4 TLS Working Group D. Taylor
5 Internet-Draft Forge Research Pty Ltd
6 Expires: December 16, 2003 T. Wu
13 Using SRP for TLS Authentication
18 This document is an Internet-Draft and is in full conformance with
19 all provisions of Section 10 of RFC2026.
21 Internet-Drafts are working documents of the Internet Engineering
22 Task Force (IETF), its areas, and its working groups. Note that other
23 groups may also distribute working documents as Internet-Drafts.
25 Internet-Drafts are draft documents valid for a maximum of six months
26 and may be updated, replaced, or obsoleted by other documents at any
27 time. It is inappropriate to use Internet-Drafts as reference
28 material or to cite them other than as "work in progress."
30 The list of current Internet-Drafts can be accessed at http://
31 www.ietf.org/ietf/1id-abstracts.txt.
33 The list of Internet-Draft Shadow Directories can be accessed at
34 http://www.ietf.org/shadow.html.
36 This Internet-Draft will expire on December 16, 2003.
40 Copyright (C) The Internet Society (2003). All Rights Reserved.
44 This memo presents a technique for using the SRP [2] (Secure Remote
45 Password) protocol as an authentication method for the TLS
46 [1](Transport Layer Security) protocol.
56 Taylor, et al. Expires December 16, 2003 [Page 1]
58 Internet-Draft Using SRP for TLS Authentication June 2003
63 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
64 2. SRP Authentication in TLS . . . . . . . . . . . . . . . . . 4
65 2.1 Modifications to the TLS Handshake Sequence . . . . . . . . 4
66 2.1.1 Message Sequence . . . . . . . . . . . . . . . . . . . . . . 4
67 2.1.2 Session Re-use . . . . . . . . . . . . . . . . . . . . . . . 4
68 2.2 Text Preparation . . . . . . . . . . . . . . . . . . . . . . 5
69 2.3 SRP Verifier Creation . . . . . . . . . . . . . . . . . . . 5
70 2.4 Changes to the Handshake Message Contents . . . . . . . . . 5
71 2.4.1 Client hello . . . . . . . . . . . . . . . . . . . . . . . . 5
72 2.4.2 Server certificate . . . . . . . . . . . . . . . . . . . . . 6
73 2.4.3 Server key exchange . . . . . . . . . . . . . . . . . . . . 6
74 2.4.4 Client key exchange . . . . . . . . . . . . . . . . . . . . 7
75 2.5 Calculating the Pre-master Secret . . . . . . . . . . . . . 7
76 2.6 Cipher Suite Definitions . . . . . . . . . . . . . . . . . . 7
77 2.7 New Message Structures . . . . . . . . . . . . . . . . . . . 8
78 2.7.1 ExtensionType . . . . . . . . . . . . . . . . . . . . . . . 8
79 2.7.2 Client Hello . . . . . . . . . . . . . . . . . . . . . . . . 8
80 2.7.3 Server Key Exchange . . . . . . . . . . . . . . . . . . . . 8
81 2.7.4 Client Key Exchange . . . . . . . . . . . . . . . . . . . . 9
82 2.8 Error Alerts . . . . . . . . . . . . . . . . . . . . . . . . 10
83 3. Security Considerations . . . . . . . . . . . . . . . . . . 11
84 References . . . . . . . . . . . . . . . . . . . . . . . . . 12
85 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 13
86 A. SRP Group Parameters . . . . . . . . . . . . . . . . . . . . 14
87 B. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 18
88 Intellectual Property and Copyright Statements . . . . . . . 19
112 Taylor, et al. Expires December 16, 2003 [Page 2]
114 Internet-Draft Using SRP for TLS Authentication June 2003
119 At the time of writing TLS uses public key certificates, or Kerberos,
122 These authentication methods do not seem well suited to the
123 applications now being adapted to use TLS (IMAP [4], FTP [8], or
124 TELNET [9], for example). Given that these protocols (and others like
125 them) are designed to use the user name and password method of
126 authentication, being able to safely use user names and passwords to
127 authenticate the TLS connection provides a much easier route to
128 additional security than implementing a public key infrastructure in
131 SRP is an authentication method that allows the use of user names and
132 passwords over unencrypted channels without revealing the password to
133 an eavesdropper. SRP also supplies a shared secret at the end of the
134 authentication sequence that can be used to generate encryption keys.
136 This document describes the use of the SRP authentication method for
139 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
140 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
141 document are to be interpreted as described in RFC 2119.
168 Taylor, et al. Expires December 16, 2003 [Page 3]
170 Internet-Draft Using SRP for TLS Authentication June 2003
173 2. SRP Authentication in TLS
175 2.1 Modifications to the TLS Handshake Sequence
177 The advent of SRP-6 [3] allows the SRP protocol to be implemented
178 using the standard sequence of handshake messages defined in [1].
180 The parameters to various messages are given in the following
183 2.1.1 Message Sequence
185 Handshake Message Flow for SRP Authentication
189 Client Hello (I) ------------------------> |
190 | <---------------------------- Server Hello
191 | <---------------------------- Certificate*
192 | <---------------------------- Server Key Exchange (N, g, s, B)
193 | <---------------------------- Server Hello Done
194 Client Key Exchange (A) -----------------> |
195 [Change cipher spec] |
196 Finished --------------------------------> |
197 | [Change cipher spec]
198 | <---------------------------- Finished
200 Application Data <--------------> Application Data
202 * Indicates optional or situation-dependent messages that are not
207 The identifiers given after each message name refer to the SRP
208 variables included in that message. The variables I, N, g, s, A, and
209 B are defined in [3].
211 An extended client hello message, as defined in [10], is used to send
212 the client identifier (the user name).
216 The short handshake mechanism for re-using sessions for new
217 connections, and renegotiating keys for existing connections will
218 still work with the SRP authentication mechanism and handshake.
220 When a client attemps to re-use a session that uses SRP
224 Taylor, et al. Expires December 16, 2003 [Page 4]
226 Internet-Draft Using SRP for TLS Authentication June 2003
229 authentication, it MUST include the SRP extension carrying the user
230 name (I) in the client hello message, in case the server cannot or
231 will not allow re-use of the session, meaning a full handshake
232 sequence is required.
234 If the server does agree to re-use an existing session the server
235 MUST ignore the information in the SRP extension of the client hello
236 message, except for its inclusion in the finished message hashes.
237 This is to ensure attackers cannot replace the authenticated identity
238 without supplying the proper authentication information.
242 The user name and password strings shall be UTF-8 encoded Unicode,
243 prepared using the "SASLprep" [7] profile of "stringprep" [6].
245 2.3 SRP Verifier Creation
247 The verifier is created by applying the SRP-SHA1 mechanism as
248 described in RFC 2945 [2] to the user name and password.
250 2.4 Changes to the Handshake Message Contents
252 This section describes the changes to the TLS handshake message
253 contents when SRP is being used for authentication. The definitions
254 of the new message contents and the on-the-wire changes are given in
259 The user name is appended to the standard client hello message using
260 the hello message extension mechanism defined in [10].
262 The client may offer SRP ciphersuites in the hello message but omit
263 the SRP extension. If the server would like to select an SRP
264 ciphersuite in this case, the server will return a
265 missing_srp_username alert (see Section 2.8) immediately after
266 processing the client hello message. This alert signals the client
267 to resend the hello message, this time with the SRP extension.
268 Through this idiom, the client can advertise that it supports SRP,
269 but not have to prompt the user for his user name and password, nor
270 expose the user name in the clear, unless necessary.
272 If the server doesn't have a verifier for the given user name, the
273 server MAY abort the handshake with an unknown_srp_username alert
274 (see Section 2.8). Alternatively, if the server wishes to hide the
275 fact that this user name doesn't have a verifier, the server MAY
276 simulate the protocol as if a verifier existed, but then reject the
280 Taylor, et al. Expires December 16, 2003 [Page 5]
282 Internet-Draft Using SRP for TLS Authentication June 2003
285 client's finished message as if the password was incorrect.
287 To simulate the existence of an entry for each user name, the server
288 must consistently return the same salt (s) and group (g, N) values
289 for the same user name. For example, the server could store a secret
290 "seed key" and then use hmac-sha1(seed_key, "salt" || user_name) to
291 generate the salts. For B, the server can return a random value
292 between 2 and N-2 inclusive. However, the server should take care to
293 simulate computation delays. One way to do this is to generate a
294 fake verifier using the "seed key" approach, and then proceed with
295 the protocol as usual.
297 2.4.2 Server certificate
299 The server MUST send a certificate if it agrees to an SRP cipher
300 suite that requires the server to provide additional authentication
301 in the form of a digital signature. See Section 2.6 for details of
302 which ciphersuites defined in this document require a server
303 certificate to be sent.
305 Because the server's certificate is only used for generating a
306 digital signature in SRP cipher suites, the certificate sent MUST
307 contain a public key that can be used for verifying digital
310 2.4.3 Server key exchange
312 The server key exchange message contains the prime (N), the generator
313 (g), and the salt value (s) read from the SRP password file based on
314 the value of (I) received in the client hello extension. The server
315 key exchange message also contains the server's public value (B).
317 If the server has sent a certificate message, the server key exchange
318 message MUST be signed.
320 The group parameters (g, N) sent in this message MUST have N as a
321 safe prime (a prime of the form N=2q+1, where q is also prime), and g
322 as a generator % N. The SRP group parameters in Appendix A are
323 proven to have these properties, so the client SHOULD accept any
324 parameters from this Appendix which have large enough moduli to meet
325 his security requirements. The client MAY accept other group
326 parameters from the server, either by prior arrangement, or by
327 checking the parameters himself.
329 To check that N is a safe prime, the client should use some method
330 such as performing 64 iterations of the Miller-Rabin test with random
331 bases (selected from 2 to N-2) on both N and q (by performing 64
332 iterations, the probability of a false positive is no more than
336 Taylor, et al. Expires December 16, 2003 [Page 6]
338 Internet-Draft Using SRP for TLS Authentication June 2003
341 2^-128). To check that g is a generator % N, the client can check
342 that g^q equals -1 % N. Performing these checks may be
343 time-consuming: after checking new parameters, the client may want to
344 add them to a known-good list.
346 Group parameters that are not accepted via one of the above methods
347 MUST be rejected with an illegal_parameter alert.
349 The client MUST abort the handshake with an illegal_parameter alert
350 if B % N is equal to zero.
352 2.4.4 Client key exchange
354 The client key exchange message carries the client's public value
357 The server MUST abort the handshake with an illegal_parameter alert
358 if A % N is equal to zero, 1, or -1.
360 2.5 Calculating the Pre-master Secret
362 The shared secret resulting from the SRP calculations (S) (defined in
363 [2]) is used as the pre-master secret.
365 The finished messages perform the same function as the client and
366 server evidence messages (M1 and M2) specified in [2]. If either the
367 client or the server calculate an incorrect value, the finished
368 messages will not be understood, and the connection will be dropped
371 2.6 Cipher Suite Definitions
373 The following cipher suites are added by this draft. The usage of AES
374 ciphersuites is as defined in [5].
376 CipherSuite TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x50 };
378 CipherSuite TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x51 };
380 CipherSuite TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x52 };
382 CipherSuite TLS_SRP_SHA_WITH_AES_128_CBC_SHA = { 0x00,0x53 };
384 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA = { 0x00,0x54 };
386 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA = { 0x00,0x55 };
388 CipherSuite TLS_SRP_SHA_WITH_AES_256_CBC_SHA = { 0x00,0x56 };
392 Taylor, et al. Expires December 16, 2003 [Page 7]
394 Internet-Draft Using SRP for TLS Authentication June 2003
397 CipherSuite TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA = { 0x00,0x57 };
399 CipherSuite TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA = { 0x00,0x58 };
401 Cipher suites that do not include a digital signature algorithm
402 identifier assume the server is authenticated by its possesion of the
405 Cipher suites that begin with TLS_SRP_SHA_RSA or TLS_SRP_SHA_DSS
406 require the server to send a certificate message containing a
407 certificate with the specified type of public key, and to sign the
408 server key exchange message using a matching private key.
410 Implementations conforming to this specification MUST implement the
411 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA ciphersuite, SHOULD implement the
412 TLS_SRP_SHA_WITH_AES_128_CBC_SHA and TLS_SRP_SHA_WITH_AES_256_CBC_SHA
413 ciphersuites, and MAY implement the remaining ciphersuites.
415 2.7 New Message Structures
417 This section shows the structure of the messages passed during a
418 handshake that uses SRP for authentication. The representation
419 language used is the same as that used in [1].
423 A new value, "srp(6)", has been added to the enumerated
424 ExtensionType, defined in [10]. This value MUST be used as the
425 extension number for the SRP extension.
429 The "extension_data" field of the srp extension SHALL contain: opaque
430 srp_I<1..2^8-1> where srp_I is the user name.
432 2.7.3 Server Key Exchange
434 When the value of KeyExchangeAlgorithm is set to "srp", the server's
435 SRP parameters are sent in the server key exchange message, encoded
436 in a ServerSRPParams structure.
438 If a certificate is sent to the client the server key exchange
439 message must be signed. The following table gives the
440 SignatureAlgorithm value to be used for each ciphersuite.
442 Ciphersuite SignatureAlgorithm
444 TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA anonymous
448 Taylor, et al. Expires December 16, 2003 [Page 8]
450 Internet-Draft Using SRP for TLS Authentication June 2003
453 TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA rsa
455 TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA dsa
457 TLS_SRP_SHA_WITH_AES_128_CBC_SHA anonymous
459 TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA rsa
461 TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA dsa
463 TLS_SRP_SHA_WITH_AES_256_CBC_SHA anonymous
465 TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA rsa
467 TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA dsa
471 select (KeyExchangeAlgorithm) {
473 ServerDHParams params;
474 Signature signed_params;
476 ServerRSAParams params;
477 Signature signed_params;
478 case srp: /* new entry */
479 ServerSRPParams params;
480 Signature signed_params;
485 opaque srp_N<1..2^16-1>;
486 opaque srp_g<1..2^16-1>;
487 opaque srp_s<1..2^8-1>
488 opaque srp_B<1..2^16-1>;
489 } ServerSRPParams; /* SRP parameters */
492 2.7.4 Client Key Exchange
494 When the value of KeyExchangeAlgorithm is set to "srp", the client's
495 public value (A) is sent in the client key exchange message, encoded
496 in an ClientSRPPublic structure.
498 An extra value, srp, has been added to the enumerated
499 KeyExchangeAlgorithm, originally defined in TLS [1].
504 Taylor, et al. Expires December 16, 2003 [Page 9]
506 Internet-Draft Using SRP for TLS Authentication June 2003
510 select (KeyExchangeAlgorithm) {
511 case rsa: EncryptedPreMasterSecret;
512 case diffie_hellman: ClientDiffieHellmanPublic;
513 case srp: ClientSRPPublic; /* new entry */
517 enum { rsa, diffie_hellman, srp } KeyExchangeAlgorithm;
520 opaque srp_A<1..2^16-1>;
526 Two new error alerts are defined:
528 o "unknown_srp_username" (120) - this alert MAY be sent by a server
529 that receives an unknown user name. This message is always fatal.
531 o "missing_srp_username" (121) - this alert MUST be sent by a server
532 which would like to select an offered SRP ciphersuite, if the SRP
533 extension is absent from the client's hello message. This alert
534 may be fatal or a warning. If it is a warning, the server MUST
535 restart its handshake protocol without closing the TLS session,
536 and the client MAY either treat the warning as fatal and close the
537 session, or send the server a new hello message on the same
538 session. By sending a new hello on the same session, the client
539 can use the idiom described in 2.3.1 without terminating a current
540 TLS session which might be protecting the handshake (and thus the
560 Taylor, et al. Expires December 16, 2003 [Page 10]
562 Internet-Draft Using SRP for TLS Authentication June 2003
565 3. Security Considerations
567 If an attacker is able to steal the SRP verifier file, the attacker
568 can masquerade as the real server, and can also use dictionary
569 attacks to recover client passwords. Filesystem based X.509
570 certificate installations are vulnerable to a similar attack unless
571 the server's certificate is issued from a PKI that maintains
572 revocation lists, and the client TLS code can both contact the PKI
573 and make use of the revocation list.
575 The client's user name is sent in the clear in the Client Hello
576 message. To avoid sending the user name in the clear, the client
577 could first open a conventional anonymous, or server-authenticated
578 session, then renegotiate an SRP-authenticated session with the
579 handshake protected by the first session.
581 The checks described in Section 2.4.3 and Section 2.4.4 on the
582 received values for A and B are crucial for security and MUST be
585 The private exponentials (a and b in [2]) SHOULD be at least 256 bit
586 random numbers, to give approximately 128 bits of security against
587 certain methods of calculating discrete logarithms [12]. Increasing
588 the length of these exponentials may increase security, but it also
589 increases the computation cost."
616 Taylor, et al. Expires December 16, 2003 [Page 11]
618 Internet-Draft Using SRP for TLS Authentication June 2003
623 [1] Dierks, T. and C. Allen, "The TLS Protocol", RFC 2246, January
626 [2] Wu, T., "The SRP Authentication and Key Exchange System", RFC
627 2945, September 2000.
629 [3] Wu, T., "SRP-6: Improvements and Refinements to the Secure
630 Remote Password Protocol", October 2002.
632 [4] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
635 [5] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
636 Transport Layer Security (TLS)", RFC 3268, June 2002.
638 [6] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
639 Strings ("stringprep")", RFC 3454, December 2002.
641 [7] Zeilenga, K., "SASLprep: Stringprep profile for user names and
642 passwords", draft-ietf-tn3270e-telnet-tls-06 (work in
643 progress), February 2003.
645 [8] Ford-Hutchinson, P., Carpenter, M., Hudson, T., Murray, E. and
646 V. Wiegand, "Securing FTP with TLS",
647 draft-murray-auth-ftp-ssl-09 (work in progress), April 2002.
649 [9] Boe, M. and J. Altman, "TLS-based Telnet Security",
650 draft-ietf-sasl-saslprep-00 (work in progress), April 2002.
652 [10] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J. and
653 T. Wright, "TLS Extensions", draft-ietf-tls-extensions-06 (work
654 in progress), February 2003.
656 [11] Kivinen, T. and M. Kojo, "More Modular Exponentiation (MODP)
657 Diffie-Hellman groups for Internet Key Exchange (IKE)", RFC
660 [12] van Oorschot, P. and M. Wiener, "On Diffie-Hellman Key
661 Agreement with Short Exponents", 1996.
672 Taylor, et al. Expires December 16, 2003 [Page 12]
674 Internet-Draft Using SRP for TLS Authentication June 2003
680 Forge Research Pty Ltd
682 EMail: DavidTaylor@forge.com.au
683 URI: http://www.forge.com.au/
690 URI: http://www.arcot.com/
693 Nikos Mavroyanopoulos
695 EMail: nmav@gnutls.org
696 URI: http://www.gnutls.org/
701 EMail: trevp@trevp.net
702 URI: http://trevp.net/
728 Taylor, et al. Expires December 16, 2003 [Page 13]
730 Internet-Draft Using SRP for TLS Authentication June 2003
733 Appendix A. SRP Group Parameters
735 The 1024, 1536, and 2048-bit groups are taken from software developed
736 by Tom Wu and Eugene Jhong for the Stanford SRP distribution, and
737 subsequently proven to be prime. The larger primes are taken from
738 [11], but generators have been calculated that are primitive roots of
739 N, unlike the generators in [11].
741 The 1024, 1536, and 2048-bit groups MUST be supported.
745 The hexadecimal value is:
747 EEAF0AB9 ADB38DD6 9C33F80A FA8FC5E8 60726187 75FF3C0B 9EA2314C
748 9C256576 D674DF74 96EA81D3 383B4813 D692C6E0 E0D5D8E2 50B98BE4
749 8E495C1D 6089DAD1 5DC7D7B4 6154D6B6 CE8EF4AD 69B15D49 82559B29
750 7BCF1885 C529F566 660E57EC 68EDBC3C 05726CC0 2FD4CBF4 976EAA9A
751 FD5138FE 8376435B 9FC61D2F C0EB06E3
757 The hexadecimal value is:
759 9DEF3CAF B939277A B1F12A86 17A47BBB DBA51DF4 99AC4C80 BEEEA961
760 4B19CC4D 5F4F5F55 6E27CBDE 51C6A94B E4607A29 1558903B A0D0F843
761 80B655BB 9A22E8DC DF028A7C EC67F0D0 8134B1C8 B9798914 9B609E0B
762 E3BAB63D 47548381 DBC5B1FC 764E3F4B 53DD9DA1 158BFD3E 2B9C8CF5
763 6EDF0195 39349627 DB2FD53D 24B7C486 65772E43 7D6C7F8C E442734A
764 F7CCB7AE 837C264A E3A9BEB8 7F8A2FE9 B8B5292E 5A021FFF 5E91479E
765 8CE7A28C 2442C6F3 15180F93 499A234D CF76E3FE D135F9BB
771 The hexadecimal value is:
773 AC6BDB41 324A9A9B F166DE5E 1389582F AF72B665 1987EE07 FC319294
774 3DB56050 A37329CB B4A099ED 8193E075 7767A13D D52312AB 4B03310D
775 CD7F48A9 DA04FD50 E8083969 EDB767B0 CF609517 9A163AB3 661A05FB
776 D5FAAAE8 2918A996 2F0B93B8 55F97993 EC975EEA A80D740A DBF4FF74
777 7359D041 D5C33EA7 1D281E44 6B14773B CA97B43A 23FB8016 76BD207A
778 436C6481 F1D2B907 8717461A 5B9D32E6 88F87748 544523B5 24B0D57D
779 5EA77A27 75D2ECFA 032CFBDB F52FB378 61602790 04E57AE6 AF874E73
780 03CE5329 9CCC041C 7BC308D8 2A5698F3 A8D0C382 71AE35F8 E9DBFBB6
784 Taylor, et al. Expires December 16, 2003 [Page 14]
786 Internet-Draft Using SRP for TLS Authentication June 2003
789 94B5C803 D89F7AE4 35DE236D 525F5475 9B65E372 FCD68EF2 0FA7111F
796 This prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] +
799 Its hexadecimal value is:
801 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
802 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
803 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
804 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
805 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
806 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
807 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
808 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
809 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
810 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
811 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
812 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
813 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
814 E0FD108E 4B82D120 A93AD2CA FFFFFFFF FFFFFFFF
820 This prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] +
823 Its hexadecimal value is:
825 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
826 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
827 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
828 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
829 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
830 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
831 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
832 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
833 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
834 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
835 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
836 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
840 Taylor, et al. Expires December 16, 2003 [Page 15]
842 Internet-Draft Using SRP for TLS Authentication June 2003
845 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
846 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
847 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
848 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
849 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
850 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
857 This prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] +
860 Its hexadecimal value is:
862 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
863 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
864 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
865 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
866 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
867 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
868 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
869 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
870 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
871 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
872 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
873 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
874 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
875 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
876 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
877 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
878 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
879 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
880 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
881 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
882 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
883 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
884 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
885 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
886 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
887 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
888 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
889 6DCC4024 FFFFFFFF FFFFFFFF
896 Taylor, et al. Expires December 16, 2003 [Page 16]
898 Internet-Draft Using SRP for TLS Authentication June 2003
903 This prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] +
906 Its hexadecimal value is:
908 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
909 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
910 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
911 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
912 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
913 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
914 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B E39E772C
915 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9 DE2BCBF6 95581718
916 3995497C EA956AE5 15D22618 98FA0510 15728E5A 8AAAC42D AD33170D
917 04507A33 A85521AB DF1CBA64 ECFB8504 58DBEF0A 8AEA7157 5D060C7D
918 B3970F85 A6E1E4C7 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226
919 1AD2EE6B F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
920 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31 43DB5BFC
921 E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7 88719A10 BDBA5B26
922 99C32718 6AF4E23C 1A946834 B6150BDA 2583E9CA 2AD44CE8 DBBBC2DB
923 04DE8EF9 2E8EFC14 1FBECAA6 287C5947 4E6BC05D 99B2964F A090C3A2
924 233BA186 515BE7ED 1F612970 CEE2D7AF B81BDD76 2170481C D0069127
925 D5B05AA9 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34028492
926 36C3FAB4 D27C7026 C1D4DCB2 602646DE C9751E76 3DBA37BD F8FF9406
927 AD9E530E E5DB382F 413001AE B06A53ED 9027D831 179727B0 865A8918
928 DA3EDBEB CF9B14ED 44CE6CBA CED4BB1B DB7F1447 E6CC254B 33205151
929 2BD7AF42 6FB8F401 378CD2BF 5983CA01 C64B92EC F032EA15 D1721D03
930 F482D7CE 6E74FEF6 D55E702F 46980C82 B5A84031 900B1C9E 59E7C97F
931 BEC7E8F3 23A97A7E 36CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
932 CC8F6D7E BF48E1D8 14CC5ED2 0F8037E0 A79715EE F29BE328 06A1D58B
933 B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C DA56C9EC 2EF29632
934 387FE8D7 6E3C0468 043E8F66 3F4860EE 12BF2D5B 0B7474D6 E694F91E
935 6DBE1159 74A3926F 12FEE5E4 38777CB6 A932DF8C D8BEC4D0 73B931BA
936 3BC832B6 8D9DD300 741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C
937 5AE4F568 3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
938 22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B 4BCBC886
939 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A 062B3CF5 B3A278A6
940 6D2A13F8 3F44F82D DF310EE0 74AB6A36 4597E899 A0255DC1 64F31CC5
941 0846851D F9AB4819 5DED7EA1 B1D510BD 7EE74D73 FAF36BC3 1ECFA268
942 359046F4 EB879F92 4009438B 481C6CD7 889A002E D5EE382B C9190DA6
943 FC026E47 9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
944 60C980DD 98EDD3DF FFFFFFFF FFFFFFFF
946 The generator is: 19 (decimal).
952 Taylor, et al. Expires December 16, 2003 [Page 17]
954 Internet-Draft Using SRP for TLS Authentication June 2003
957 Appendix B. Acknowledgements
959 Thanks to all on the IETF tls mailing list for ideas and analysis.
1008 Taylor, et al. Expires December 16, 2003 [Page 18]
1010 Internet-Draft Using SRP for TLS Authentication June 2003
1013 Intellectual Property Statement
1015 The IETF takes no position regarding the validity or scope of any
1016 intellectual property or other rights that might be claimed to
1017 pertain to the implementation or use of the technology described in
1018 this document or the extent to which any license under such rights
1019 might or might not be available; neither does it represent that it
1020 has made any effort to identify any such rights. Information on the
1021 IETF's procedures with respect to rights in standards-track and
1022 standards-related documentation can be found in BCP-11. Copies of
1023 claims of rights made available for publication and any assurances of
1024 licenses to be made available, or the result of an attempt made to
1025 obtain a general license or permission for the use of such
1026 proprietary rights by implementors or users of this specification can
1027 be obtained from the IETF Secretariat.
1029 The IETF invites any interested party to bring to its attention any
1030 copyrights, patents or patent applications, or other proprietary
1031 rights which may cover technology that may be required to practice
1032 this standard. Please address the information to the IETF Executive
1036 Full Copyright Statement
1038 Copyright (C) The Internet Society (2003). All Rights Reserved.
1040 This document and translations of it may be copied and furnished to
1041 others, and derivative works that comment on or otherwise explain it
1042 or assist in its implementation may be prepared, copied, published
1043 and distributed, in whole or in part, without restriction of any
1044 kind, provided that the above copyright notice and this paragraph are
1045 included on all such copies and derivative works. However, this
1046 document itself may not be modified in any way, such as by removing
1047 the copyright notice or references to the Internet Society or other
1048 Internet organizations, except as needed for the purpose of
1049 developing Internet standards in which case the procedures for
1050 copyrights defined in the Internet Standards process must be
1051 followed, or as required to translate it into languages other than
1054 The limited permissions granted above are perpetual and will not be
1055 revoked by the Internet Society or its successors or assignees.
1057 This document and the information contained herein is provided on an
1058 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
1059 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
1060 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
1064 Taylor, et al. Expires December 16, 2003 [Page 19]
1066 Internet-Draft Using SRP for TLS Authentication June 2003
1069 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
1070 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
1075 Funding for the RFC Editor function is currently provided by the
1120 Taylor, et al. Expires December 16, 2003 [Page 20]