1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
7 * Copyright (c) 2000-2001, Aaron D. Gifford
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
41 #include "got_compat.h"
43 #define DEF_WEAK(x) void __ssh_compat_weak_##x(void)
45 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
46 !defined(HAVE_SHA512UPDATE)
48 /* no-op out, similar to DEF_WEAK but only needed here */
49 #define MAKE_CLONE(x, y) void __ssh_compat_make_clone_##x_##y(void)
52 * UNROLLED TRANSFORM LOOP NOTE:
53 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
54 * loop version for the hash transform rounds (defined using macros
55 * later in this file). Either define on the command line, for example:
57 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61 * #define SHA2_UNROLL_TRANSFORM
65 #if defined(__amd64__) || defined(__i386__)
66 #define SHA2_UNROLL_TRANSFORM
70 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
74 * Please make sure that your system defines BYTE_ORDER. If your
75 * architecture is little-endian, make sure it also defines
76 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
79 * If your system does not define the above, then you can do so by
82 * #define LITTLE_ENDIAN 1234
83 * #define BIG_ENDIAN 4321
85 * And for little-endian machines, add:
87 * #define BYTE_ORDER LITTLE_ENDIAN
89 * Or for big-endian machines:
91 * #define BYTE_ORDER BIG_ENDIAN
93 * The FreeBSD machine this was written on defines BYTE_ORDER
94 * appropriately by including <sys/types.h> (which in turn includes
95 * <machine/endian.h> where the appropriate definitions are actually
98 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
99 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
103 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
104 /* NOTE: Most of these are in sha2.h */
105 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
106 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
107 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
108 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
110 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
111 #define BE_8_TO_32(dst, cp) do { \
112 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
113 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
116 #define BE_8_TO_64(dst, cp) do { \
117 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
118 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
119 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
120 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
123 #define BE_64_TO_8(cp, src) do { \
124 (cp)[0] = (src) >> 56; \
125 (cp)[1] = (src) >> 48; \
126 (cp)[2] = (src) >> 40; \
127 (cp)[3] = (src) >> 32; \
128 (cp)[4] = (src) >> 24; \
129 (cp)[5] = (src) >> 16; \
130 (cp)[6] = (src) >> 8; \
134 #define BE_32_TO_8(cp, src) do { \
135 (cp)[0] = (src) >> 24; \
136 (cp)[1] = (src) >> 16; \
137 (cp)[2] = (src) >> 8; \
142 * Macro for incrementally adding the unsigned 64-bit integer n to the
143 * unsigned 128-bit integer (represented using a two-element array of
146 #define ADDINC128(w,n) do { \
147 (w)[0] += (u_int64_t)(n); \
148 if ((w)[0] < (n)) { \
153 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
155 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
157 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
158 * S is a ROTATION) because the SHA-224/256/384/512 description document
159 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
160 * same "backwards" definition.
162 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
163 #define R(b,x) ((x) >> (b))
164 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
165 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
166 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
167 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
169 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
170 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
171 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
173 /* Four of six logical functions used in SHA-224 and SHA-256: */
174 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
175 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
176 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
177 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
179 /* Four of six logical functions used in SHA-384 and SHA-512: */
180 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
181 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
182 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
183 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
186 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
187 /* Hash constant words K for SHA-224 and SHA-256: */
188 static const u_int32_t K256
[64] = {
189 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
190 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
191 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
192 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
193 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
194 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
195 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
196 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
197 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
198 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
199 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
200 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
201 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
202 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
203 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
204 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
207 /* Initial hash value H for SHA-256: */
208 static const u_int32_t sha256_initial_hash_value
[8] = {
220 /* Hash constant words K for SHA-384 and SHA-512: */
221 static const u_int64_t K512
[80] = {
222 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
223 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
224 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
225 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
226 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
227 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
228 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
229 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
230 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
231 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
232 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
233 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
234 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
235 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
236 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
237 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
238 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
239 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
240 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
241 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
242 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
243 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
244 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
245 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
246 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
247 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
248 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
249 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
250 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
251 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
252 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
253 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
254 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
255 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
256 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
257 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
258 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
259 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
260 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
261 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
264 /* Initial hash value H for SHA-512 */
265 static const u_int64_t sha512_initial_hash_value
[8] = {
266 0x6a09e667f3bcc908ULL
,
267 0xbb67ae8584caa73bULL
,
268 0x3c6ef372fe94f82bULL
,
269 0xa54ff53a5f1d36f1ULL
,
270 0x510e527fade682d1ULL
,
271 0x9b05688c2b3e6c1fULL
,
272 0x1f83d9abfb41bd6bULL
,
273 0x5be0cd19137e2179ULL
276 #if !defined(SHA2_SMALL)
277 /* Initial hash value H for SHA-224: */
278 static const u_int32_t sha224_initial_hash_value
[8] = {
289 /* Initial hash value H for SHA-384 */
290 static const u_int64_t sha384_initial_hash_value
[8] = {
291 0xcbbb9d5dc1059ed8ULL
,
292 0x629a292a367cd507ULL
,
293 0x9159015a3070dd17ULL
,
294 0x152fecd8f70e5939ULL
,
295 0x67332667ffc00b31ULL
,
296 0x8eb44a8768581511ULL
,
297 0xdb0c2e0d64f98fa7ULL
,
298 0x47b5481dbefa4fa4ULL
301 /* Initial hash value H for SHA-512-256 */
302 static const u_int64_t sha512_256_initial_hash_value
[8] = {
303 0x22312194fc2bf72cULL
,
304 0x9f555fa3c84c64c2ULL
,
305 0x2393b86b6f53b151ULL
,
306 0x963877195940eabdULL
,
307 0x96283ee2a88effe3ULL
,
308 0xbe5e1e2553863992ULL
,
309 0x2b0199fc2c85b8aaULL
,
310 0x0eb72ddc81c52ca2ULL
313 /*** SHA-224: *********************************************************/
315 SHA224Init(SHA2_CTX
*context
)
317 memcpy(context
->state
.st32
, sha224_initial_hash_value
,
318 sizeof(sha224_initial_hash_value
));
319 memset(context
->buffer
, 0, sizeof(context
->buffer
));
320 context
->bitcount
[0] = 0;
322 DEF_WEAK(SHA224Init
);
324 MAKE_CLONE(SHA224Transform
, SHA256Transform
);
325 MAKE_CLONE(SHA224Update
, SHA256Update
);
326 MAKE_CLONE(SHA224Pad
, SHA256Pad
);
327 DEF_WEAK(SHA224Transform
);
328 DEF_WEAK(SHA224Update
);
332 SHA224Final(u_int8_t digest
[SHA224_DIGEST_LENGTH
], SHA2_CTX
*context
)
336 #if BYTE_ORDER == LITTLE_ENDIAN
339 /* Convert TO host byte order */
340 for (i
= 0; i
< 7; i
++)
341 BE_32_TO_8(digest
+ i
* 4, context
->state
.st32
[i
]);
343 memcpy(digest
, context
->state
.st32
, SHA224_DIGEST_LENGTH
);
345 explicit_bzero(context
, sizeof(*context
));
347 DEF_WEAK(SHA224Final
);
348 #endif /* !defined(SHA2_SMALL) */
351 /*** SHA-256: *********************************************************/
353 SHA256Init(SHA2_CTX
*context
)
355 memcpy(context
->state
.st32
, sha256_initial_hash_value
,
356 sizeof(sha256_initial_hash_value
));
357 memset(context
->buffer
, 0, sizeof(context
->buffer
));
358 context
->bitcount
[0] = 0;
360 DEF_WEAK(SHA256Init
);
362 #ifdef SHA2_UNROLL_TRANSFORM
364 /* Unrolled SHA-256 round macros: */
366 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
367 BE_8_TO_32(W256[j], data); \
369 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
371 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
375 #define ROUND256(a,b,c,d,e,f,g,h) do { \
376 s0 = W256[(j+1)&0x0f]; \
377 s0 = sigma0_256(s0); \
378 s1 = W256[(j+14)&0x0f]; \
379 s1 = sigma1_256(s1); \
380 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
381 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
383 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
388 SHA256Transform(u_int32_t state
[8], const u_int8_t data
[SHA256_BLOCK_LENGTH
])
390 u_int32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
391 u_int32_t T1
, W256
[16];
394 /* Initialize registers with the prev. intermediate value */
406 /* Rounds 0 to 15 (unrolled): */
407 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
408 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
409 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
410 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
411 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
412 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
413 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
414 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
417 /* Now for the remaining rounds up to 63: */
419 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
420 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
421 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
422 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
423 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
424 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
425 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
426 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
429 /* Compute the current intermediate hash value */
440 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
443 #else /* SHA2_UNROLL_TRANSFORM */
446 SHA256Transform(u_int32_t state
[8], const u_int8_t data
[SHA256_BLOCK_LENGTH
])
448 u_int32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
449 u_int32_t T1
, T2
, W256
[16];
452 /* Initialize registers with the prev. intermediate value */
464 BE_8_TO_32(W256
[j
], data
);
466 /* Apply the SHA-256 compression function to update a..h */
467 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
468 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
482 /* Part of the message block expansion: */
483 s0
= W256
[(j
+1)&0x0f];
485 s1
= W256
[(j
+14)&0x0f];
488 /* Apply the SHA-256 compression function to update a..h */
489 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
490 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
491 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
504 /* Compute the current intermediate hash value */
515 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
518 #endif /* SHA2_UNROLL_TRANSFORM */
519 DEF_WEAK(SHA256Transform
);
522 SHA256Update(SHA2_CTX
*context
, const u_int8_t
*data
, size_t len
)
524 u_int64_t freespace
, usedspace
;
526 /* Calling with no data is valid (we do nothing) */
530 usedspace
= (context
->bitcount
[0] >> 3) % SHA256_BLOCK_LENGTH
;
532 /* Calculate how much free space is available in the buffer */
533 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
535 if (len
>= freespace
) {
536 /* Fill the buffer completely and process it */
537 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
538 context
->bitcount
[0] += freespace
<< 3;
541 SHA256Transform(context
->state
.st32
, context
->buffer
);
543 /* The buffer is not yet full */
544 memcpy(&context
->buffer
[usedspace
], data
, len
);
545 context
->bitcount
[0] += (u_int64_t
)len
<< 3;
547 usedspace
= freespace
= 0;
551 while (len
>= SHA256_BLOCK_LENGTH
) {
552 /* Process as many complete blocks as we can */
553 SHA256Transform(context
->state
.st32
, data
);
554 context
->bitcount
[0] += SHA256_BLOCK_LENGTH
<< 3;
555 len
-= SHA256_BLOCK_LENGTH
;
556 data
+= SHA256_BLOCK_LENGTH
;
559 /* There's left-overs, so save 'em */
560 memcpy(context
->buffer
, data
, len
);
561 context
->bitcount
[0] += len
<< 3;
564 usedspace
= freespace
= 0;
566 DEF_WEAK(SHA256Update
);
569 SHA256Pad(SHA2_CTX
*context
)
571 unsigned int usedspace
;
573 usedspace
= (context
->bitcount
[0] >> 3) % SHA256_BLOCK_LENGTH
;
575 /* Begin padding with a 1 bit: */
576 context
->buffer
[usedspace
++] = 0x80;
578 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
579 /* Set-up for the last transform: */
580 memset(&context
->buffer
[usedspace
], 0,
581 SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
583 if (usedspace
< SHA256_BLOCK_LENGTH
) {
584 memset(&context
->buffer
[usedspace
], 0,
585 SHA256_BLOCK_LENGTH
- usedspace
);
587 /* Do second-to-last transform: */
588 SHA256Transform(context
->state
.st32
, context
->buffer
);
590 /* Prepare for last transform: */
591 memset(context
->buffer
, 0, SHA256_SHORT_BLOCK_LENGTH
);
594 /* Set-up for the last transform: */
595 memset(context
->buffer
, 0, SHA256_SHORT_BLOCK_LENGTH
);
597 /* Begin padding with a 1 bit: */
598 *context
->buffer
= 0x80;
600 /* Store the length of input data (in bits) in big endian format: */
601 BE_64_TO_8(&context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
],
602 context
->bitcount
[0]);
604 /* Final transform: */
605 SHA256Transform(context
->state
.st32
, context
->buffer
);
613 SHA256Final(u_int8_t digest
[SHA256_DIGEST_LENGTH
], SHA2_CTX
*context
)
617 #if BYTE_ORDER == LITTLE_ENDIAN
620 /* Convert TO host byte order */
621 for (i
= 0; i
< 8; i
++)
622 BE_32_TO_8(digest
+ i
* 4, context
->state
.st32
[i
]);
624 memcpy(digest
, context
->state
.st32
, SHA256_DIGEST_LENGTH
);
626 explicit_bzero(context
, sizeof(*context
));
628 DEF_WEAK(SHA256Final
);
631 /*** SHA-512: *********************************************************/
633 SHA512Init(SHA2_CTX
*context
)
635 memcpy(context
->state
.st64
, sha512_initial_hash_value
,
636 sizeof(sha512_initial_hash_value
));
637 memset(context
->buffer
, 0, sizeof(context
->buffer
));
638 context
->bitcount
[0] = context
->bitcount
[1] = 0;
640 DEF_WEAK(SHA512Init
);
642 #ifdef SHA2_UNROLL_TRANSFORM
644 /* Unrolled SHA-512 round macros: */
646 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
647 BE_8_TO_64(W512[j], data); \
649 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
651 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
656 #define ROUND512(a,b,c,d,e,f,g,h) do { \
657 s0 = W512[(j+1)&0x0f]; \
658 s0 = sigma0_512(s0); \
659 s1 = W512[(j+14)&0x0f]; \
660 s1 = sigma1_512(s1); \
661 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
662 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
664 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
669 SHA512Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
671 u_int64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
672 u_int64_t T1
, W512
[16];
675 /* Initialize registers with the prev. intermediate value */
687 /* Rounds 0 to 15 (unrolled): */
688 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
689 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
690 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
691 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
692 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
693 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
694 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
695 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
698 /* Now for the remaining rounds up to 79: */
700 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
701 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
702 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
703 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
704 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
705 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
706 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
707 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
710 /* Compute the current intermediate hash value */
721 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
724 #else /* SHA2_UNROLL_TRANSFORM */
727 SHA512Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
729 u_int64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
730 u_int64_t T1
, T2
, W512
[16];
733 /* Initialize registers with the prev. intermediate value */
745 BE_8_TO_64(W512
[j
], data
);
747 /* Apply the SHA-512 compression function to update a..h */
748 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
749 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
763 /* Part of the message block expansion: */
764 s0
= W512
[(j
+1)&0x0f];
766 s1
= W512
[(j
+14)&0x0f];
769 /* Apply the SHA-512 compression function to update a..h */
770 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
771 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
772 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
785 /* Compute the current intermediate hash value */
796 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
799 #endif /* SHA2_UNROLL_TRANSFORM */
800 DEF_WEAK(SHA512Transform
);
803 SHA512Update(SHA2_CTX
*context
, const u_int8_t
*data
, size_t len
)
805 size_t freespace
, usedspace
;
807 /* Calling with no data is valid (we do nothing) */
811 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
813 /* Calculate how much free space is available in the buffer */
814 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
816 if (len
>= freespace
) {
817 /* Fill the buffer completely and process it */
818 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
819 ADDINC128(context
->bitcount
, freespace
<< 3);
822 SHA512Transform(context
->state
.st64
, context
->buffer
);
824 /* The buffer is not yet full */
825 memcpy(&context
->buffer
[usedspace
], data
, len
);
826 ADDINC128(context
->bitcount
, len
<< 3);
828 usedspace
= freespace
= 0;
832 while (len
>= SHA512_BLOCK_LENGTH
) {
833 /* Process as many complete blocks as we can */
834 SHA512Transform(context
->state
.st64
, data
);
835 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
836 len
-= SHA512_BLOCK_LENGTH
;
837 data
+= SHA512_BLOCK_LENGTH
;
840 /* There's left-overs, so save 'em */
841 memcpy(context
->buffer
, data
, len
);
842 ADDINC128(context
->bitcount
, len
<< 3);
845 usedspace
= freespace
= 0;
847 DEF_WEAK(SHA512Update
);
850 SHA512Pad(SHA2_CTX
*context
)
852 unsigned int usedspace
;
854 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
856 /* Begin padding with a 1 bit: */
857 context
->buffer
[usedspace
++] = 0x80;
859 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
860 /* Set-up for the last transform: */
861 memset(&context
->buffer
[usedspace
], 0, SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
863 if (usedspace
< SHA512_BLOCK_LENGTH
) {
864 memset(&context
->buffer
[usedspace
], 0, SHA512_BLOCK_LENGTH
- usedspace
);
866 /* Do second-to-last transform: */
867 SHA512Transform(context
->state
.st64
, context
->buffer
);
869 /* And set-up for the last transform: */
870 memset(context
->buffer
, 0, SHA512_BLOCK_LENGTH
- 2);
873 /* Prepare for final transform: */
874 memset(context
->buffer
, 0, SHA512_SHORT_BLOCK_LENGTH
);
876 /* Begin padding with a 1 bit: */
877 *context
->buffer
= 0x80;
879 /* Store the length of input data (in bits) in big endian format: */
880 BE_64_TO_8(&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
],
881 context
->bitcount
[1]);
882 BE_64_TO_8(&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+ 8],
883 context
->bitcount
[0]);
885 /* Final transform: */
886 SHA512Transform(context
->state
.st64
, context
->buffer
);
894 SHA512Final(u_int8_t digest
[SHA512_DIGEST_LENGTH
], SHA2_CTX
*context
)
898 #if BYTE_ORDER == LITTLE_ENDIAN
901 /* Convert TO host byte order */
902 for (i
= 0; i
< 8; i
++)
903 BE_64_TO_8(digest
+ i
* 8, context
->state
.st64
[i
]);
905 memcpy(digest
, context
->state
.st64
, SHA512_DIGEST_LENGTH
);
907 explicit_bzero(context
, sizeof(*context
));
909 DEF_WEAK(SHA512Final
);
911 #if !defined(SHA2_SMALL)
913 /*** SHA-384: *********************************************************/
915 SHA384Init(SHA2_CTX
*context
)
917 memcpy(context
->state
.st64
, sha384_initial_hash_value
,
918 sizeof(sha384_initial_hash_value
));
919 memset(context
->buffer
, 0, sizeof(context
->buffer
));
920 context
->bitcount
[0] = context
->bitcount
[1] = 0;
922 DEF_WEAK(SHA384Init
);
924 MAKE_CLONE(SHA384Transform
, SHA512Transform
);
925 MAKE_CLONE(SHA384Update
, SHA512Update
);
926 MAKE_CLONE(SHA384Pad
, SHA512Pad
);
927 DEF_WEAK(SHA384Transform
);
928 DEF_WEAK(SHA384Update
);
931 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
933 SHA384Transform(u_int64_t state
[8], const u_int8_t data
[SHA512_BLOCK_LENGTH
])
935 SHA512Transform(state
, data
);
939 SHA384Update(SHA2_CTX
*context
, const u_int8_t
*data
, size_t len
)
941 SHA512Update(context
, data
, len
);
945 SHA384Pad(SHA2_CTX
*context
)
951 SHA384Final(u_int8_t digest
[SHA384_DIGEST_LENGTH
], SHA2_CTX
*context
)
955 #if BYTE_ORDER == LITTLE_ENDIAN
958 /* Convert TO host byte order */
959 for (i
= 0; i
< 6; i
++)
960 BE_64_TO_8(digest
+ i
* 8, context
->state
.st64
[i
]);
962 memcpy(digest
, context
->state
.st64
, SHA384_DIGEST_LENGTH
);
964 /* Zero out state data */
965 explicit_bzero(context
, sizeof(*context
));
967 DEF_WEAK(SHA384Final
);
970 /*** SHA-512/256: *********************************************************/
972 SHA512_256Init(SHA2_CTX
*context
)
974 memcpy(context
->state
.st64
, sha512_256_initial_hash_value
,
975 sizeof(sha512_256_initial_hash_value
));
976 memset(context
->buffer
, 0, sizeof(context
->buffer
));
977 context
->bitcount
[0] = context
->bitcount
[1] = 0;
979 DEF_WEAK(SHA512_256Init
);
981 MAKE_CLONE(SHA512_256Transform
, SHA512Transform
);
982 MAKE_CLONE(SHA512_256Update
, SHA512Update
);
983 MAKE_CLONE(SHA512_256Pad
, SHA512Pad
);
984 DEF_WEAK(SHA512_256Transform
);
985 DEF_WEAK(SHA512_256Update
);
986 DEF_WEAK(SHA512_256Pad
);
989 SHA512_256Final(u_int8_t digest
[SHA512_256_DIGEST_LENGTH
], SHA2_CTX
*context
)
991 SHA512_256Pad(context
);
993 #if BYTE_ORDER == LITTLE_ENDIAN
996 /* Convert TO host byte order */
997 for (i
= 0; i
< 4; i
++)
998 BE_64_TO_8(digest
+ i
* 8, context
->state
.st64
[i
]);
1000 memcpy(digest
, context
->state
.st64
, SHA512_256_DIGEST_LENGTH
);
1002 /* Zero out state data */
1003 explicit_bzero(context
, sizeof(*context
));
1005 DEF_WEAK(SHA512_256Final
);
1006 #endif /* !defined(SHA2_SMALL) */
1009 #endif /* HAVE_SHA{256,384,512}UPDATE */