9 033B564E 26480D78
1203 E955A5E2 9E7AB245 DB2BE315 E2099AFB
1207 60975527 035CF2AD 1989806F 0407210B C81EDC04 E2762A56 AFD529DD
1212 E487CB59 D31AC550 471E81F0 0F6928E0 1DDA08E9 74A004F4 9E61F5D1
1217 61D5E490 F6F1B795 47B0704C 436F523D D0E560F0 C64115BB 72557EC4
1218 4352E890 3211C046 92272D8B 2D1A5358 A2CF1B6E 0BFCF99F 921530EC
1219 8E393561 79EAE45E 42BA92AE ACED8251 71E1E8B9 AF6D9C03 E1327F44
1220 BE087EF0 6530E69F 66615261 EEF54073 CA11CF58 58F0EDFD FE15EFEA
1221 B349EF5D 76988A36 72FAC47B 0769447B
1225 BD0C6151 2C692C0C B6D041FA 01BB152D 4916A1E7 7AF46AE1 05393011
1226 BAF38964 DC46A067 0DD125B9 5A981652 236F99D9 B681CBF8 7837EC99
1227 6C6DA044 53728610 D0C6DDB5 8B318885 D7D82C7F 8DEB75CE 7BD4FBAA
1231 Taylor, et al. Expires December 15, 2007 [Page 22]
1233 Internet-Draft Using SRP for TLS Authentication June 2007
1236 37089E6F 9C6059F3 88838E7A 00030B33 1EB76840 910440B1 B27AAEAE
1237 EB4012B7 D7665238 A8E3FB00 4B117B58
1241 CE38B959 3487DA98 554ED47D 70A7AE5F 462EF019
1243 <premaster secret> =
1245 B0DC82BA BCF30674 AE450C02 87745E79 90A3381F 63B387AA F271A10D
1246 233861E3 59B48220 F7C4693C 9AE12B0A 6F67809F 0876E2D0 13800D6C
1247 41BB59B6 D5979B5C 00A172B4 A2A5903A 0BDCAF8A 709585EB 2AFAFA8F
1248 3499B200 210DCC1F 10EB3394 3CD67FC8 8A2F39A4 BE5BEC4E C0A3212D
1249 C346D7E4 74B29EDE 8A469FFE CA686E5A
1287 Taylor, et al. Expires December 15, 2007 [Page 23]
1289 Internet-Draft Using SRP for TLS Authentication June 2007
1292 Appendix C. Acknowledgements
1294 Thanks to all on the IETF TLS mailing list for ideas and analysis.
1343 Taylor, et al. Expires December 15, 2007 [Page 24]
1345 Internet-Draft Using SRP for TLS Authentication June 2007
1353 Email: dtaylor@gnutls.org
1359 Email: tjw@cs.stanford.edu
1362 Nikos Mavrogiannopoulos
1365 Email: nmav@gnutls.org
1366 URI: http://www.gnutls.org/
1372 Email: trevp@trevp.net
1373 URI: http://trevp.net/
1399 Taylor, et al. Expires December 15, 2007 [Page 25]
1401 Internet-Draft Using SRP for TLS Authentication June 2007
1404 Full Copyright Statement
1406 Copyright (C) The IETF Trust (2007).
1408 This document is subject to the rights, licenses and restrictions
1409 contained in BCP 78, and except as set forth therein, the authors
1410 retain all their rights.
1412 This document and the information contained herein are provided on an
1413 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
1414 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
1415 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
1416 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
1417 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
1418 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1421 Intellectual Property
1423 The IETF takes no position regarding the validity or scope of any
1424 Intellectual Property Rights or other rights that might be claimed to
1425 pertain to the implementation or use of the technology described in
1426 this document or the extent to which any license under such rights
1427 might or might not be available; nor does it represent that it has
1428 made any independent effort to identify any such rights. Information
1429 on the procedures with respect to rights in RFC documents can be
1430 found in BCP 78 and BCP 79.
1432 Copies of IPR disclosures made to the IETF Secretariat and any
1433 assurances of licenses to be made available, or the result of an
1434 attempt made to obtain a general license or permission for the use of
1435 such proprietary rights by implementers or users of this
1436 specification can be obtained from the IETF on-line IPR repository at
1437 http://www.ietf.org/ipr.
1439 The IETF invites any interested party to bring to its attention any
1440 copyrights, patents or patent applications, or other proprietary
1441 rights that may cover technology that may be required to implement
1442 this standard. Please address the information to the IETF at
1448 Funding for the RFC Editor function is provided by the IETF
1449 Administrative Support Activity (IASA).
1455 Taylor, et al. Expires December 15, 2007 [Page 26]