portable: set next version
[got-portable.git] / compat / tree.h
blob80d0f53813442514d8861d9a152c34f6c7708c65
1 /* $OpenBSD: tree.h,v 1.13 2011/07/09 00:19:45 pirofti Exp $ */
2 /*
3 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #ifndef _SYS_TREE_H_
28 #define _SYS_TREE_H_
31 * This file defines data structures for different types of trees:
32 * splay trees and red-black trees.
34 * A splay tree is a self-organizing data structure. Every operation
35 * on the tree causes a splay to happen. The splay moves the requested
36 * node to the root of the tree and partly rebalances it.
38 * This has the benefit that request locality causes faster lookups as
39 * the requested nodes move to the top of the tree. On the other hand,
40 * every lookup causes memory writes.
42 * The Balance Theorem bounds the total access time for m operations
43 * and n inserts on an initially empty tree as O((m + n)lg n). The
44 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
46 * A red-black tree is a binary search tree with the node color as an
47 * extra attribute. It fulfills a set of conditions:
48 * - every search path from the root to a leaf consists of the
49 * same number of black nodes,
50 * - each red node (except for the root) has a black parent,
51 * - each leaf node is black.
53 * Every operation on a red-black tree is bounded as O(lg n).
54 * The maximum height of a red-black tree is 2lg (n+1).
57 #define SPLAY_HEAD(name, type) \
58 struct name { \
59 struct type *sph_root; /* root of the tree */ \
62 #define SPLAY_INITIALIZER(root) \
63 { NULL }
65 #define SPLAY_INIT(root) do { \
66 (root)->sph_root = NULL; \
67 } while (0)
69 #define SPLAY_ENTRY(type) \
70 struct { \
71 struct type *spe_left; /* left element */ \
72 struct type *spe_right; /* right element */ \
75 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
76 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
77 #define SPLAY_ROOT(head) (head)->sph_root
78 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
80 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
81 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
82 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
83 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
84 (head)->sph_root = tmp; \
85 } while (0)
87 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
88 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
89 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
90 (head)->sph_root = tmp; \
91 } while (0)
93 #define SPLAY_LINKLEFT(head, tmp, field) do { \
94 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
95 tmp = (head)->sph_root; \
96 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
97 } while (0)
99 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
100 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
101 tmp = (head)->sph_root; \
102 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
103 } while (0)
105 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
106 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
107 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
108 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
109 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
110 } while (0)
112 /* Generates prototypes and inline functions */
114 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
115 void name##_SPLAY(struct name *, struct type *); \
116 void name##_SPLAY_MINMAX(struct name *, int); \
117 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
118 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
120 /* Finds the node with the same key as elm */ \
121 static __inline struct type * \
122 name##_SPLAY_FIND(struct name *head, struct type *elm) \
124 if (SPLAY_EMPTY(head)) \
125 return(NULL); \
126 name##_SPLAY(head, elm); \
127 if ((cmp)(elm, (head)->sph_root) == 0) \
128 return (head->sph_root); \
129 return (NULL); \
132 static __inline struct type * \
133 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
135 name##_SPLAY(head, elm); \
136 if (SPLAY_RIGHT(elm, field) != NULL) { \
137 elm = SPLAY_RIGHT(elm, field); \
138 while (SPLAY_LEFT(elm, field) != NULL) { \
139 elm = SPLAY_LEFT(elm, field); \
141 } else \
142 elm = NULL; \
143 return (elm); \
146 static __inline struct type * \
147 name##_SPLAY_MIN_MAX(struct name *head, int val) \
149 name##_SPLAY_MINMAX(head, val); \
150 return (SPLAY_ROOT(head)); \
153 /* Main splay operation.
154 * Moves node close to the key of elm to top
156 #define SPLAY_GENERATE(name, type, field, cmp) \
157 struct type * \
158 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
160 if (SPLAY_EMPTY(head)) { \
161 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
162 } else { \
163 int __comp; \
164 name##_SPLAY(head, elm); \
165 __comp = (cmp)(elm, (head)->sph_root); \
166 if(__comp < 0) { \
167 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
168 SPLAY_RIGHT(elm, field) = (head)->sph_root; \
169 SPLAY_LEFT((head)->sph_root, field) = NULL; \
170 } else if (__comp > 0) { \
171 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
172 SPLAY_LEFT(elm, field) = (head)->sph_root; \
173 SPLAY_RIGHT((head)->sph_root, field) = NULL; \
174 } else \
175 return ((head)->sph_root); \
177 (head)->sph_root = (elm); \
178 return (NULL); \
181 struct type * \
182 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
184 struct type *__tmp; \
185 if (SPLAY_EMPTY(head)) \
186 return (NULL); \
187 name##_SPLAY(head, elm); \
188 if ((cmp)(elm, (head)->sph_root) == 0) { \
189 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
190 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
191 } else { \
192 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
193 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
194 name##_SPLAY(head, elm); \
195 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
197 return (elm); \
199 return (NULL); \
202 void \
203 name##_SPLAY(struct name *head, struct type *elm) \
205 struct type __node, *__left, *__right, *__tmp; \
206 int __comp; \
208 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
209 __left = __right = &__node; \
211 while ((__comp = (cmp)(elm, (head)->sph_root))) { \
212 if (__comp < 0) { \
213 __tmp = SPLAY_LEFT((head)->sph_root, field); \
214 if (__tmp == NULL) \
215 break; \
216 if ((cmp)(elm, __tmp) < 0){ \
217 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
218 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
219 break; \
221 SPLAY_LINKLEFT(head, __right, field); \
222 } else if (__comp > 0) { \
223 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
224 if (__tmp == NULL) \
225 break; \
226 if ((cmp)(elm, __tmp) > 0){ \
227 SPLAY_ROTATE_LEFT(head, __tmp, field); \
228 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
229 break; \
231 SPLAY_LINKRIGHT(head, __left, field); \
234 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
237 /* Splay with either the minimum or the maximum element \
238 * Used to find minimum or maximum element in tree. \
239 */ \
240 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
242 struct type __node, *__left, *__right, *__tmp; \
244 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
245 __left = __right = &__node; \
247 while (1) { \
248 if (__comp < 0) { \
249 __tmp = SPLAY_LEFT((head)->sph_root, field); \
250 if (__tmp == NULL) \
251 break; \
252 if (__comp < 0){ \
253 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
254 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
255 break; \
257 SPLAY_LINKLEFT(head, __right, field); \
258 } else if (__comp > 0) { \
259 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
260 if (__tmp == NULL) \
261 break; \
262 if (__comp > 0) { \
263 SPLAY_ROTATE_LEFT(head, __tmp, field); \
264 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
265 break; \
267 SPLAY_LINKRIGHT(head, __left, field); \
270 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
273 #define SPLAY_NEGINF -1
274 #define SPLAY_INF 1
276 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
277 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
278 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
279 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
280 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
281 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
282 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
283 : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
285 #define SPLAY_FOREACH(x, name, head) \
286 for ((x) = SPLAY_MIN(name, head); \
287 (x) != NULL; \
288 (x) = SPLAY_NEXT(name, head, x))
290 /* Macros that define a red-black tree */
291 #define RB_HEAD(name, type) \
292 struct name { \
293 struct type *rbh_root; /* root of the tree */ \
296 #define RB_INITIALIZER(root) \
297 { NULL }
299 #define RB_INIT(root) do { \
300 (root)->rbh_root = NULL; \
301 } while (0)
303 #define RB_BLACK 0
304 #define RB_RED 1
305 #define RB_ENTRY(type) \
306 struct { \
307 struct type *rbe_left; /* left element */ \
308 struct type *rbe_right; /* right element */ \
309 struct type *rbe_parent; /* parent element */ \
310 int rbe_color; /* node color */ \
313 #define RB_LEFT(elm, field) (elm)->field.rbe_left
314 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
315 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
316 #define RB_COLOR(elm, field) (elm)->field.rbe_color
317 #define RB_ROOT(head) (head)->rbh_root
318 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
320 #define RB_SET(elm, parent, field) do { \
321 RB_PARENT(elm, field) = parent; \
322 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
323 RB_COLOR(elm, field) = RB_RED; \
324 } while (0)
326 #define RB_SET_BLACKRED(black, red, field) do { \
327 RB_COLOR(black, field) = RB_BLACK; \
328 RB_COLOR(red, field) = RB_RED; \
329 } while (0)
331 #ifndef RB_AUGMENT
332 #define RB_AUGMENT(x) do {} while (0)
333 #endif
335 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
336 (tmp) = RB_RIGHT(elm, field); \
337 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
338 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
340 RB_AUGMENT(elm); \
341 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
342 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
343 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
344 else \
345 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
346 } else \
347 (head)->rbh_root = (tmp); \
348 RB_LEFT(tmp, field) = (elm); \
349 RB_PARENT(elm, field) = (tmp); \
350 RB_AUGMENT(tmp); \
351 if ((RB_PARENT(tmp, field))) \
352 RB_AUGMENT(RB_PARENT(tmp, field)); \
353 } while (0)
355 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
356 (tmp) = RB_LEFT(elm, field); \
357 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
358 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
360 RB_AUGMENT(elm); \
361 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
362 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
363 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
364 else \
365 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
366 } else \
367 (head)->rbh_root = (tmp); \
368 RB_RIGHT(tmp, field) = (elm); \
369 RB_PARENT(elm, field) = (tmp); \
370 RB_AUGMENT(tmp); \
371 if ((RB_PARENT(tmp, field))) \
372 RB_AUGMENT(RB_PARENT(tmp, field)); \
373 } while (0)
375 /* Generates prototypes and inline functions */
376 #define RB_PROTOTYPE(name, type, field, cmp) \
377 RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
378 #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \
379 RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
380 #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \
381 attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \
382 attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
383 attr struct type *name##_RB_REMOVE(struct name *, struct type *); \
384 attr struct type *name##_RB_INSERT(struct name *, struct type *); \
385 attr struct type *name##_RB_FIND(struct name *, struct type *); \
386 attr struct type *name##_RB_NFIND(struct name *, struct type *); \
387 attr struct type *name##_RB_NEXT(struct type *); \
388 attr struct type *name##_RB_PREV(struct type *); \
389 attr struct type *name##_RB_MINMAX(struct name *, int); \
392 /* Main rb operation.
393 * Moves node close to the key of elm to top
395 #define RB_GENERATE(name, type, field, cmp) \
396 RB_GENERATE_INTERNAL(name, type, field, cmp,)
397 #define RB_GENERATE_STATIC(name, type, field, cmp) \
398 RB_GENERATE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
399 #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \
400 attr void \
401 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
403 struct type *parent, *gparent, *tmp; \
404 while ((parent = RB_PARENT(elm, field)) && \
405 RB_COLOR(parent, field) == RB_RED) { \
406 gparent = RB_PARENT(parent, field); \
407 if (parent == RB_LEFT(gparent, field)) { \
408 tmp = RB_RIGHT(gparent, field); \
409 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
410 RB_COLOR(tmp, field) = RB_BLACK; \
411 RB_SET_BLACKRED(parent, gparent, field);\
412 elm = gparent; \
413 continue; \
415 if (RB_RIGHT(parent, field) == elm) { \
416 RB_ROTATE_LEFT(head, parent, tmp, field);\
417 tmp = parent; \
418 parent = elm; \
419 elm = tmp; \
421 RB_SET_BLACKRED(parent, gparent, field); \
422 RB_ROTATE_RIGHT(head, gparent, tmp, field); \
423 } else { \
424 tmp = RB_LEFT(gparent, field); \
425 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
426 RB_COLOR(tmp, field) = RB_BLACK; \
427 RB_SET_BLACKRED(parent, gparent, field);\
428 elm = gparent; \
429 continue; \
431 if (RB_LEFT(parent, field) == elm) { \
432 RB_ROTATE_RIGHT(head, parent, tmp, field);\
433 tmp = parent; \
434 parent = elm; \
435 elm = tmp; \
437 RB_SET_BLACKRED(parent, gparent, field); \
438 RB_ROTATE_LEFT(head, gparent, tmp, field); \
441 RB_COLOR(head->rbh_root, field) = RB_BLACK; \
444 attr void \
445 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
447 struct type *tmp; \
448 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
449 elm != RB_ROOT(head)) { \
450 if (RB_LEFT(parent, field) == elm) { \
451 tmp = RB_RIGHT(parent, field); \
452 if (RB_COLOR(tmp, field) == RB_RED) { \
453 RB_SET_BLACKRED(tmp, parent, field); \
454 RB_ROTATE_LEFT(head, parent, tmp, field);\
455 tmp = RB_RIGHT(parent, field); \
457 if ((RB_LEFT(tmp, field) == NULL || \
458 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
459 (RB_RIGHT(tmp, field) == NULL || \
460 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
461 RB_COLOR(tmp, field) = RB_RED; \
462 elm = parent; \
463 parent = RB_PARENT(elm, field); \
464 } else { \
465 if (RB_RIGHT(tmp, field) == NULL || \
466 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
467 struct type *oleft; \
468 if ((oleft = RB_LEFT(tmp, field)))\
469 RB_COLOR(oleft, field) = RB_BLACK;\
470 RB_COLOR(tmp, field) = RB_RED; \
471 RB_ROTATE_RIGHT(head, tmp, oleft, field);\
472 tmp = RB_RIGHT(parent, field); \
474 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
475 RB_COLOR(parent, field) = RB_BLACK; \
476 if (RB_RIGHT(tmp, field)) \
477 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
478 RB_ROTATE_LEFT(head, parent, tmp, field);\
479 elm = RB_ROOT(head); \
480 break; \
482 } else { \
483 tmp = RB_LEFT(parent, field); \
484 if (RB_COLOR(tmp, field) == RB_RED) { \
485 RB_SET_BLACKRED(tmp, parent, field); \
486 RB_ROTATE_RIGHT(head, parent, tmp, field);\
487 tmp = RB_LEFT(parent, field); \
489 if ((RB_LEFT(tmp, field) == NULL || \
490 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
491 (RB_RIGHT(tmp, field) == NULL || \
492 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
493 RB_COLOR(tmp, field) = RB_RED; \
494 elm = parent; \
495 parent = RB_PARENT(elm, field); \
496 } else { \
497 if (RB_LEFT(tmp, field) == NULL || \
498 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
499 struct type *oright; \
500 if ((oright = RB_RIGHT(tmp, field)))\
501 RB_COLOR(oright, field) = RB_BLACK;\
502 RB_COLOR(tmp, field) = RB_RED; \
503 RB_ROTATE_LEFT(head, tmp, oright, field);\
504 tmp = RB_LEFT(parent, field); \
506 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
507 RB_COLOR(parent, field) = RB_BLACK; \
508 if (RB_LEFT(tmp, field)) \
509 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
510 RB_ROTATE_RIGHT(head, parent, tmp, field);\
511 elm = RB_ROOT(head); \
512 break; \
516 if (elm) \
517 RB_COLOR(elm, field) = RB_BLACK; \
520 attr struct type * \
521 name##_RB_REMOVE(struct name *head, struct type *elm) \
523 struct type *child, *parent, *old = elm; \
524 int color; \
525 if (RB_LEFT(elm, field) == NULL) \
526 child = RB_RIGHT(elm, field); \
527 else if (RB_RIGHT(elm, field) == NULL) \
528 child = RB_LEFT(elm, field); \
529 else { \
530 struct type *left; \
531 elm = RB_RIGHT(elm, field); \
532 while ((left = RB_LEFT(elm, field))) \
533 elm = left; \
534 child = RB_RIGHT(elm, field); \
535 parent = RB_PARENT(elm, field); \
536 color = RB_COLOR(elm, field); \
537 if (child) \
538 RB_PARENT(child, field) = parent; \
539 if (parent) { \
540 if (RB_LEFT(parent, field) == elm) \
541 RB_LEFT(parent, field) = child; \
542 else \
543 RB_RIGHT(parent, field) = child; \
544 RB_AUGMENT(parent); \
545 } else \
546 RB_ROOT(head) = child; \
547 if (RB_PARENT(elm, field) == old) \
548 parent = elm; \
549 (elm)->field = (old)->field; \
550 if (RB_PARENT(old, field)) { \
551 if (RB_LEFT(RB_PARENT(old, field), field) == old)\
552 RB_LEFT(RB_PARENT(old, field), field) = elm;\
553 else \
554 RB_RIGHT(RB_PARENT(old, field), field) = elm;\
555 RB_AUGMENT(RB_PARENT(old, field)); \
556 } else \
557 RB_ROOT(head) = elm; \
558 RB_PARENT(RB_LEFT(old, field), field) = elm; \
559 if (RB_RIGHT(old, field)) \
560 RB_PARENT(RB_RIGHT(old, field), field) = elm; \
561 if (parent) { \
562 left = parent; \
563 do { \
564 RB_AUGMENT(left); \
565 } while ((left = RB_PARENT(left, field))); \
567 goto color; \
569 parent = RB_PARENT(elm, field); \
570 color = RB_COLOR(elm, field); \
571 if (child) \
572 RB_PARENT(child, field) = parent; \
573 if (parent) { \
574 if (RB_LEFT(parent, field) == elm) \
575 RB_LEFT(parent, field) = child; \
576 else \
577 RB_RIGHT(parent, field) = child; \
578 RB_AUGMENT(parent); \
579 } else \
580 RB_ROOT(head) = child; \
581 color: \
582 if (color == RB_BLACK) \
583 name##_RB_REMOVE_COLOR(head, parent, child); \
584 return (old); \
587 /* Inserts a node into the RB tree */ \
588 attr struct type * \
589 name##_RB_INSERT(struct name *head, struct type *elm) \
591 struct type *tmp; \
592 struct type *parent = NULL; \
593 int comp = 0; \
594 tmp = RB_ROOT(head); \
595 while (tmp) { \
596 parent = tmp; \
597 comp = (cmp)(elm, parent); \
598 if (comp < 0) \
599 tmp = RB_LEFT(tmp, field); \
600 else if (comp > 0) \
601 tmp = RB_RIGHT(tmp, field); \
602 else \
603 return (tmp); \
605 RB_SET(elm, parent, field); \
606 if (parent != NULL) { \
607 if (comp < 0) \
608 RB_LEFT(parent, field) = elm; \
609 else \
610 RB_RIGHT(parent, field) = elm; \
611 RB_AUGMENT(parent); \
612 } else \
613 RB_ROOT(head) = elm; \
614 name##_RB_INSERT_COLOR(head, elm); \
615 return (NULL); \
618 /* Finds the node with the same key as elm */ \
619 attr struct type * \
620 name##_RB_FIND(struct name *head, struct type *elm) \
622 struct type *tmp = RB_ROOT(head); \
623 int comp; \
624 while (tmp) { \
625 comp = cmp(elm, tmp); \
626 if (comp < 0) \
627 tmp = RB_LEFT(tmp, field); \
628 else if (comp > 0) \
629 tmp = RB_RIGHT(tmp, field); \
630 else \
631 return (tmp); \
633 return (NULL); \
636 /* Finds the first node greater than or equal to the search key */ \
637 attr struct type * \
638 name##_RB_NFIND(struct name *head, struct type *elm) \
640 struct type *tmp = RB_ROOT(head); \
641 struct type *res = NULL; \
642 int comp; \
643 while (tmp) { \
644 comp = cmp(elm, tmp); \
645 if (comp < 0) { \
646 res = tmp; \
647 tmp = RB_LEFT(tmp, field); \
649 else if (comp > 0) \
650 tmp = RB_RIGHT(tmp, field); \
651 else \
652 return (tmp); \
654 return (res); \
657 /* ARGSUSED */ \
658 attr struct type * \
659 name##_RB_NEXT(struct type *elm) \
661 if (RB_RIGHT(elm, field)) { \
662 elm = RB_RIGHT(elm, field); \
663 while (RB_LEFT(elm, field)) \
664 elm = RB_LEFT(elm, field); \
665 } else { \
666 if (RB_PARENT(elm, field) && \
667 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
668 elm = RB_PARENT(elm, field); \
669 else { \
670 while (RB_PARENT(elm, field) && \
671 (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
672 elm = RB_PARENT(elm, field); \
673 elm = RB_PARENT(elm, field); \
676 return (elm); \
679 /* ARGSUSED */ \
680 attr struct type * \
681 name##_RB_PREV(struct type *elm) \
683 if (RB_LEFT(elm, field)) { \
684 elm = RB_LEFT(elm, field); \
685 while (RB_RIGHT(elm, field)) \
686 elm = RB_RIGHT(elm, field); \
687 } else { \
688 if (RB_PARENT(elm, field) && \
689 (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \
690 elm = RB_PARENT(elm, field); \
691 else { \
692 while (RB_PARENT(elm, field) && \
693 (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
694 elm = RB_PARENT(elm, field); \
695 elm = RB_PARENT(elm, field); \
698 return (elm); \
701 attr struct type * \
702 name##_RB_MINMAX(struct name *head, int val) \
704 struct type *tmp = RB_ROOT(head); \
705 struct type *parent = NULL; \
706 while (tmp) { \
707 parent = tmp; \
708 if (val < 0) \
709 tmp = RB_LEFT(tmp, field); \
710 else \
711 tmp = RB_RIGHT(tmp, field); \
713 return (parent); \
716 #define RB_NEGINF -1
717 #define RB_INF 1
719 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
720 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
721 #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
722 #define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
723 #define RB_NEXT(name, x, y) name##_RB_NEXT(y)
724 #define RB_PREV(name, x, y) name##_RB_PREV(y)
725 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
726 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
728 #define RB_FOREACH(x, name, head) \
729 for ((x) = RB_MIN(name, head); \
730 (x) != NULL; \
731 (x) = name##_RB_NEXT(x))
733 #define RB_FOREACH_SAFE(x, name, head, y) \
734 for ((x) = RB_MIN(name, head); \
735 ((x) != NULL) && ((y) = name##_RB_NEXT(x), 1); \
736 (x) = (y))
738 #define RB_FOREACH_REVERSE(x, name, head) \
739 for ((x) = RB_MAX(name, head); \
740 (x) != NULL; \
741 (x) = name##_RB_PREV(x))
743 #define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \
744 for ((x) = RB_MAX(name, head); \
745 ((x) != NULL) && ((y) = name##_RB_PREV(x), 1); \
746 (x) = (y))
748 #endif /* _SYS_TREE_H_ */