actually define the function I added in the previous change for backwards API compat.
[google-url.git] / src / url_canon_ip.cc
blobd84ff7da5b53c67a52733d551f5483f3914366b8
1 // Copyright 2009, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "googleurl/src/url_canon_ip.h"
32 #include <stdlib.h>
34 #include "base/basictypes.h"
35 #include "base/logging.h"
36 #include "googleurl/src/url_canon_internal.h"
38 namespace url_canon {
40 namespace {
42 // Converts one of the character types that represent a numerical base to the
43 // corresponding base.
44 int BaseForType(SharedCharTypes type) {
45 switch (type) {
46 case CHAR_HEX:
47 return 16;
48 case CHAR_DEC:
49 return 10;
50 case CHAR_OCT:
51 return 8;
52 default:
53 return 0;
57 template<typename CHAR, typename UCHAR>
58 bool DoFindIPv4Components(const CHAR* spec,
59 const url_parse::Component& host,
60 url_parse::Component components[4]) {
61 int cur_component = 0; // Index of the component we're working on.
62 int cur_component_begin = host.begin; // Start of the current component.
63 int end = host.end();
64 for (int i = host.begin; /* nothing */; i++) {
65 if (i == end || spec[i] == '.') {
66 // Found the end of the current component.
67 int component_len = i - cur_component_begin;
68 components[cur_component] =
69 url_parse::Component(cur_component_begin, component_len);
71 // The next component starts after the dot.
72 cur_component_begin = i + 1;
73 cur_component++;
75 // Don't allow empty components (two dots in a row), except we may
76 // allow an empty component at the end (this would indicate that the
77 // input ends in a dot). We also want to error if the component is
78 // empty and it's the only component (cur_component == 1).
79 if (component_len == 0 && (i != end || cur_component == 1))
80 return false;
82 if (i == end)
83 break; // End of the input.
85 if (cur_component == 4) {
86 // Anything else after the 4th component is an error unless it is a
87 // dot that would otherwise be treated as the end of input.
88 if (spec[i] == '.' && i + 1 == end)
89 break;
90 return false;
92 } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
93 !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
94 // Invalid character for an IPv4 address.
95 return false;
99 // Fill in any unused components.
100 while (cur_component < 4)
101 components[cur_component++] = url_parse::Component();
102 return true;
105 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
107 // Possible return values:
108 // - IPV4 - The number was valid, and did not overflow.
109 // - BROKEN - The input was numeric, but too large for a 32-bit field.
110 // - NEUTRAL - Input was not numeric.
112 // The input is assumed to be ASCII. FindIPv4Components should have stripped
113 // out any input that is greater than 7 bits. The components are assumed
114 // to be non-empty.
115 template<typename CHAR>
116 CanonHostInfo::Family IPv4ComponentToNumber(
117 const CHAR* spec,
118 const url_parse::Component& component,
119 uint32* number) {
120 // Figure out the base
121 SharedCharTypes base;
122 int base_prefix_len = 0; // Size of the prefix for this base.
123 if (spec[component.begin] == '0') {
124 // Either hex or dec, or a standalone zero.
125 if (component.len == 1) {
126 base = CHAR_DEC;
127 } else if (spec[component.begin + 1] == 'X' ||
128 spec[component.begin + 1] == 'x') {
129 base = CHAR_HEX;
130 base_prefix_len = 2;
131 } else {
132 base = CHAR_OCT;
133 base_prefix_len = 1;
135 } else {
136 base = CHAR_DEC;
139 // Extend the prefix to consume all leading zeros.
140 while (base_prefix_len < component.len &&
141 spec[component.begin + base_prefix_len] == '0')
142 base_prefix_len++;
144 // Put the component, minus any base prefix, into a NULL-terminated buffer so
145 // we can call the standard library. Because leading zeros have already been
146 // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
147 // overflow check.
148 const int kMaxComponentLen = 16;
149 char buf[kMaxComponentLen + 1]; // digits + '\0'
150 int dest_i = 0;
151 for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
152 // We know the input is 7-bit, so convert to narrow (if this is the wide
153 // version of the template) by casting.
154 char input = static_cast<char>(spec[i]);
156 // Validate that this character is OK for the given base.
157 if (!IsCharOfType(input, base))
158 return CanonHostInfo::NEUTRAL;
160 // Fill the buffer, if there's space remaining. This check allows us to
161 // verify that all characters are numeric, even those that don't fit.
162 if (dest_i < kMaxComponentLen)
163 buf[dest_i++] = input;
166 buf[dest_i] = '\0';
168 // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
169 // number can overflow a 64-bit number in <= 16 characters).
170 uint64 num = _strtoui64(buf, NULL, BaseForType(base));
172 // Check for 32-bit overflow.
173 if (num > kuint32max)
174 return CanonHostInfo::BROKEN;
176 // No overflow. Success!
177 *number = static_cast<uint32>(num);
178 return CanonHostInfo::IPV4;
181 // Writes the given address (with each character representing one dotted
182 // part of an IPv4 address) to the output, and updating |*out_host| to
183 // identify the added portion.
184 void AppendIPv4Address(const unsigned char address[4],
185 CanonOutput* output,
186 url_parse::Component* out_host) {
187 out_host->begin = output->length();
188 for (int i = 0; i < 4; i++) {
189 char str[16];
190 _itoa_s(address[i], str, 10);
192 for (int ch = 0; str[ch] != 0; ch++)
193 output->push_back(str[ch]);
195 if (i != 3)
196 output->push_back('.');
198 out_host->len = output->length() - out_host->begin;
201 // See declaration of IPv4AddressToNumber for documentation.
202 template<typename CHAR>
203 CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
204 const url_parse::Component& host,
205 unsigned char address[4],
206 int* num_ipv4_components) {
207 // The identified components. Not all may exist.
208 url_parse::Component components[4];
209 if (!FindIPv4Components(spec, host, components))
210 return CanonHostInfo::NEUTRAL;
212 // Convert existing components to digits. Values up to
213 // |existing_components| will be valid.
214 uint32 component_values[4];
215 int existing_components = 0;
216 for (int i = 0; i < 4; i++) {
217 if (components[i].len <= 0)
218 continue;
219 CanonHostInfo::Family family = IPv4ComponentToNumber(
220 spec, components[i], &component_values[existing_components]);
222 // Stop if we hit an invalid non-empty component.
223 if (family != CanonHostInfo::IPV4)
224 return family;
226 existing_components++;
229 // Use that sequence of numbers to fill out the 4-component IP address.
231 // First, process all components but the last, while making sure each fits
232 // within an 8-bit field.
233 for (int i = 0; i < existing_components - 1; i++) {
234 if (component_values[i] > kuint8max)
235 return CanonHostInfo::BROKEN;
236 address[i] = static_cast<unsigned char>(component_values[i]);
239 // Next, consume the last component to fill in the remaining bytes.
240 uint32 last_value = component_values[existing_components - 1];
241 for (int i = 3; i >= existing_components - 1; i--) {
242 address[i] = static_cast<unsigned char>(last_value);
243 last_value >>= 8;
246 // If the last component has residual bits, report overflow.
247 if (last_value != 0)
248 return CanonHostInfo::BROKEN;
250 // Tell the caller how many components we saw.
251 *num_ipv4_components = existing_components;
253 // Success!
254 return CanonHostInfo::IPV4;
257 // Return true if we've made a final IPV4/BROKEN decision, false if the result
258 // is NEUTRAL, and we could use a second opinion.
259 template<typename CHAR, typename UCHAR>
260 bool DoCanonicalizeIPv4Address(const CHAR* spec,
261 const url_parse::Component& host,
262 CanonOutput* output,
263 CanonHostInfo* host_info) {
264 unsigned char address[4];
265 host_info->family = IPv4AddressToNumber(
266 spec, host, address, &host_info->num_ipv4_components);
268 switch (host_info->family) {
269 case CanonHostInfo::IPV4:
270 // Definitely an IPv4 address.
271 AppendIPv4Address(address, output, &host_info->out_host);
272 return true;
273 case CanonHostInfo::BROKEN:
274 // Definitely broken.
275 return true;
276 default:
277 // Could be IPv6 or a hostname.
278 return false;
282 // Helper class that describes the main components of an IPv6 input string.
283 // See the following examples to understand how it breaks up an input string:
285 // [Example 1]: input = "[::aa:bb]"
286 // ==> num_hex_components = 2
287 // ==> hex_components[0] = Component(3,2) "aa"
288 // ==> hex_components[1] = Component(6,2) "bb"
289 // ==> index_of_contraction = 0
290 // ==> ipv4_component = Component(0, -1)
292 // [Example 2]: input = "[1:2::3:4:5]"
293 // ==> num_hex_components = 5
294 // ==> hex_components[0] = Component(1,1) "1"
295 // ==> hex_components[1] = Component(3,1) "2"
296 // ==> hex_components[2] = Component(6,1) "3"
297 // ==> hex_components[3] = Component(8,1) "4"
298 // ==> hex_components[4] = Component(10,1) "5"
299 // ==> index_of_contraction = 2
300 // ==> ipv4_component = Component(0, -1)
302 // [Example 3]: input = "[::ffff:192.168.0.1]"
303 // ==> num_hex_components = 1
304 // ==> hex_components[0] = Component(3,4) "ffff"
305 // ==> index_of_contraction = 0
306 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
308 // [Example 4]: input = "[1::]"
309 // ==> num_hex_components = 1
310 // ==> hex_components[0] = Component(1,1) "1"
311 // ==> index_of_contraction = 1
312 // ==> ipv4_component = Component(0, -1)
314 // [Example 5]: input = "[::192.168.0.1]"
315 // ==> num_hex_components = 0
316 // ==> index_of_contraction = 0
317 // ==> ipv4_component = Component(8, 11) "192.168.0.1"
319 struct IPv6Parsed {
320 // Zero-out the parse information.
321 void reset() {
322 num_hex_components = 0;
323 index_of_contraction = -1;
324 ipv4_component.reset();
327 // There can be up to 8 hex components (colon separated) in the literal.
328 url_parse::Component hex_components[8];
330 // The count of hex components present. Ranges from [0,8].
331 int num_hex_components;
333 // The index of the hex component that the "::" contraction precedes, or
334 // -1 if there is no contraction.
335 int index_of_contraction;
337 // The range of characters which are an IPv4 literal.
338 url_parse::Component ipv4_component;
341 // Parse the IPv6 input string. If parsing succeeded returns true and fills
342 // |parsed| with the information. If parsing failed (because the input is
343 // invalid) returns false.
344 template<typename CHAR, typename UCHAR>
345 bool DoParseIPv6(const CHAR* spec,
346 const url_parse::Component& host,
347 IPv6Parsed* parsed) {
348 // Zero-out the info.
349 parsed->reset();
351 if (!host.is_nonempty())
352 return false;
354 // The index for start and end of address range (no brackets).
355 int begin = host.begin;
356 int end = host.end();
358 int cur_component_begin = begin; // Start of the current component.
360 // Scan through the input, searching for hex components, "::" contractions,
361 // and IPv4 components.
362 for (int i = begin; /* i <= end */; i++) {
363 bool is_colon = spec[i] == ':';
364 bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
366 // We reached the end of the current component if we encounter a colon
367 // (separator between hex components, or start of a contraction), or end of
368 // input.
369 if (is_colon || i == end) {
370 int component_len = i - cur_component_begin;
372 // A component should not have more than 4 hex digits.
373 if (component_len > 4)
374 return false;
376 // Don't allow empty components.
377 if (component_len == 0) {
378 // The exception is when contractions appear at beginning of the
379 // input or at the end of the input.
380 if (!((is_contraction && i == begin) || (i == end &&
381 parsed->index_of_contraction == parsed->num_hex_components)))
382 return false;
385 // Add the hex component we just found to running list.
386 if (component_len > 0) {
387 // Can't have more than 8 components!
388 if (parsed->num_hex_components >= 8)
389 return false;
391 parsed->hex_components[parsed->num_hex_components++] =
392 url_parse::Component(cur_component_begin, component_len);
396 if (i == end)
397 break; // Reached the end of the input, DONE.
399 // We found a "::" contraction.
400 if (is_contraction) {
401 // There can be at most one contraction in the literal.
402 if (parsed->index_of_contraction != -1)
403 return false;
404 parsed->index_of_contraction = parsed->num_hex_components;
405 ++i; // Consume the colon we peeked.
408 if (is_colon) {
409 // Colons are separators between components, keep track of where the
410 // current component started (after this colon).
411 cur_component_begin = i + 1;
412 } else {
413 if (static_cast<UCHAR>(spec[i]) >= 0x80)
414 return false; // Not ASCII.
416 if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
417 // Regular components are hex numbers. It is also possible for
418 // a component to be an IPv4 address in dotted form.
419 if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
420 // Since IPv4 address can only appear at the end, assume the rest
421 // of the string is an IPv4 address. (We will parse this separately
422 // later).
423 parsed->ipv4_component = url_parse::Component(
424 cur_component_begin, end - cur_component_begin);
425 break;
426 } else {
427 // The character was neither a hex digit, nor an IPv4 character.
428 return false;
434 return true;
437 // Verifies the parsed IPv6 information, checking that the various components
438 // add up to the right number of bits (hex components are 16 bits, while
439 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
440 // 16 or more bits). Returns true if sizes match up, false otherwise. On
441 // success writes the length of the contraction (if any) to
442 // |out_num_bytes_of_contraction|.
443 bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
444 int* out_num_bytes_of_contraction) {
445 // Each group of four hex digits contributes 16 bits.
446 int num_bytes_without_contraction = parsed.num_hex_components * 2;
448 // If an IPv4 address was embedded at the end, it contributes 32 bits.
449 if (parsed.ipv4_component.is_valid())
450 num_bytes_without_contraction += 4;
452 // If there was a "::" contraction, its size is going to be:
453 // MAX([16bits], [128bits] - num_bytes_without_contraction).
454 int num_bytes_of_contraction = 0;
455 if (parsed.index_of_contraction != -1) {
456 num_bytes_of_contraction = 16 - num_bytes_without_contraction;
457 if (num_bytes_of_contraction < 2)
458 num_bytes_of_contraction = 2;
461 // Check that the numbers add up.
462 if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
463 return false;
465 *out_num_bytes_of_contraction = num_bytes_of_contraction;
466 return true;
469 // Converts a hex comonent into a number. This cannot fail since the caller has
470 // already verified that each character in the string was a hex digit, and
471 // that there were no more than 4 characters.
472 template<typename CHAR>
473 uint16 IPv6HexComponentToNumber(const CHAR* spec,
474 const url_parse::Component& component) {
475 DCHECK(component.len <= 4);
477 // Copy the hex string into a C-string.
478 char buf[5];
479 for (int i = 0; i < component.len; ++i)
480 buf[i] = static_cast<char>(spec[component.begin + i]);
481 buf[component.len] = '\0';
483 // Convert it to a number (overflow is not possible, since with 4 hex
484 // characters we can at most have a 16 bit number).
485 return static_cast<uint16>(_strtoui64(buf, NULL, 16));
488 // Converts an IPv6 address to a 128-bit number (network byte order), returning
489 // true on success. False means that the input was not a valid IPv6 address.
490 template<typename CHAR, typename UCHAR>
491 bool DoIPv6AddressToNumber(const CHAR* spec,
492 const url_parse::Component& host,
493 unsigned char address[16]) {
494 // Make sure the component is bounded by '[' and ']'.
495 int end = host.end();
496 if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
497 return false;
499 // Exclude the square brackets.
500 url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
502 // Parse the IPv6 address -- identify where all the colon separated hex
503 // components are, the "::" contraction, and the embedded IPv4 address.
504 IPv6Parsed ipv6_parsed;
505 if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
506 return false;
508 // Do some basic size checks to make sure that the address doesn't
509 // specify more than 128 bits or fewer than 128 bits. This also resolves
510 // how may zero bytes the "::" contraction represents.
511 int num_bytes_of_contraction;
512 if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
513 return false;
515 int cur_index_in_address = 0;
517 // Loop through each hex components, and contraction in order.
518 for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
519 // Append the contraction if it appears before this component.
520 if (i == ipv6_parsed.index_of_contraction) {
521 for (int j = 0; j < num_bytes_of_contraction; ++j)
522 address[cur_index_in_address++] = 0;
524 // Append the hex component's value.
525 if (i != ipv6_parsed.num_hex_components) {
526 // Get the 16-bit value for this hex component.
527 uint16 number = IPv6HexComponentToNumber<CHAR>(
528 spec, ipv6_parsed.hex_components[i]);
529 // Append to |address|, in network byte order.
530 address[cur_index_in_address++] = (number & 0xFF00) >> 8;
531 address[cur_index_in_address++] = (number & 0x00FF);
535 // If there was an IPv4 section, convert it into a 32-bit number and append
536 // it to |address|.
537 if (ipv6_parsed.ipv4_component.is_valid()) {
538 // We only allow the embedded IPv4 syntax to be used for "compat" and
539 // "mapped" formats:
540 // "compat" ==> 0:0:0:0:0:ffff:<IPv4-literal>
541 // "mapped" ==> 0:0:0:0:0:0000:<IPv4-literal>
542 for (int j = 0; j < 10; ++j) {
543 if (address[j] != 0)
544 return false;
546 if (!((address[10] == 0 && address[11] == 0) ||
547 (address[10] == 0xFF && address[11] == 0xFF)))
548 return false;
550 // Append the 32-bit number to |address|.
551 int ignored_num_ipv4_components;
552 if (CanonHostInfo::IPV4 !=
553 IPv4AddressToNumber(spec,
554 ipv6_parsed.ipv4_component,
555 &address[cur_index_in_address],
556 &ignored_num_ipv4_components))
557 return false;
560 return true;
563 // Searches for the longest sequence of zeros in |address|, and writes the
564 // range into |contraction_range|. The run of zeros must be at least 16 bits,
565 // and if there is a tie the first is chosen.
566 void ChooseIPv6ContractionRange(const unsigned char address[16],
567 url_parse::Component* contraction_range) {
568 // The longest run of zeros in |address| seen so far.
569 url_parse::Component max_range;
571 // The current run of zeros in |address| being iterated over.
572 url_parse::Component cur_range;
574 for (int i = 0; i < 16; i += 2) {
575 // Test for 16 bits worth of zero.
576 bool is_zero = (address[i] == 0 && address[i + 1] == 0);
578 if (is_zero) {
579 // Add the zero to the current range (or start a new one).
580 if (!cur_range.is_valid())
581 cur_range = url_parse::Component(i, 0);
582 cur_range.len += 2;
585 if (!is_zero || i == 14) {
586 // Just completed a run of zeros. If the run is greater than 16 bits,
587 // it is a candidate for the contraction.
588 if (cur_range.len > 2 && cur_range.len > max_range.len) {
589 max_range = cur_range;
591 cur_range.reset();
594 *contraction_range = max_range;
597 // Return true if we've made a final IPV6/BROKEN decision, false if the result
598 // is NEUTRAL, and we could use a second opinion.
599 template<typename CHAR, typename UCHAR>
600 bool DoCanonicalizeIPv6Address(const CHAR* spec,
601 const url_parse::Component& host,
602 CanonOutput* output,
603 CanonHostInfo* host_info) {
604 // Turn the IP address into a 128 bit number.
605 unsigned char address[16];
606 if (!IPv6AddressToNumber(spec, host, address)) {
607 // If it's not an IPv6 address, scan for characters that should *only*
608 // exist in an IPv6 address.
609 for (int i = host.begin; i < host.end(); i++) {
610 switch (spec[i]) {
611 case '[':
612 case ']':
613 case ':':
614 host_info->family = CanonHostInfo::BROKEN;
615 return true;
619 // No invalid characters. Could still be IPv4 or a hostname.
620 host_info->family = CanonHostInfo::NEUTRAL;
621 return false;
624 host_info->out_host.begin = output->length();
625 output->push_back('[');
627 // We will now output the address according to the rules in:
628 // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
630 // Start by finding where to place the "::" contraction (if any).
631 url_parse::Component contraction_range;
632 ChooseIPv6ContractionRange(address, &contraction_range);
634 for (int i = 0; i <= 14;) {
635 // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
636 DCHECK(i % 2 == 0);
637 if (i == contraction_range.begin && contraction_range.len > 0) {
638 // Jump over the contraction.
639 if (i == 0)
640 output->push_back(':');
641 output->push_back(':');
642 i = contraction_range.end();
643 } else {
644 // Consume the next 16 bits from |address|.
645 int x = address[i] << 8 | address[i + 1];
647 i += 2;
649 // Stringify the 16 bit number (at most requires 4 hex digits).
650 char str[5];
651 _itoa_s(x, str, 16);
652 for (int ch = 0; str[ch] != 0; ++ch)
653 output->push_back(str[ch]);
655 // Put a colon after each number, except the last.
656 if (i < 16)
657 output->push_back(':');
661 output->push_back(']');
662 host_info->out_host.len = output->length() - host_info->out_host.begin;
664 host_info->family = CanonHostInfo::IPV6;
665 return true;
668 } // namespace
670 bool FindIPv4Components(const char* spec,
671 const url_parse::Component& host,
672 url_parse::Component components[4]) {
673 return DoFindIPv4Components<char, unsigned char>(spec, host, components);
676 bool FindIPv4Components(const char16* spec,
677 const url_parse::Component& host,
678 url_parse::Component components[4]) {
679 return DoFindIPv4Components<char16, char16>(spec, host, components);
682 void CanonicalizeIPAddress(const char* spec,
683 const url_parse::Component& host,
684 CanonOutput* output,
685 CanonHostInfo* host_info) {
686 if (DoCanonicalizeIPv4Address<char, unsigned char>(
687 spec, host, output, host_info))
688 return;
689 if (DoCanonicalizeIPv6Address<char, unsigned char>(
690 spec, host, output, host_info))
691 return;
694 void CanonicalizeIPAddress(const char16* spec,
695 const url_parse::Component& host,
696 CanonOutput* output,
697 CanonHostInfo* host_info) {
698 if (DoCanonicalizeIPv4Address<char16, char16>(
699 spec, host, output, host_info))
700 return;
701 if (DoCanonicalizeIPv6Address<char16, char16>(
702 spec, host, output, host_info))
703 return;
706 CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
707 const url_parse::Component& host,
708 unsigned char address[4],
709 int* num_ipv4_components) {
710 return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
713 CanonHostInfo::Family IPv4AddressToNumber(const char16* spec,
714 const url_parse::Component& host,
715 unsigned char address[4],
716 int* num_ipv4_components) {
717 return DoIPv4AddressToNumber<char16>(
718 spec, host, address, num_ipv4_components);
721 bool IPv6AddressToNumber(const char* spec,
722 const url_parse::Component& host,
723 unsigned char address[16]) {
724 return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
727 bool IPv6AddressToNumber(const char16* spec,
728 const url_parse::Component& host,
729 unsigned char address[16]) {
730 return DoIPv6AddressToNumber<char16, char16>(spec, host, address);
734 } // namespace url_canon