[igb] Remove __BIG_ENDIAN conditional
[gpxe.git] / src / drivers / net / ath5k / ath5k_reset.c
blobdc80093a774db4903a23c21d96b55da59a589752
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
10 * Permission to use, copy, modify, and distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 FILE_LICENCE ( MIT );
26 #define _ATH5K_RESET
28 /*****************************\
29 Reset functions and helpers
30 \*****************************/
32 #include <gpxe/pci.h> /* To determine if a card is pci-e */
33 #include <unistd.h>
35 #include "ath5k.h"
36 #include "reg.h"
37 #include "base.h"
39 /* Find last set bit; fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32 */
40 static int fls(int x)
42 int r = 32;
44 if (!x)
45 return 0;
46 if (!(x & 0xffff0000u)) {
47 x <<= 16;
48 r -= 16;
50 if (!(x & 0xff000000u)) {
51 x <<= 8;
52 r -= 8;
54 if (!(x & 0xf0000000u)) {
55 x <<= 4;
56 r -= 4;
58 if (!(x & 0xc0000000u)) {
59 x <<= 2;
60 r -= 2;
62 if (!(x & 0x80000000u)) {
63 x <<= 1;
64 r -= 1;
66 return r;
70 /**
71 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
73 * @ah: the &struct ath5k_hw
74 * @channel: the currently set channel upon reset
76 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
77 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
79 * Since delta slope is floating point we split it on its exponent and
80 * mantissa and provide these values on hw.
82 * For more infos i think this patent is related
83 * http://www.freepatentsonline.com/7184495.html
85 static int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
86 struct net80211_channel *channel)
88 /* Get exponent and mantissa and set it */
89 u32 coef_scaled, coef_exp, coef_man,
90 ds_coef_exp, ds_coef_man, clock;
92 if (!(ah->ah_version == AR5K_AR5212) ||
93 !(channel->hw_value & CHANNEL_OFDM)) {
94 DBG("ath5k: attempt to set OFDM timings on non-OFDM channel\n");
95 return -EFAULT;
98 /* Get coefficient
99 * ALGO: coef = (5 * clock * carrier_freq) / 2)
100 * we scale coef by shifting clock value by 24 for
101 * better precision since we use integers */
102 /* TODO: Half/quarter rate */
103 clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
105 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
107 /* Get exponent
108 * ALGO: coef_exp = 14 - highest set bit position */
109 coef_exp = fls(coef_scaled) - 1;
111 /* Doesn't make sense if it's zero*/
112 if (!coef_scaled || !coef_exp)
113 return -EINVAL;
115 /* Note: we've shifted coef_scaled by 24 */
116 coef_exp = 14 - (coef_exp - 24);
119 /* Get mantissa (significant digits)
120 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
121 coef_man = coef_scaled +
122 (1 << (24 - coef_exp - 1));
124 /* Calculate delta slope coefficient exponent
125 * and mantissa (remove scaling) and set them on hw */
126 ds_coef_man = coef_man >> (24 - coef_exp);
127 ds_coef_exp = coef_exp - 16;
129 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
130 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
131 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
132 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
134 return 0;
139 * index into rates for control rates, we can set it up like this because
140 * this is only used for AR5212 and we know it supports G mode
142 static const unsigned int control_rates[] =
143 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
146 * ath5k_hw_write_rate_duration - fill rate code to duration table
148 * @ah: the &struct ath5k_hw
149 * @mode: one of enum ath5k_driver_mode
151 * Write the rate code to duration table upon hw reset. This is a helper for
152 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
153 * the hardware, based on current mode, for each rate. The rates which are
154 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
155 * different rate code so we write their value twice (one for long preample
156 * and one for short).
158 * Note: Band doesn't matter here, if we set the values for OFDM it works
159 * on both a and g modes. So all we have to do is set values for all g rates
160 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
161 * quarter rate mode, we need to use another set of bitrates (that's why we
162 * need the mode parameter) but we don't handle these proprietary modes yet.
164 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
165 unsigned int mode __unused)
167 struct ath5k_softc *sc = ah->ah_sc;
168 u16 rate;
169 int i;
171 /* Write rate duration table */
172 for (i = 0; i < sc->hwinfo->nr_rates[NET80211_BAND_2GHZ]; i++) {
173 u32 reg;
174 u16 tx_time;
176 rate = sc->hwinfo->rates[NET80211_BAND_2GHZ][i];
178 /* Set ACK timeout */
179 reg = AR5K_RATE_DUR(ath5k_bitrate_to_hw_rix(rate));
181 /* An ACK frame consists of 10 bytes. If you add the FCS,
182 * it's 14 bytes. Note we use the control rate and not the
183 * actual rate for this rate. See mac80211 tx.c
184 * ieee80211_duration() for a brief description of
185 * what rate we should choose to TX ACKs. */
186 tx_time = net80211_duration(sc->dev, 14, rate);
188 ath5k_hw_reg_write(ah, tx_time, reg);
190 if (rate != 20 && rate != 55 && rate != 110)
191 continue;
194 * We're not distinguishing short preamble here,
195 * This is true, all we'll get is a longer value here
196 * which is not necessarilly bad.
198 ath5k_hw_reg_write(ah, tx_time,
199 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
204 * Reset chipset
206 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
208 int ret;
209 u32 mask = val ? val : ~0U;
211 /* Read-and-clear RX Descriptor Pointer*/
212 ath5k_hw_reg_read(ah, AR5K_RXDP);
215 * Reset the device and wait until success
217 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
219 /* Wait at least 128 PCI clocks */
220 udelay(15);
222 if (ah->ah_version == AR5K_AR5210) {
223 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
224 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
225 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
226 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
227 } else {
228 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
229 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
232 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, 0);
235 * Reset configuration register (for hw byte-swap). Note that this
236 * is only set for big endian. We do the necessary magic in
237 * AR5K_INIT_CFG.
239 if ((val & AR5K_RESET_CTL_PCU) == 0)
240 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
242 return ret;
246 * Sleep control
248 int ath5k_hw_wake(struct ath5k_hw *ah)
250 unsigned int i;
251 u32 staid, data;
253 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
254 staid &= ~AR5K_STA_ID1_PWR_SV;
256 /* Preserve sleep duration */
257 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
258 if (data & 0xffc00000)
259 data = 0;
260 else
261 data = data & 0xfffcffff;
263 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
264 udelay(15);
266 for (i = 50; i > 0; i--) {
267 /* Check if the chip did wake up */
268 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
269 AR5K_PCICFG_SPWR_DN) == 0)
270 break;
272 /* Wait a bit and retry */
273 udelay(200);
274 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
277 /* Fail if the chip didn't wake up */
278 if (i <= 0)
279 return -EIO;
281 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
283 return 0;
287 * Bring up MAC + PHY Chips and program PLL
288 * TODO: Half/Quarter rate support
290 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, int initial __unused)
292 struct pci_device *pdev = ah->ah_sc->pdev;
293 u32 turbo, mode, clock, bus_flags;
294 int ret;
296 turbo = 0;
297 mode = 0;
298 clock = 0;
300 /* Wakeup the device */
301 ret = ath5k_hw_wake(ah);
302 if (ret) {
303 DBG("ath5k: failed to wake up the MAC chip\n");
304 return ret;
307 if (ah->ah_version != AR5K_AR5210) {
309 * Get channel mode flags
312 if (ah->ah_radio >= AR5K_RF5112) {
313 mode = AR5K_PHY_MODE_RAD_RF5112;
314 clock = AR5K_PHY_PLL_RF5112;
315 } else {
316 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
317 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
320 if (flags & CHANNEL_2GHZ) {
321 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
322 clock |= AR5K_PHY_PLL_44MHZ;
324 if (flags & CHANNEL_CCK) {
325 mode |= AR5K_PHY_MODE_MOD_CCK;
326 } else if (flags & CHANNEL_OFDM) {
327 /* XXX Dynamic OFDM/CCK is not supported by the
328 * AR5211 so we set MOD_OFDM for plain g (no
329 * CCK headers) operation. We need to test
330 * this, 5211 might support ofdm-only g after
331 * all, there are also initial register values
332 * in the code for g mode (see initvals.c). */
333 if (ah->ah_version == AR5K_AR5211)
334 mode |= AR5K_PHY_MODE_MOD_OFDM;
335 else
336 mode |= AR5K_PHY_MODE_MOD_DYN;
337 } else {
338 DBG("ath5k: invalid radio modulation mode\n");
339 return -EINVAL;
341 } else if (flags & CHANNEL_5GHZ) {
342 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
344 if (ah->ah_radio == AR5K_RF5413)
345 clock = AR5K_PHY_PLL_40MHZ_5413;
346 else
347 clock |= AR5K_PHY_PLL_40MHZ;
349 if (flags & CHANNEL_OFDM)
350 mode |= AR5K_PHY_MODE_MOD_OFDM;
351 else {
352 DBG("ath5k: invalid radio modulation mode\n");
353 return -EINVAL;
355 } else {
356 DBG("ath5k: invalid radio frequency mode\n");
357 return -EINVAL;
360 if (flags & CHANNEL_TURBO)
361 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
362 } else { /* Reset the device */
364 /* ...enable Atheros turbo mode if requested */
365 if (flags & CHANNEL_TURBO)
366 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
367 AR5K_PHY_TURBO);
370 /* reseting PCI on PCI-E cards results card to hang
371 * and always return 0xffff... so we ingore that flag
372 * for PCI-E cards */
373 if (pci_find_capability(pdev, PCI_CAP_ID_EXP))
374 bus_flags = 0;
375 else
376 bus_flags = AR5K_RESET_CTL_PCI;
378 /* Reset chipset */
379 if (ah->ah_version == AR5K_AR5210) {
380 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
381 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
382 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
383 mdelay(2);
384 } else {
385 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
386 AR5K_RESET_CTL_BASEBAND | bus_flags);
388 if (ret) {
389 DBG("ath5k: failed to reset the MAC chip\n");
390 return -EIO;
393 /* ...wakeup again!*/
394 ret = ath5k_hw_wake(ah);
395 if (ret) {
396 DBG("ath5k: failed to resume the MAC chip\n");
397 return ret;
400 /* ...final warm reset */
401 if (ath5k_hw_nic_reset(ah, 0)) {
402 DBG("ath5k: failed to warm reset the MAC chip\n");
403 return -EIO;
406 if (ah->ah_version != AR5K_AR5210) {
408 /* ...update PLL if needed */
409 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
410 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
411 udelay(300);
414 /* ...set the PHY operating mode */
415 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
416 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
419 return 0;
422 static int ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
423 struct net80211_channel *channel)
425 u8 refclk_freq;
427 if ((ah->ah_radio == AR5K_RF5112) ||
428 (ah->ah_radio == AR5K_RF5413) ||
429 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
430 refclk_freq = 40;
431 else
432 refclk_freq = 32;
434 if ((channel->center_freq % refclk_freq != 0) &&
435 ((channel->center_freq % refclk_freq < 10) ||
436 (channel->center_freq % refclk_freq > 22)))
437 return 1;
438 else
439 return 0;
442 /* TODO: Half/Quarter rate */
443 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
444 struct net80211_channel *channel)
446 if (ah->ah_version == AR5K_AR5212 &&
447 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
449 /* Setup ADC control */
450 ath5k_hw_reg_write(ah,
451 (AR5K_REG_SM(2,
452 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
453 AR5K_REG_SM(2,
454 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
455 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
456 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
457 AR5K_PHY_ADC_CTL);
461 /* Disable barker RSSI threshold */
462 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
463 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
465 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
466 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
468 /* Set the mute mask */
469 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
472 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
473 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
474 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
476 /* Enable DCU double buffering */
477 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
478 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
479 AR5K_TXCFG_DCU_DBL_BUF_DIS);
481 /* Set DAC/ADC delays */
482 if (ah->ah_version == AR5K_AR5212) {
483 u32 scal;
484 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
485 scal = AR5K_PHY_SCAL_32MHZ_2417;
486 else if (ath5k_eeprom_is_hb63(ah))
487 scal = AR5K_PHY_SCAL_32MHZ_HB63;
488 else
489 scal = AR5K_PHY_SCAL_32MHZ;
490 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
493 /* Set fast ADC */
494 if ((ah->ah_radio == AR5K_RF5413) ||
495 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
496 u32 fast_adc = 1;
498 if (channel->center_freq == 2462 ||
499 channel->center_freq == 2467)
500 fast_adc = 0;
502 /* Only update if needed */
503 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
504 ath5k_hw_reg_write(ah, fast_adc,
505 AR5K_PHY_FAST_ADC);
508 /* Fix for first revision of the RF5112 RF chipset */
509 if (ah->ah_radio == AR5K_RF5112 &&
510 ah->ah_radio_5ghz_revision <
511 AR5K_SREV_RAD_5112A) {
512 u32 data;
513 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
514 AR5K_PHY_CCKTXCTL);
515 if (channel->hw_value & CHANNEL_5GHZ)
516 data = 0xffb81020;
517 else
518 data = 0xffb80d20;
519 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
522 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
523 u32 usec_reg;
524 /* 5311 has different tx/rx latency masks
525 * from 5211, since we deal 5311 the same
526 * as 5211 when setting initvals, shift
527 * values here to their proper locations */
528 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
529 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
530 AR5K_USEC_32 |
531 AR5K_USEC_TX_LATENCY_5211 |
532 AR5K_REG_SM(29,
533 AR5K_USEC_RX_LATENCY_5210)),
534 AR5K_USEC_5211);
535 /* Clear QCU/DCU clock gating register */
536 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
537 /* Set DAC/ADC delays */
538 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
539 /* Enable PCU FIFO corruption ECO */
540 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
541 AR5K_DIAG_SW_ECO_ENABLE);
545 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
546 struct net80211_channel *channel, u8 *ant, u8 ee_mode)
548 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
549 s16 cck_ofdm_pwr_delta;
551 /* Adjust power delta for channel 14 */
552 if (channel->center_freq == 2484)
553 cck_ofdm_pwr_delta =
554 ((ee->ee_cck_ofdm_power_delta -
555 ee->ee_scaled_cck_delta) * 2) / 10;
556 else
557 cck_ofdm_pwr_delta =
558 (ee->ee_cck_ofdm_power_delta * 2) / 10;
560 /* Set CCK to OFDM power delta on tx power
561 * adjustment register */
562 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
563 if (channel->hw_value == CHANNEL_G)
564 ath5k_hw_reg_write(ah,
565 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
566 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
567 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
568 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
569 AR5K_PHY_TX_PWR_ADJ);
570 else
571 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
572 } else {
573 /* For older revs we scale power on sw during tx power
574 * setup */
575 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
576 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
577 ee->ee_cck_ofdm_gain_delta;
580 /* Set antenna idle switch table */
581 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
582 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
583 (ah->ah_antenna[ee_mode][0] |
584 AR5K_PHY_ANT_CTL_TXRX_EN));
586 /* Set antenna switch table */
587 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
588 AR5K_PHY_ANT_SWITCH_TABLE_0);
589 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
590 AR5K_PHY_ANT_SWITCH_TABLE_1);
592 /* Noise floor threshold */
593 ath5k_hw_reg_write(ah,
594 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
595 AR5K_PHY_NFTHRES);
597 if ((channel->hw_value & CHANNEL_TURBO) &&
598 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
599 /* Switch settling time (Turbo) */
600 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
601 AR5K_PHY_SETTLING_SWITCH,
602 ee->ee_switch_settling_turbo[ee_mode]);
604 /* Tx/Rx attenuation (Turbo) */
605 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
606 AR5K_PHY_GAIN_TXRX_ATTEN,
607 ee->ee_atn_tx_rx_turbo[ee_mode]);
609 /* ADC/PGA desired size (Turbo) */
610 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
611 AR5K_PHY_DESIRED_SIZE_ADC,
612 ee->ee_adc_desired_size_turbo[ee_mode]);
614 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
615 AR5K_PHY_DESIRED_SIZE_PGA,
616 ee->ee_pga_desired_size_turbo[ee_mode]);
618 /* Tx/Rx margin (Turbo) */
619 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
620 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
621 ee->ee_margin_tx_rx_turbo[ee_mode]);
623 } else {
624 /* Switch settling time */
625 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
626 AR5K_PHY_SETTLING_SWITCH,
627 ee->ee_switch_settling[ee_mode]);
629 /* Tx/Rx attenuation */
630 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
631 AR5K_PHY_GAIN_TXRX_ATTEN,
632 ee->ee_atn_tx_rx[ee_mode]);
634 /* ADC/PGA desired size */
635 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
636 AR5K_PHY_DESIRED_SIZE_ADC,
637 ee->ee_adc_desired_size[ee_mode]);
639 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
640 AR5K_PHY_DESIRED_SIZE_PGA,
641 ee->ee_pga_desired_size[ee_mode]);
643 /* Tx/Rx margin */
644 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
645 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
646 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
647 ee->ee_margin_tx_rx[ee_mode]);
650 /* XPA delays */
651 ath5k_hw_reg_write(ah,
652 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
653 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
654 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
655 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
657 /* XLNA delay */
658 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
659 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
660 ee->ee_tx_end2xlna_enable[ee_mode]);
662 /* Thresh64 (ANI) */
663 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
664 AR5K_PHY_NF_THRESH62,
665 ee->ee_thr_62[ee_mode]);
668 /* False detect backoff for channels
669 * that have spur noise. Write the new
670 * cyclic power RSSI threshold. */
671 if (ath5k_hw_chan_has_spur_noise(ah, channel))
672 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
673 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
674 AR5K_INIT_CYCRSSI_THR1 +
675 ee->ee_false_detect[ee_mode]);
676 else
677 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
678 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
679 AR5K_INIT_CYCRSSI_THR1);
681 /* I/Q correction
682 * TODO: Per channel i/q infos ? */
683 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
684 AR5K_PHY_IQ_CORR_ENABLE |
685 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
686 ee->ee_q_cal[ee_mode]);
688 /* Heavy clipping -disable for now */
689 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
690 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
692 return;
696 * Main reset function
698 int ath5k_hw_reset(struct ath5k_hw *ah,
699 struct net80211_channel *channel, int change_channel)
701 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
702 u32 phy_tst1;
703 u8 mode, freq, ee_mode, ant[2];
704 int i, ret;
706 s_ant = 0;
707 ee_mode = 0;
708 staid1_flags = 0;
709 tsf_up = 0;
710 tsf_lo = 0;
711 freq = 0;
712 mode = 0;
715 * Save some registers before a reset
717 /*DCU/Antenna selection not available on 5210*/
718 if (ah->ah_version != AR5K_AR5210) {
720 switch (channel->hw_value & CHANNEL_MODES) {
721 case CHANNEL_A:
722 mode = AR5K_MODE_11A;
723 freq = AR5K_INI_RFGAIN_5GHZ;
724 ee_mode = AR5K_EEPROM_MODE_11A;
725 break;
726 case CHANNEL_G:
727 mode = AR5K_MODE_11G;
728 freq = AR5K_INI_RFGAIN_2GHZ;
729 ee_mode = AR5K_EEPROM_MODE_11G;
730 break;
731 case CHANNEL_B:
732 mode = AR5K_MODE_11B;
733 freq = AR5K_INI_RFGAIN_2GHZ;
734 ee_mode = AR5K_EEPROM_MODE_11B;
735 break;
736 case CHANNEL_T:
737 mode = AR5K_MODE_11A_TURBO;
738 freq = AR5K_INI_RFGAIN_5GHZ;
739 ee_mode = AR5K_EEPROM_MODE_11A;
740 break;
741 case CHANNEL_TG:
742 if (ah->ah_version == AR5K_AR5211) {
743 DBG("ath5k: TurboG not available on 5211\n");
744 return -EINVAL;
746 mode = AR5K_MODE_11G_TURBO;
747 freq = AR5K_INI_RFGAIN_2GHZ;
748 ee_mode = AR5K_EEPROM_MODE_11G;
749 break;
750 case CHANNEL_XR:
751 if (ah->ah_version == AR5K_AR5211) {
752 DBG("ath5k: XR mode not available on 5211\n");
753 return -EINVAL;
755 mode = AR5K_MODE_XR;
756 freq = AR5K_INI_RFGAIN_5GHZ;
757 ee_mode = AR5K_EEPROM_MODE_11A;
758 break;
759 default:
760 DBG("ath5k: invalid channel (%d MHz)\n",
761 channel->center_freq);
762 return -EINVAL;
765 if (change_channel) {
767 * Save frame sequence count
768 * For revs. after Oahu, only save
769 * seq num for DCU 0 (Global seq num)
771 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
773 for (i = 0; i < 10; i++)
774 s_seq[i] = ath5k_hw_reg_read(ah,
775 AR5K_QUEUE_DCU_SEQNUM(i));
777 } else {
778 s_seq[0] = ath5k_hw_reg_read(ah,
779 AR5K_QUEUE_DCU_SEQNUM(0));
783 /* Save default antenna */
784 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
786 if (ah->ah_version == AR5K_AR5212) {
787 /* Since we are going to write rf buffer
788 * check if we have any pending gain_F
789 * optimization settings */
790 if (change_channel && ah->ah_rf_banks != NULL)
791 ath5k_hw_gainf_calibrate(ah);
795 /*GPIOs*/
796 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
797 AR5K_PCICFG_LEDSTATE;
798 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
799 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
801 /* AR5K_STA_ID1 flags, only preserve antenna
802 * settings and ack/cts rate mode */
803 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
804 (AR5K_STA_ID1_DEFAULT_ANTENNA |
805 AR5K_STA_ID1_DESC_ANTENNA |
806 AR5K_STA_ID1_RTS_DEF_ANTENNA |
807 AR5K_STA_ID1_ACKCTS_6MB |
808 AR5K_STA_ID1_BASE_RATE_11B |
809 AR5K_STA_ID1_SELFGEN_DEF_ANT);
811 /* Wakeup the device */
812 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, 0);
813 if (ret)
814 return ret;
816 /* PHY access enable */
817 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
818 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
819 else
820 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
821 AR5K_PHY(0));
823 /* Write initial settings */
824 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
825 if (ret)
826 return ret;
829 * 5211/5212 Specific
831 if (ah->ah_version != AR5K_AR5210) {
834 * Write initial RF gain settings
835 * This should work for both 5111/5112
837 ret = ath5k_hw_rfgain_init(ah, freq);
838 if (ret)
839 return ret;
841 mdelay(1);
844 * Tweak initval settings for revised
845 * chipsets and add some more config
846 * bits
848 ath5k_hw_tweak_initval_settings(ah, channel);
851 * Set TX power (FIXME)
853 ret = ath5k_hw_txpower(ah, channel, ee_mode,
854 AR5K_TUNE_DEFAULT_TXPOWER);
855 if (ret)
856 return ret;
858 /* Write rate duration table only on AR5212 */
859 if (ah->ah_version == AR5K_AR5212)
860 ath5k_hw_write_rate_duration(ah, mode);
863 * Write RF buffer
865 ret = ath5k_hw_rfregs_init(ah, channel, mode);
866 if (ret)
867 return ret;
870 /* Write OFDM timings on 5212*/
871 if (ah->ah_version == AR5K_AR5212 &&
872 channel->hw_value & CHANNEL_OFDM) {
873 ret = ath5k_hw_write_ofdm_timings(ah, channel);
874 if (ret)
875 return ret;
878 /*Enable/disable 802.11b mode on 5111
879 (enable 2111 frequency converter + CCK)*/
880 if (ah->ah_radio == AR5K_RF5111) {
881 if (mode == AR5K_MODE_11B)
882 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
883 AR5K_TXCFG_B_MODE);
884 else
885 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
886 AR5K_TXCFG_B_MODE);
890 * In case a fixed antenna was set as default
891 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
892 * registers.
894 if (s_ant != 0) {
895 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
896 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
897 else /* 2 - Aux */
898 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
899 } else {
900 ant[0] = AR5K_ANT_FIXED_A;
901 ant[1] = AR5K_ANT_FIXED_B;
904 /* Commit values from EEPROM */
905 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
907 } else {
909 * For 5210 we do all initialization using
910 * initvals, so we don't have to modify
911 * any settings (5210 also only supports
912 * a/aturbo modes)
914 mdelay(1);
915 /* Disable phy and wait */
916 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
917 mdelay(1);
921 * Restore saved values
924 /*DCU/Antenna selection not available on 5210*/
925 if (ah->ah_version != AR5K_AR5210) {
927 if (change_channel) {
928 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
929 for (i = 0; i < 10; i++)
930 ath5k_hw_reg_write(ah, s_seq[i],
931 AR5K_QUEUE_DCU_SEQNUM(i));
932 } else {
933 ath5k_hw_reg_write(ah, s_seq[0],
934 AR5K_QUEUE_DCU_SEQNUM(0));
938 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
941 /* Ledstate */
942 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
944 /* Gpio settings */
945 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
946 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
948 /* Restore sta_id flags and preserve our mac address*/
949 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
950 AR5K_STA_ID0);
951 ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
952 AR5K_STA_ID1);
956 * Configure PCU
959 /* Restore bssid and bssid mask */
960 /* XXX: add ah->aid once mac80211 gives this to us */
961 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
963 /* Set PCU config */
964 ath5k_hw_set_opmode(ah);
966 /* Clear any pending interrupts
967 * PISR/SISR Not available on 5210 */
968 if (ah->ah_version != AR5K_AR5210)
969 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
971 /* Set RSSI/BRSSI thresholds
973 * Note: If we decide to set this value
974 * dynamicaly, have in mind that when AR5K_RSSI_THR
975 * register is read it might return 0x40 if we haven't
976 * wrote anything to it plus BMISS RSSI threshold is zeroed.
977 * So doing a save/restore procedure here isn't the right
978 * choice. Instead store it on ath5k_hw */
979 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
980 AR5K_TUNE_BMISS_THRES <<
981 AR5K_RSSI_THR_BMISS_S),
982 AR5K_RSSI_THR);
984 /* MIC QoS support */
985 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
986 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
987 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
990 /* QoS NOACK Policy */
991 if (ah->ah_version == AR5K_AR5212) {
992 ath5k_hw_reg_write(ah,
993 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
994 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
995 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
996 AR5K_QOS_NOACK);
1001 * Configure PHY
1004 /* Set channel on PHY */
1005 ret = ath5k_hw_channel(ah, channel);
1006 if (ret)
1007 return ret;
1010 * Enable the PHY and wait until completion
1011 * This includes BaseBand and Synthesizer
1012 * activation.
1014 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1017 * On 5211+ read activation -> rx delay
1018 * and use it.
1020 * TODO: Half/quarter rate support
1022 if (ah->ah_version != AR5K_AR5210) {
1023 u32 delay;
1024 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1025 AR5K_PHY_RX_DELAY_M;
1026 delay = (channel->hw_value & CHANNEL_CCK) ?
1027 ((delay << 2) / 22) : (delay / 10);
1029 udelay(100 + (2 * delay));
1030 } else {
1031 mdelay(1);
1035 * Perform ADC test to see if baseband is ready
1036 * Set tx hold and check adc test register
1038 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1039 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1040 for (i = 0; i <= 20; i++) {
1041 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1042 break;
1043 udelay(200);
1045 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1048 * Start automatic gain control calibration
1050 * During AGC calibration RX path is re-routed to
1051 * a power detector so we don't receive anything.
1053 * This method is used to calibrate some static offsets
1054 * used together with on-the fly I/Q calibration (the
1055 * one performed via ath5k_hw_phy_calibrate), that doesn't
1056 * interrupt rx path.
1058 * While rx path is re-routed to the power detector we also
1059 * start a noise floor calibration, to measure the
1060 * card's noise floor (the noise we measure when we are not
1061 * transmiting or receiving anything).
1063 * If we are in a noisy environment AGC calibration may time
1064 * out and/or noise floor calibration might timeout.
1066 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1067 AR5K_PHY_AGCCTL_CAL);
1069 /* At the same time start I/Q calibration for QAM constellation
1070 * -no need for CCK- */
1071 ah->ah_calibration = 0;
1072 if (!(mode == AR5K_MODE_11B)) {
1073 ah->ah_calibration = 1;
1074 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1075 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1076 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1077 AR5K_PHY_IQ_RUN);
1080 /* Wait for gain calibration to finish (we check for I/Q calibration
1081 * during ath5k_phy_calibrate) */
1082 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1083 AR5K_PHY_AGCCTL_CAL, 0, 0)) {
1084 DBG("ath5k: gain calibration timeout (%d MHz)\n",
1085 channel->center_freq);
1089 * If we run NF calibration before AGC, it always times out.
1090 * Binary HAL starts NF and AGC calibration at the same time
1091 * and only waits for AGC to finish. Also if AGC or NF cal.
1092 * times out, reset doesn't fail on binary HAL. I believe
1093 * that's wrong because since rx path is routed to a detector,
1094 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1095 * enables noise floor calibration after offset calibration and if noise
1096 * floor calibration fails, reset fails. I believe that's
1097 * a better approach, we just need to find a polling interval
1098 * that suits best, even if reset continues we need to make
1099 * sure that rx path is ready.
1101 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1105 * Configure QCUs/DCUs
1108 /* TODO: HW Compression support for data queues */
1109 /* TODO: Burst prefetch for data queues */
1112 * Reset queues and start beacon timers at the end of the reset routine
1113 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1114 * Note: If we want we can assign multiple qcus on one dcu.
1116 ret = ath5k_hw_reset_tx_queue(ah);
1117 if (ret) {
1118 DBG("ath5k: failed to reset TX queue\n");
1119 return ret;
1123 * Configure DMA/Interrupts
1127 * Set Rx/Tx DMA Configuration
1129 * Set standard DMA size (128). Note that
1130 * a DMA size of 512 causes rx overruns and tx errors
1131 * on pci-e cards (tested on 5424 but since rx overruns
1132 * also occur on 5416/5418 with madwifi we set 128
1133 * for all PCI-E cards to be safe).
1135 * XXX: need to check 5210 for this
1136 * TODO: Check out tx triger level, it's always 64 on dumps but I
1137 * guess we can tweak it and see how it goes ;-)
1139 if (ah->ah_version != AR5K_AR5210) {
1140 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1141 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1142 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1143 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1146 /* Pre-enable interrupts on 5211/5212*/
1147 if (ah->ah_version != AR5K_AR5210)
1148 ath5k_hw_set_imr(ah, ah->ah_imr);
1151 * Setup RFKill interrupt if rfkill flag is set on eeprom.
1152 * TODO: Use gpio pin and polarity infos from eeprom
1153 * TODO: Handle this in ath5k_intr because it'll result
1154 * a nasty interrupt storm.
1156 #if 0
1157 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1158 ath5k_hw_set_gpio_input(ah, 0);
1159 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1160 if (ah->ah_gpio[0] == 0)
1161 ath5k_hw_set_gpio_intr(ah, 0, 1);
1162 else
1163 ath5k_hw_set_gpio_intr(ah, 0, 0);
1165 #endif
1168 * Disable beacons and reset the register
1170 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1171 AR5K_BEACON_RESET_TSF);
1173 return 0;
1176 #undef _ATH5K_RESET