4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
9 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
11 * Permission to use, copy, modify, and distribute this software for any
12 * purpose with or without fee is hereby granted, provided that the above
13 * copyright notice and this permission notice appear in all copies.
15 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
16 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
17 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
18 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
19 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
20 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
21 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 static inline int min(int x
, int y
)
40 return (x
< y
) ? x
: y
;
43 static inline int max(int x
, int y
)
45 return (x
> y
) ? x
: y
;
49 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
51 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw
*ah
,
52 const struct ath5k_rf_reg
*rf_regs
,
53 u32 val
, u8 reg_id
, int set
)
55 const struct ath5k_rf_reg
*rfreg
= NULL
;
56 u8 offset
, bank
, num_bits
, col
, position
;
58 u32 mask
, data
, last_bit
, bits_shifted
, first_bit
;
64 rfb
= ah
->ah_rf_banks
;
66 for (i
= 0; i
< ah
->ah_rf_regs_count
; i
++) {
67 if (rf_regs
[i
].index
== reg_id
) {
73 if (rfb
== NULL
|| rfreg
== NULL
) {
74 DBG("ath5k: RF register not found!\n");
75 /* should not happen */
80 num_bits
= rfreg
->field
.len
;
81 first_bit
= rfreg
->field
.pos
;
82 col
= rfreg
->field
.col
;
84 /* first_bit is an offset from bank's
85 * start. Since we have all banks on
86 * the same array, we use this offset
87 * to mark each bank's start */
88 offset
= ah
->ah_offset
[bank
];
91 if (!(col
<= 3 && num_bits
<= 32 && first_bit
+ num_bits
<= 319)) {
92 DBG("ath5k: RF invalid values at offset %d\n", offset
);
96 entry
= ((first_bit
- 1) / 8) + offset
;
97 position
= (first_bit
- 1) % 8;
100 data
= ath5k_hw_bitswap(val
, num_bits
);
102 for (bits_shifted
= 0, bits_left
= num_bits
; bits_left
> 0;
103 position
= 0, entry
++) {
105 last_bit
= (position
+ bits_left
> 8) ? 8 :
106 position
+ bits_left
;
108 mask
= (((1 << last_bit
) - 1) ^ ((1 << position
) - 1)) <<
113 rfb
[entry
] |= ((data
<< position
) << (col
* 8)) & mask
;
114 data
>>= (8 - position
);
116 data
|= (((rfb
[entry
] & mask
) >> (col
* 8)) >> position
)
118 bits_shifted
+= last_bit
- position
;
121 bits_left
-= 8 - position
;
124 data
= set
? 1 : ath5k_hw_bitswap(data
, num_bits
);
129 /**********************\
130 * RF Gain optimization *
131 \**********************/
134 * This code is used to optimize rf gain on different environments
135 * (temprature mostly) based on feedback from a power detector.
137 * It's only used on RF5111 and RF5112, later RF chips seem to have
138 * auto adjustment on hw -notice they have a much smaller BANK 7 and
139 * no gain optimization ladder-.
141 * For more infos check out this patent doc
142 * http://www.freepatentsonline.com/7400691.html
144 * This paper describes power drops as seen on the receiver due to
146 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
147 * %20of%20Power%20Control.pdf
149 * And this is the MadWiFi bug entry related to the above
150 * http://madwifi-project.org/ticket/1659
151 * with various measurements and diagrams
153 * TODO: Deal with power drops due to probes by setting an apropriate
154 * tx power on the probe packets ! Make this part of the calibration process.
157 /* Initialize ah_gain durring attach */
158 int ath5k_hw_rfgain_opt_init(struct ath5k_hw
*ah
)
160 /* Initialize the gain optimization values */
161 switch (ah
->ah_radio
) {
163 ah
->ah_gain
.g_step_idx
= rfgain_opt_5111
.go_default
;
164 ah
->ah_gain
.g_low
= 20;
165 ah
->ah_gain
.g_high
= 35;
166 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
169 ah
->ah_gain
.g_step_idx
= rfgain_opt_5112
.go_default
;
170 ah
->ah_gain
.g_low
= 20;
171 ah
->ah_gain
.g_high
= 85;
172 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
181 /* Schedule a gain probe check on the next transmited packet.
182 * That means our next packet is going to be sent with lower
183 * tx power and a Peak to Average Power Detector (PAPD) will try
184 * to measure the gain.
186 * TODO: Use propper tx power setting for the probe packet so
187 * that we don't observe a serious power drop on the receiver
189 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
190 * just after we enable the probe so that we don't mess with
191 * standard traffic ? Maybe it's time to use sw interrupts and
192 * a probe tasklet !!!
194 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw
*ah
)
197 /* Skip if gain calibration is inactive or
198 * we already handle a probe request */
199 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_ACTIVE
)
202 /* Send the packet with 2dB below max power as
203 * patent doc suggest */
204 ath5k_hw_reg_write(ah
, AR5K_REG_SM(ah
->ah_txpower
.txp_max_pwr
- 4,
205 AR5K_PHY_PAPD_PROBE_TXPOWER
) |
206 AR5K_PHY_PAPD_PROBE_TX_NEXT
, AR5K_PHY_PAPD_PROBE
);
208 ah
->ah_gain
.g_state
= AR5K_RFGAIN_READ_REQUESTED
;
212 /* Calculate gain_F measurement correction
213 * based on the current step for RF5112 rev. 2 */
214 static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw
*ah
)
218 const struct ath5k_gain_opt
*go
;
219 const struct ath5k_gain_opt_step
*g_step
;
220 const struct ath5k_rf_reg
*rf_regs
;
222 /* Only RF5112 Rev. 2 supports it */
223 if ((ah
->ah_radio
!= AR5K_RF5112
) ||
224 (ah
->ah_radio_5ghz_revision
<= AR5K_SREV_RAD_5112A
))
227 go
= &rfgain_opt_5112
;
228 rf_regs
= rf_regs_5112a
;
229 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
231 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
233 if (ah
->ah_rf_banks
== NULL
)
236 rf
= ah
->ah_rf_banks
;
237 ah
->ah_gain
.g_f_corr
= 0;
239 /* No VGA (Variable Gain Amplifier) override, skip */
240 if (ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
, 0) != 1)
243 /* Mix gain stepping */
244 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXGAIN_STEP
, 0);
246 /* Mix gain override */
247 mix
= g_step
->gos_param
[0];
251 ah
->ah_gain
.g_f_corr
= step
* 2;
254 ah
->ah_gain
.g_f_corr
= (step
- 5) * 2;
257 ah
->ah_gain
.g_f_corr
= step
;
260 ah
->ah_gain
.g_f_corr
= 0;
264 return ah
->ah_gain
.g_f_corr
;
267 /* Check if current gain_F measurement is in the range of our
268 * power detector windows. If we get a measurement outside range
269 * we know it's not accurate (detectors can't measure anything outside
270 * their detection window) so we must ignore it */
271 static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw
*ah
)
273 const struct ath5k_rf_reg
*rf_regs
;
274 u32 step
, mix_ovr
, level
[4];
277 if (ah
->ah_rf_banks
== NULL
)
280 rf
= ah
->ah_rf_banks
;
282 if (ah
->ah_radio
== AR5K_RF5111
) {
284 rf_regs
= rf_regs_5111
;
285 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
287 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_RFGAIN_STEP
,
291 level
[1] = (step
== 63) ? 50 : step
+ 4;
292 level
[2] = (step
!= 63) ? 64 : level
[0];
293 level
[3] = level
[2] + 50 ;
295 ah
->ah_gain
.g_high
= level
[3] -
296 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN
: -5);
297 ah
->ah_gain
.g_low
= level
[0] +
298 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN
: 0);
301 rf_regs
= rf_regs_5112
;
302 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
304 mix_ovr
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
,
307 level
[0] = level
[2] = 0;
310 level
[1] = level
[3] = 83;
312 level
[1] = level
[3] = 107;
313 ah
->ah_gain
.g_high
= 55;
317 return (ah
->ah_gain
.g_current
>= level
[0] &&
318 ah
->ah_gain
.g_current
<= level
[1]) ||
319 (ah
->ah_gain
.g_current
>= level
[2] &&
320 ah
->ah_gain
.g_current
<= level
[3]);
323 /* Perform gain_F adjustment by choosing the right set
324 * of parameters from rf gain optimization ladder */
325 static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw
*ah
)
327 const struct ath5k_gain_opt
*go
;
328 const struct ath5k_gain_opt_step
*g_step
;
331 switch (ah
->ah_radio
) {
333 go
= &rfgain_opt_5111
;
336 go
= &rfgain_opt_5112
;
342 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
344 if (ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_high
) {
346 /* Reached maximum */
347 if (ah
->ah_gain
.g_step_idx
== 0)
350 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
351 ah
->ah_gain
.g_target
>= ah
->ah_gain
.g_high
&&
352 ah
->ah_gain
.g_step_idx
> 0;
353 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
354 ah
->ah_gain
.g_target
-= 2 *
355 (go
->go_step
[--(ah
->ah_gain
.g_step_idx
)].gos_gain
-
362 if (ah
->ah_gain
.g_current
<= ah
->ah_gain
.g_low
) {
364 /* Reached minimum */
365 if (ah
->ah_gain
.g_step_idx
== (go
->go_steps_count
- 1))
368 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
369 ah
->ah_gain
.g_target
<= ah
->ah_gain
.g_low
&&
370 ah
->ah_gain
.g_step_idx
< go
->go_steps_count
-1;
371 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
372 ah
->ah_gain
.g_target
-= 2 *
373 (go
->go_step
[++ah
->ah_gain
.g_step_idx
].gos_gain
-
381 DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
382 "target gain %d\n", ret
, ah
->ah_gain
.g_step_idx
,
383 ah
->ah_gain
.g_current
, ah
->ah_gain
.g_target
);
388 /* Main callback for thermal rf gain calibration engine
389 * Check for a new gain reading and schedule an adjustment
392 * TODO: Use sw interrupt to schedule reset if gain_F needs
394 enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw
*ah
)
397 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
399 if (ah
->ah_rf_banks
== NULL
||
400 ah
->ah_gain
.g_state
== AR5K_RFGAIN_INACTIVE
)
401 return AR5K_RFGAIN_INACTIVE
;
403 /* No check requested, either engine is inactive
404 * or an adjustment is already requested */
405 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_READ_REQUESTED
)
408 /* Read the PAPD (Peak to Average Power Detector)
410 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_PAPD_PROBE
);
412 /* No probe is scheduled, read gain_F measurement */
413 if (!(data
& AR5K_PHY_PAPD_PROBE_TX_NEXT
)) {
414 ah
->ah_gain
.g_current
= data
>> AR5K_PHY_PAPD_PROBE_GAINF_S
;
415 type
= AR5K_REG_MS(data
, AR5K_PHY_PAPD_PROBE_TYPE
);
417 /* If tx packet is CCK correct the gain_F measurement
418 * by cck ofdm gain delta */
419 if (type
== AR5K_PHY_PAPD_PROBE_TYPE_CCK
) {
420 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
)
421 ah
->ah_gain
.g_current
+=
422 ee
->ee_cck_ofdm_gain_delta
;
424 ah
->ah_gain
.g_current
+=
425 AR5K_GAIN_CCK_PROBE_CORR
;
428 /* Further correct gain_F measurement for
430 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
431 ath5k_hw_rf_gainf_corr(ah
);
432 ah
->ah_gain
.g_current
=
433 ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_f_corr
?
434 (ah
->ah_gain
.g_current
-ah
->ah_gain
.g_f_corr
) :
438 /* Check if measurement is ok and if we need
439 * to adjust gain, schedule a gain adjustment,
440 * else switch back to the acive state */
441 if (ath5k_hw_rf_check_gainf_readback(ah
) &&
442 AR5K_GAIN_CHECK_ADJUST(&ah
->ah_gain
) &&
443 ath5k_hw_rf_gainf_adjust(ah
)) {
444 ah
->ah_gain
.g_state
= AR5K_RFGAIN_NEED_CHANGE
;
446 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
451 return ah
->ah_gain
.g_state
;
454 /* Write initial rf gain table to set the RF sensitivity
455 * this one works on all RF chips and has nothing to do
456 * with gain_F calibration */
457 int ath5k_hw_rfgain_init(struct ath5k_hw
*ah
, unsigned int freq
)
459 const struct ath5k_ini_rfgain
*ath5k_rfg
;
460 unsigned int i
, size
;
462 switch (ah
->ah_radio
) {
464 ath5k_rfg
= rfgain_5111
;
465 size
= ARRAY_SIZE(rfgain_5111
);
468 ath5k_rfg
= rfgain_5112
;
469 size
= ARRAY_SIZE(rfgain_5112
);
472 ath5k_rfg
= rfgain_2413
;
473 size
= ARRAY_SIZE(rfgain_2413
);
476 ath5k_rfg
= rfgain_2316
;
477 size
= ARRAY_SIZE(rfgain_2316
);
480 ath5k_rfg
= rfgain_5413
;
481 size
= ARRAY_SIZE(rfgain_5413
);
485 ath5k_rfg
= rfgain_2425
;
486 size
= ARRAY_SIZE(rfgain_2425
);
493 case AR5K_INI_RFGAIN_2GHZ
:
494 case AR5K_INI_RFGAIN_5GHZ
:
500 for (i
= 0; i
< size
; i
++) {
502 ath5k_hw_reg_write(ah
, ath5k_rfg
[i
].rfg_value
[freq
],
503 (u32
)ath5k_rfg
[i
].rfg_register
);
511 /********************\
512 * RF Registers setup *
513 \********************/
517 * Setup RF registers by writing rf buffer on hw
519 int ath5k_hw_rfregs_init(struct ath5k_hw
*ah
, struct net80211_channel
*channel
,
522 const struct ath5k_rf_reg
*rf_regs
;
523 const struct ath5k_ini_rfbuffer
*ini_rfb
;
524 const struct ath5k_gain_opt
*go
= NULL
;
525 const struct ath5k_gain_opt_step
*g_step
;
526 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
529 int obdb
= -1, bank
= -1;
532 switch (ah
->ah_radio
) {
534 rf_regs
= rf_regs_5111
;
535 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
537 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5111
);
538 go
= &rfgain_opt_5111
;
541 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
542 rf_regs
= rf_regs_5112a
;
543 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
545 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112a
);
547 rf_regs
= rf_regs_5112
;
548 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
550 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112
);
552 go
= &rfgain_opt_5112
;
555 rf_regs
= rf_regs_2413
;
556 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2413
);
558 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2413
);
561 rf_regs
= rf_regs_2316
;
562 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2316
);
564 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2316
);
567 rf_regs
= rf_regs_5413
;
568 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5413
);
570 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5413
);
573 rf_regs
= rf_regs_2425
;
574 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
576 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2317
);
579 rf_regs
= rf_regs_2425
;
580 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
581 if (ah
->ah_mac_srev
< AR5K_SREV_AR2417
) {
583 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2425
);
586 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2417
);
593 /* If it's the first time we set rf buffer, allocate
594 * ah->ah_rf_banks based on ah->ah_rf_banks_size
596 if (ah
->ah_rf_banks
== NULL
) {
597 ah
->ah_rf_banks
= malloc(sizeof(u32
) * ah
->ah_rf_banks_size
);
598 if (ah
->ah_rf_banks
== NULL
) {
603 /* Copy values to modify them */
604 rfb
= ah
->ah_rf_banks
;
606 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
607 if (ini_rfb
[i
].rfb_bank
>= AR5K_MAX_RF_BANKS
) {
608 DBG("ath5k: invalid RF register bank\n");
612 /* Bank changed, write down the offset */
613 if (bank
!= ini_rfb
[i
].rfb_bank
) {
614 bank
= ini_rfb
[i
].rfb_bank
;
615 ah
->ah_offset
[bank
] = i
;
618 rfb
[i
] = ini_rfb
[i
].rfb_mode_data
[mode
];
621 /* Set Output and Driver bias current (OB/DB) */
622 if (channel
->hw_value
& CHANNEL_2GHZ
) {
624 if (channel
->hw_value
& CHANNEL_CCK
)
625 ee_mode
= AR5K_EEPROM_MODE_11B
;
627 ee_mode
= AR5K_EEPROM_MODE_11G
;
629 /* For RF511X/RF211X combination we
630 * use b_OB and b_DB parameters stored
631 * in eeprom on ee->ee_ob[ee_mode][0]
633 * For all other chips we use OB/DB for 2Ghz
634 * stored in the b/g modal section just like
635 * 802.11a on ee->ee_ob[ee_mode][1] */
636 if ((ah
->ah_radio
== AR5K_RF5111
) ||
637 (ah
->ah_radio
== AR5K_RF5112
))
642 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
645 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
648 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
649 } else if ((channel
->hw_value
& CHANNEL_5GHZ
) ||
650 (ah
->ah_radio
== AR5K_RF5111
)) {
652 /* For 11a, Turbo and XR we need to choose
653 * OB/DB based on frequency range */
654 ee_mode
= AR5K_EEPROM_MODE_11A
;
655 obdb
= channel
->center_freq
>= 5725 ? 3 :
656 (channel
->center_freq
>= 5500 ? 2 :
657 (channel
->center_freq
>= 5260 ? 1 :
658 (channel
->center_freq
> 4000 ? 0 : -1)));
663 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
666 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
670 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
672 /* Bank Modifications (chip-specific) */
673 if (ah
->ah_radio
== AR5K_RF5111
) {
675 /* Set gain_F settings according to current step */
676 if (channel
->hw_value
& CHANNEL_OFDM
) {
678 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_FRAME_CTL
,
679 AR5K_PHY_FRAME_CTL_TX_CLIP
,
680 g_step
->gos_param
[0]);
682 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
685 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
688 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
689 AR5K_RF_RFGAIN_SEL
, 1);
691 /* We programmed gain_F parameters, switch back
693 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
699 ath5k_hw_rfb_op(ah
, rf_regs
, !ee
->ee_xpd
[ee_mode
],
702 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_x_gain
[ee_mode
],
703 AR5K_RF_XPD_GAIN
, 1);
705 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
708 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
711 /* TODO: Half/quarter channel support */
714 if (ah
->ah_radio
== AR5K_RF5112
) {
716 /* Set gain_F settings according to current step */
717 if (channel
->hw_value
& CHANNEL_OFDM
) {
719 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[0],
720 AR5K_RF_MIXGAIN_OVR
, 1);
722 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
725 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
728 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
731 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[4],
734 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[5],
737 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[6],
740 /* We programmed gain_F parameters, switch back
742 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
747 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
750 if (ah
->ah_radio_5ghz_revision
< AR5K_SREV_RAD_5112A
) {
751 /* Rev. 1 supports only one xpd */
752 ath5k_hw_rfb_op(ah
, rf_regs
,
753 ee
->ee_x_gain
[ee_mode
],
754 AR5K_RF_XPD_GAIN
, 1);
757 /* TODO: Set high and low gain bits */
758 ath5k_hw_rfb_op(ah
, rf_regs
,
759 ee
->ee_x_gain
[ee_mode
],
760 AR5K_RF_PD_GAIN_LO
, 1);
761 ath5k_hw_rfb_op(ah
, rf_regs
,
762 ee
->ee_x_gain
[ee_mode
],
763 AR5K_RF_PD_GAIN_HI
, 1);
765 /* Lower synth voltage on Rev 2 */
766 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
767 AR5K_RF_HIGH_VC_CP
, 1);
769 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
770 AR5K_RF_MID_VC_CP
, 1);
772 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
773 AR5K_RF_LOW_VC_CP
, 1);
775 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
778 /* Decrease power consumption on 5213+ BaseBand */
779 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
780 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
783 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
786 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
789 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
792 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
797 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
800 /* TODO: Half/quarter channel support */
804 if (ah
->ah_radio
== AR5K_RF5413
&&
805 channel
->hw_value
& CHANNEL_2GHZ
) {
807 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_DERBY_CHAN_SEL_MODE
,
810 /* Set optimum value for early revisions (on pci-e chips) */
811 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
812 ah
->ah_mac_srev
< AR5K_SREV_AR5413
)
813 ath5k_hw_rfb_op(ah
, rf_regs
, ath5k_hw_bitswap(6, 3),
814 AR5K_RF_PWD_ICLOBUF_2G
, 1);
818 /* Write RF banks on hw */
819 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
821 ath5k_hw_reg_write(ah
, rfb
[i
], ini_rfb
[i
].rfb_ctrl_register
);
828 /**************************\
829 PHY/RF channel functions
830 \**************************/
833 * Check if a channel is supported
835 int ath5k_channel_ok(struct ath5k_hw
*ah
, u16 freq
, unsigned int flags
)
837 /* Check if the channel is in our supported range */
838 if (flags
& CHANNEL_2GHZ
) {
839 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_2ghz_min
) &&
840 (freq
<= ah
->ah_capabilities
.cap_range
.range_2ghz_max
))
842 } else if (flags
& CHANNEL_5GHZ
)
843 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_5ghz_min
) &&
844 (freq
<= ah
->ah_capabilities
.cap_range
.range_5ghz_max
))
851 * Convertion needed for RF5110
853 static u32
ath5k_hw_rf5110_chan2athchan(struct net80211_channel
*channel
)
858 * Convert IEEE channel/MHz to an internal channel value used
859 * by the AR5210 chipset. This has not been verified with
860 * newer chipsets like the AR5212A who have a completely
861 * different RF/PHY part.
863 athchan
= (ath5k_hw_bitswap((ath5k_freq_to_channel(channel
->center_freq
)
870 * Set channel on RF5110
872 static int ath5k_hw_rf5110_channel(struct ath5k_hw
*ah
,
873 struct net80211_channel
*channel
)
878 * Set the channel and wait
880 data
= ath5k_hw_rf5110_chan2athchan(channel
);
881 ath5k_hw_reg_write(ah
, data
, AR5K_RF_BUFFER
);
882 ath5k_hw_reg_write(ah
, 0, AR5K_RF_BUFFER_CONTROL_0
);
889 * Convertion needed for 5111
891 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee
,
892 struct ath5k_athchan_2ghz
*athchan
)
896 /* Cast this value to catch negative channel numbers (>= -19) */
900 * Map 2GHz IEEE channel to 5GHz Atheros channel
903 athchan
->a2_athchan
= 115 + channel
;
904 athchan
->a2_flags
= 0x46;
905 } else if (channel
== 14) {
906 athchan
->a2_athchan
= 124;
907 athchan
->a2_flags
= 0x44;
908 } else if (channel
>= 15 && channel
<= 26) {
909 athchan
->a2_athchan
= ((channel
- 14) * 4) + 132;
910 athchan
->a2_flags
= 0x46;
918 * Set channel on 5111
920 static int ath5k_hw_rf5111_channel(struct ath5k_hw
*ah
,
921 struct net80211_channel
*channel
)
923 struct ath5k_athchan_2ghz ath5k_channel_2ghz
;
924 unsigned int ath5k_channel
= ath5k_freq_to_channel(channel
->center_freq
);
925 u32 data0
, data1
, clock
;
929 * Set the channel on the RF5111 radio
933 if (channel
->hw_value
& CHANNEL_2GHZ
) {
934 /* Map 2GHz channel to 5GHz Atheros channel ID */
935 ret
= ath5k_hw_rf5111_chan2athchan(ath5k_channel
,
936 &ath5k_channel_2ghz
);
940 ath5k_channel
= ath5k_channel_2ghz
.a2_athchan
;
941 data0
= ((ath5k_hw_bitswap(ath5k_channel_2ghz
.a2_flags
, 8) & 0xff)
945 if (ath5k_channel
< 145 || !(ath5k_channel
& 1)) {
947 data1
= ((ath5k_hw_bitswap(ath5k_channel
- 24, 8) & 0xff) << 2) |
948 (clock
<< 1) | (1 << 10) | 1;
951 data1
= ((ath5k_hw_bitswap((ath5k_channel
- 24) / 2, 8) & 0xff)
952 << 2) | (clock
<< 1) | (1 << 10) | 1;
955 ath5k_hw_reg_write(ah
, (data1
& 0xff) | ((data0
& 0xff) << 8),
957 ath5k_hw_reg_write(ah
, ((data1
>> 8) & 0xff) | (data0
& 0xff00),
958 AR5K_RF_BUFFER_CONTROL_3
);
964 * Set channel on 5112 and newer
966 static int ath5k_hw_rf5112_channel(struct ath5k_hw
*ah
,
967 struct net80211_channel
*channel
)
969 u32 data
, data0
, data1
, data2
;
972 data
= data0
= data1
= data2
= 0;
973 c
= channel
->center_freq
;
976 if (!((c
- 2224) % 5)) {
977 data0
= ((2 * (c
- 704)) - 3040) / 10;
979 } else if (!((c
- 2192) % 5)) {
980 data0
= ((2 * (c
- 672)) - 3040) / 10;
985 data0
= ath5k_hw_bitswap((data0
<< 2) & 0xff, 8);
986 } else if ((c
- (c
% 5)) != 2 || c
> 5435) {
987 if (!(c
% 20) && c
>= 5120) {
988 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
989 data2
= ath5k_hw_bitswap(3, 2);
990 } else if (!(c
% 10)) {
991 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
992 data2
= ath5k_hw_bitswap(2, 2);
993 } else if (!(c
% 5)) {
994 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
995 data2
= ath5k_hw_bitswap(1, 2);
999 data0
= ath5k_hw_bitswap((10 * (c
- 2) - 4800) / 25 + 1, 8);
1000 data2
= ath5k_hw_bitswap(0, 2);
1003 data
= (data0
<< 4) | (data1
<< 1) | (data2
<< 2) | 0x1001;
1005 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1006 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1012 * Set the channel on the RF2425
1014 static int ath5k_hw_rf2425_channel(struct ath5k_hw
*ah
,
1015 struct net80211_channel
*channel
)
1017 u32 data
, data0
, data2
;
1020 data
= data0
= data2
= 0;
1021 c
= channel
->center_freq
;
1024 data0
= ath5k_hw_bitswap((c
- 2272), 8);
1027 } else if ((c
- (c
% 5)) != 2 || c
> 5435) {
1028 if (!(c
% 20) && c
< 5120)
1029 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1031 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1033 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1036 data2
= ath5k_hw_bitswap(1, 2);
1038 data0
= ath5k_hw_bitswap((10 * (c
- 2) - 4800) / 25 + 1, 8);
1039 data2
= ath5k_hw_bitswap(0, 2);
1042 data
= (data0
<< 4) | data2
<< 2 | 0x1001;
1044 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1045 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1051 * Set a channel on the radio chip
1053 int ath5k_hw_channel(struct ath5k_hw
*ah
, struct net80211_channel
*channel
)
1057 * Check bounds supported by the PHY (we don't care about regultory
1058 * restrictions at this point). Note: hw_value already has the band
1059 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1060 * of the band by that */
1061 if (!ath5k_channel_ok(ah
, channel
->center_freq
, channel
->hw_value
)) {
1062 DBG("ath5k: channel frequency (%d MHz) out of supported "
1063 "range\n", channel
->center_freq
);
1068 * Set the channel and wait
1070 switch (ah
->ah_radio
) {
1072 ret
= ath5k_hw_rf5110_channel(ah
, channel
);
1075 ret
= ath5k_hw_rf5111_channel(ah
, channel
);
1078 ret
= ath5k_hw_rf2425_channel(ah
, channel
);
1081 ret
= ath5k_hw_rf5112_channel(ah
, channel
);
1086 DBG("ath5k: setting channel failed: %s\n", strerror(ret
));
1090 /* Set JAPAN setting for channel 14 */
1091 if (channel
->center_freq
== 2484) {
1092 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1093 AR5K_PHY_CCKTXCTL_JAPAN
);
1095 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1096 AR5K_PHY_CCKTXCTL_WORLD
);
1099 ah
->ah_current_channel
= channel
;
1100 ah
->ah_turbo
= (channel
->hw_value
== CHANNEL_T
? 1 : 0);
1110 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1112 * @ah: struct ath5k_hw pointer we are operating on
1113 * @freq: the channel frequency, just used for error logging
1115 * This function performs a noise floor calibration of the PHY and waits for
1116 * it to complete. Then the noise floor value is compared to some maximum
1117 * noise floor we consider valid.
1119 * Note that this is different from what the madwifi HAL does: it reads the
1120 * noise floor and afterwards initiates the calibration. Since the noise floor
1121 * calibration can take some time to finish, depending on the current channel
1122 * use, that avoids the occasional timeout warnings we are seeing now.
1124 * See the following link for an Atheros patent on noise floor calibration:
1125 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1126 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1128 * XXX: Since during noise floor calibration antennas are detached according to
1129 * the patent, we should stop tx queues here.
1132 ath5k_hw_noise_floor_calibration(struct ath5k_hw
*ah
, short freq
)
1139 * Enable noise floor calibration
1141 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1142 AR5K_PHY_AGCCTL_NF
);
1144 ret
= ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1145 AR5K_PHY_AGCCTL_NF
, 0, 0);
1148 DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq
);
1152 /* Wait until the noise floor is calibrated and read the value */
1153 for (i
= 20; i
> 0; i
--) {
1155 noise_floor
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
);
1156 noise_floor
= AR5K_PHY_NF_RVAL(noise_floor
);
1157 if (noise_floor
& AR5K_PHY_NF_ACTIVE
) {
1158 noise_floor
= AR5K_PHY_NF_AVAL(noise_floor
);
1160 if (noise_floor
<= AR5K_TUNE_NOISE_FLOOR
)
1165 DBG2("ath5k: noise floor %d\n", noise_floor
);
1167 if (noise_floor
> AR5K_TUNE_NOISE_FLOOR
) {
1168 DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq
);
1172 ah
->ah_noise_floor
= noise_floor
;
1178 * Perform a PHY calibration on RF5110
1179 * -Fix BPSK/QAM Constellation (I/Q correction)
1180 * -Calculate Noise Floor
1182 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw
*ah
,
1183 struct net80211_channel
*channel
)
1185 u32 phy_sig
, phy_agc
, phy_sat
, beacon
;
1189 * Disable beacons and RX/TX queues, wait
1191 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1192 AR5K_DIAG_SW_DIS_TX
| AR5K_DIAG_SW_DIS_RX_5210
);
1193 beacon
= ath5k_hw_reg_read(ah
, AR5K_BEACON_5210
);
1194 ath5k_hw_reg_write(ah
, beacon
& ~AR5K_BEACON_ENABLE
, AR5K_BEACON_5210
);
1199 * Set the channel (with AGC turned off)
1201 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1203 ret
= ath5k_hw_channel(ah
, channel
);
1206 * Activate PHY and wait
1208 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1211 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1217 * Calibrate the radio chip
1220 /* Remember normal state */
1221 phy_sig
= ath5k_hw_reg_read(ah
, AR5K_PHY_SIG
);
1222 phy_agc
= ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCOARSE
);
1223 phy_sat
= ath5k_hw_reg_read(ah
, AR5K_PHY_ADCSAT
);
1225 /* Update radio registers */
1226 ath5k_hw_reg_write(ah
, (phy_sig
& ~(AR5K_PHY_SIG_FIRPWR
)) |
1227 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR
), AR5K_PHY_SIG
);
1229 ath5k_hw_reg_write(ah
, (phy_agc
& ~(AR5K_PHY_AGCCOARSE_HI
|
1230 AR5K_PHY_AGCCOARSE_LO
)) |
1231 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI
) |
1232 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO
), AR5K_PHY_AGCCOARSE
);
1234 ath5k_hw_reg_write(ah
, (phy_sat
& ~(AR5K_PHY_ADCSAT_ICNT
|
1235 AR5K_PHY_ADCSAT_THR
)) |
1236 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT
) |
1237 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR
), AR5K_PHY_ADCSAT
);
1241 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1243 ath5k_hw_reg_write(ah
, AR5K_PHY_RFSTG_DISABLE
, AR5K_PHY_RFSTG
);
1244 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1249 * Enable calibration and wait until completion
1251 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_CAL
);
1253 ret
= ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1254 AR5K_PHY_AGCCTL_CAL
, 0, 0);
1256 /* Reset to normal state */
1257 ath5k_hw_reg_write(ah
, phy_sig
, AR5K_PHY_SIG
);
1258 ath5k_hw_reg_write(ah
, phy_agc
, AR5K_PHY_AGCCOARSE
);
1259 ath5k_hw_reg_write(ah
, phy_sat
, AR5K_PHY_ADCSAT
);
1262 DBG("ath5k: calibration timeout (%d MHz)\n",
1263 channel
->center_freq
);
1267 ath5k_hw_noise_floor_calibration(ah
, channel
->center_freq
);
1270 * Re-enable RX/TX and beacons
1272 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1273 AR5K_DIAG_SW_DIS_TX
| AR5K_DIAG_SW_DIS_RX_5210
);
1274 ath5k_hw_reg_write(ah
, beacon
, AR5K_BEACON_5210
);
1280 * Perform a PHY calibration on RF5111/5112 and newer chips
1282 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw
*ah
,
1283 struct net80211_channel
*channel
)
1286 s32 iq_corr
, i_coff
, i_coffd
, q_coff
, q_coffd
;
1289 if (!ah
->ah_calibration
||
1290 ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) & AR5K_PHY_IQ_RUN
)
1293 /* Calibration has finished, get the results and re-run */
1294 for (i
= 0; i
<= 10; i
++) {
1295 iq_corr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_CORR
);
1296 i_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_I
);
1297 q_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_Q
);
1300 i_coffd
= ((i_pwr
>> 1) + (q_pwr
>> 1)) >> 7;
1301 q_coffd
= q_pwr
>> 7;
1304 if (i_coffd
== 0 || q_coffd
== 0)
1307 i_coff
= ((-iq_corr
) / i_coffd
) & 0x3f;
1309 /* Boundary check */
1315 q_coff
= (((s32
)i_pwr
/ q_coffd
) - 128) & 0x1f;
1317 /* Boundary check */
1323 /* Commit new I/Q value */
1324 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_ENABLE
|
1325 ((u32
)q_coff
) | ((u32
)i_coff
<< AR5K_PHY_IQ_CORR_Q_I_COFF_S
));
1327 /* Re-enable calibration -if we don't we'll commit
1328 * the same values again and again */
1329 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1330 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1331 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_RUN
);
1335 /* TODO: Separate noise floor calibration from I/Q calibration
1336 * since noise floor calibration interrupts rx path while I/Q
1337 * calibration doesn't. We don't need to run noise floor calibration
1338 * as often as I/Q calibration.*/
1339 ath5k_hw_noise_floor_calibration(ah
, channel
->center_freq
);
1341 /* Initiate a gain_F calibration */
1342 ath5k_hw_request_rfgain_probe(ah
);
1348 * Perform a PHY calibration
1350 int ath5k_hw_phy_calibrate(struct ath5k_hw
*ah
,
1351 struct net80211_channel
*channel
)
1355 if (ah
->ah_radio
== AR5K_RF5110
)
1356 ret
= ath5k_hw_rf5110_calibrate(ah
, channel
);
1358 ret
= ath5k_hw_rf511x_calibrate(ah
, channel
);
1363 int ath5k_hw_phy_disable(struct ath5k_hw
*ah
)
1365 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
1370 /********************\
1372 \********************/
1375 * Get the PHY Chip revision
1377 u16
ath5k_hw_radio_revision(struct ath5k_hw
*ah
, unsigned int chan
)
1384 * Set the radio chip access register
1388 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_2GHZ
, AR5K_PHY(0));
1391 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1399 /* ...wait until PHY is ready and read the selected radio revision */
1400 ath5k_hw_reg_write(ah
, 0x00001c16, AR5K_PHY(0x34));
1402 for (i
= 0; i
< 8; i
++)
1403 ath5k_hw_reg_write(ah
, 0x00010000, AR5K_PHY(0x20));
1405 if (ah
->ah_version
== AR5K_AR5210
) {
1406 srev
= ath5k_hw_reg_read(ah
, AR5K_PHY(256) >> 28) & 0xf;
1407 ret
= (u16
)ath5k_hw_bitswap(srev
, 4) + 1;
1409 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(0x100)) >> 24) & 0xff;
1410 ret
= (u16
)ath5k_hw_bitswap(((srev
& 0xf0) >> 4) |
1411 ((srev
& 0x0f) << 4), 8);
1414 /* Reset to the 5GHz mode */
1415 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1420 void /*TODO:Boundary check*/
1421 ath5k_hw_set_def_antenna(struct ath5k_hw
*ah
, unsigned int ant
)
1423 if (ah
->ah_version
!= AR5K_AR5210
)
1424 ath5k_hw_reg_write(ah
, ant
, AR5K_DEFAULT_ANTENNA
);
1427 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw
*ah
)
1429 if (ah
->ah_version
!= AR5K_AR5210
)
1430 return ath5k_hw_reg_read(ah
, AR5K_DEFAULT_ANTENNA
);
1432 return 0; /*XXX: What do we return for 5210 ?*/
1445 * Do linear interpolation between two given (x, y) points
1448 ath5k_get_interpolated_value(s16 target
, s16 x_left
, s16 x_right
,
1449 s16 y_left
, s16 y_right
)
1453 /* Avoid divide by zero and skip interpolation
1454 * if we have the same point */
1455 if ((x_left
== x_right
) || (y_left
== y_right
))
1459 * Since we use ints and not fps, we need to scale up in
1460 * order to get a sane ratio value (or else we 'll eg. get
1461 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1462 * to have some accuracy both for 0.5 and 0.25 steps.
1464 ratio
= ((100 * y_right
- 100 * y_left
)/(x_right
- x_left
));
1466 /* Now scale down to be in range */
1467 result
= y_left
+ (ratio
* (target
- x_left
) / 100);
1473 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1475 * Since we have the top of the curve and we draw the line below
1476 * until we reach 1 (1 pcdac step) we need to know which point
1477 * (x value) that is so that we don't go below y axis and have negative
1478 * pcdac values when creating the curve, or fill the table with zeroes.
1481 ath5k_get_linear_pcdac_min(const u8
*stepL
, const u8
*stepR
,
1482 const s16
*pwrL
, const s16
*pwrR
)
1485 s16 min_pwrL
, min_pwrR
;
1488 if (pwrL
[0] == pwrL
[1])
1494 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
1496 stepL
[0], stepL
[1]);
1502 if (pwrR
[0] == pwrR
[1])
1508 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
1510 stepR
[0], stepR
[1]);
1516 /* Keep the right boundary so that it works for both curves */
1517 return max(min_pwrL
, min_pwrR
);
1521 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1522 * Power to PCDAC curve.
1524 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1525 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1526 * PCDAC/PDADC step for each curve is 64 but we can write more than
1527 * one curves on hw so we can go up to 128 (which is the max step we
1528 * can write on the final table).
1530 * We write y values (PCDAC/PDADC steps) on hw.
1533 ath5k_create_power_curve(s16 pmin
, s16 pmax
,
1534 const s16
*pwr
, const u8
*vpd
,
1536 u8
*vpd_table
, u8 type
)
1538 u8 idx
[2] = { 0, 1 };
1545 /* We want the whole line, so adjust boundaries
1546 * to cover the entire power range. Note that
1547 * power values are already 0.25dB so no need
1548 * to multiply pwr_i by 2 */
1549 if (type
== AR5K_PWRTABLE_LINEAR_PCDAC
) {
1555 /* Find surrounding turning points (TPs)
1556 * and interpolate between them */
1557 for (i
= 0; (i
<= (u16
) (pmax
- pmin
)) &&
1558 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
1560 /* We passed the right TP, move to the next set of TPs
1561 * if we pass the last TP, extrapolate above using the last
1562 * two TPs for ratio */
1563 if ((pwr_i
> pwr
[idx
[1]]) && (idx
[1] < num_points
- 1)) {
1568 vpd_table
[i
] = (u8
) ath5k_get_interpolated_value(pwr_i
,
1569 pwr
[idx
[0]], pwr
[idx
[1]],
1570 vpd
[idx
[0]], vpd
[idx
[1]]);
1572 /* Increase by 0.5dB
1573 * (0.25 dB units) */
1579 * Get the surrounding per-channel power calibration piers
1580 * for a given frequency so that we can interpolate between
1581 * them and come up with an apropriate dataset for our current
1585 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw
*ah
,
1586 struct net80211_channel
*channel
,
1587 struct ath5k_chan_pcal_info
**pcinfo_l
,
1588 struct ath5k_chan_pcal_info
**pcinfo_r
)
1590 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1591 struct ath5k_chan_pcal_info
*pcinfo
;
1594 u32 target
= channel
->center_freq
;
1599 if (!(channel
->hw_value
& CHANNEL_OFDM
)) {
1600 pcinfo
= ee
->ee_pwr_cal_b
;
1601 mode
= AR5K_EEPROM_MODE_11B
;
1602 } else if (channel
->hw_value
& CHANNEL_2GHZ
) {
1603 pcinfo
= ee
->ee_pwr_cal_g
;
1604 mode
= AR5K_EEPROM_MODE_11G
;
1606 pcinfo
= ee
->ee_pwr_cal_a
;
1607 mode
= AR5K_EEPROM_MODE_11A
;
1609 max
= ee
->ee_n_piers
[mode
] - 1;
1611 /* Frequency is below our calibrated
1612 * range. Use the lowest power curve
1614 if (target
< pcinfo
[0].freq
) {
1619 /* Frequency is above our calibrated
1620 * range. Use the highest power curve
1622 if (target
> pcinfo
[max
].freq
) {
1623 idx_l
= idx_r
= max
;
1627 /* Frequency is inside our calibrated
1628 * channel range. Pick the surrounding
1629 * calibration piers so that we can
1631 for (i
= 0; i
<= max
; i
++) {
1633 /* Frequency matches one of our calibration
1634 * piers, no need to interpolate, just use
1635 * that calibration pier */
1636 if (pcinfo
[i
].freq
== target
) {
1641 /* We found a calibration pier that's above
1642 * frequency, use this pier and the previous
1643 * one to interpolate */
1644 if (target
< pcinfo
[i
].freq
) {
1652 *pcinfo_l
= &pcinfo
[idx_l
];
1653 *pcinfo_r
= &pcinfo
[idx_r
];
1659 * Get the surrounding per-rate power calibration data
1660 * for a given frequency and interpolate between power
1661 * values to set max target power supported by hw for
1665 ath5k_get_rate_pcal_data(struct ath5k_hw
*ah
,
1666 struct net80211_channel
*channel
,
1667 struct ath5k_rate_pcal_info
*rates
)
1669 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1670 struct ath5k_rate_pcal_info
*rpinfo
;
1673 u32 target
= channel
->center_freq
;
1678 if (!(channel
->hw_value
& CHANNEL_OFDM
)) {
1679 rpinfo
= ee
->ee_rate_tpwr_b
;
1680 mode
= AR5K_EEPROM_MODE_11B
;
1681 } else if (channel
->hw_value
& CHANNEL_2GHZ
) {
1682 rpinfo
= ee
->ee_rate_tpwr_g
;
1683 mode
= AR5K_EEPROM_MODE_11G
;
1685 rpinfo
= ee
->ee_rate_tpwr_a
;
1686 mode
= AR5K_EEPROM_MODE_11A
;
1688 max
= ee
->ee_rate_target_pwr_num
[mode
] - 1;
1690 /* Get the surrounding calibration
1691 * piers - same as above */
1692 if (target
< rpinfo
[0].freq
) {
1697 if (target
> rpinfo
[max
].freq
) {
1698 idx_l
= idx_r
= max
;
1702 for (i
= 0; i
<= max
; i
++) {
1704 if (rpinfo
[i
].freq
== target
) {
1709 if (target
< rpinfo
[i
].freq
) {
1717 /* Now interpolate power value, based on the frequency */
1718 rates
->freq
= target
;
1720 rates
->target_power_6to24
=
1721 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
1723 rpinfo
[idx_l
].target_power_6to24
,
1724 rpinfo
[idx_r
].target_power_6to24
);
1726 rates
->target_power_36
=
1727 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
1729 rpinfo
[idx_l
].target_power_36
,
1730 rpinfo
[idx_r
].target_power_36
);
1732 rates
->target_power_48
=
1733 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
1735 rpinfo
[idx_l
].target_power_48
,
1736 rpinfo
[idx_r
].target_power_48
);
1738 rates
->target_power_54
=
1739 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
1741 rpinfo
[idx_l
].target_power_54
,
1742 rpinfo
[idx_r
].target_power_54
);
1746 * Get the max edge power for this channel if
1747 * we have such data from EEPROM's Conformance Test
1748 * Limits (CTL), and limit max power if needed.
1750 * FIXME: Only works for world regulatory domains
1753 ath5k_get_max_ctl_power(struct ath5k_hw
*ah
,
1754 struct net80211_channel
*channel
)
1756 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1757 struct ath5k_edge_power
*rep
= ee
->ee_ctl_pwr
;
1758 u8
*ctl_val
= ee
->ee_ctl
;
1759 s16 max_chan_pwr
= ah
->ah_txpower
.txp_max_pwr
/ 4;
1764 u32 target
= channel
->center_freq
;
1766 /* Find out a CTL for our mode that's not mapped
1767 * on a specific reg domain.
1769 * TODO: Map our current reg domain to one of the 3 available
1770 * reg domain ids so that we can support more CTLs. */
1771 switch (channel
->hw_value
& CHANNEL_MODES
) {
1773 ctl_mode
= AR5K_CTL_11A
| AR5K_CTL_NO_REGDOMAIN
;
1776 ctl_mode
= AR5K_CTL_11G
| AR5K_CTL_NO_REGDOMAIN
;
1779 ctl_mode
= AR5K_CTL_11B
| AR5K_CTL_NO_REGDOMAIN
;
1782 ctl_mode
= AR5K_CTL_TURBO
| AR5K_CTL_NO_REGDOMAIN
;
1785 ctl_mode
= AR5K_CTL_TURBOG
| AR5K_CTL_NO_REGDOMAIN
;
1793 for (i
= 0; i
< ee
->ee_ctls
; i
++) {
1794 if (ctl_val
[i
] == ctl_mode
) {
1800 /* If we have a CTL dataset available grab it and find the
1801 * edge power for our frequency */
1802 if (ctl_idx
== 0xFF)
1805 /* Edge powers are sorted by frequency from lower
1806 * to higher. Each CTL corresponds to 8 edge power
1808 rep_idx
= ctl_idx
* AR5K_EEPROM_N_EDGES
;
1810 /* Don't do boundaries check because we
1811 * might have more that one bands defined
1814 /* Get the edge power that's closer to our
1816 for (i
= 0; i
< AR5K_EEPROM_N_EDGES
; i
++) {
1818 if (target
<= rep
[rep_idx
].freq
)
1819 edge_pwr
= (s16
) rep
[rep_idx
].edge
;
1823 ah
->ah_txpower
.txp_max_pwr
= 4*min(edge_pwr
, max_chan_pwr
);
1829 * Power to PCDAC table functions
1833 * Fill Power to PCDAC table on RF5111
1835 * No further processing is needed for RF5111, the only thing we have to
1836 * do is fill the values below and above calibration range since eeprom data
1837 * may not cover the entire PCDAC table.
1840 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw
*ah
, s16
* table_min
,
1843 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
1844 u8
*pcdac_tmp
= ah
->ah_txpower
.tmpL
[0];
1845 u8 pcdac_0
, pcdac_n
, pcdac_i
, pwr_idx
, i
;
1846 s16 min_pwr
, max_pwr
;
1848 /* Get table boundaries */
1849 min_pwr
= table_min
[0];
1850 pcdac_0
= pcdac_tmp
[0];
1852 max_pwr
= table_max
[0];
1853 pcdac_n
= pcdac_tmp
[table_max
[0] - table_min
[0]];
1855 /* Extrapolate below minimum using pcdac_0 */
1857 for (i
= 0; i
< min_pwr
; i
++)
1858 pcdac_out
[pcdac_i
++] = pcdac_0
;
1860 /* Copy values from pcdac_tmp */
1862 for (i
= 0 ; pwr_idx
<= max_pwr
&&
1863 pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
; i
++) {
1864 pcdac_out
[pcdac_i
++] = pcdac_tmp
[i
];
1868 /* Extrapolate above maximum */
1869 while (pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
)
1870 pcdac_out
[pcdac_i
++] = pcdac_n
;
1875 * Combine available XPD Curves and fill Linear Power to PCDAC table
1878 * RFX112 can have up to 2 curves (one for low txpower range and one for
1879 * higher txpower range). We need to put them both on pcdac_out and place
1880 * them in the correct location. In case we only have one curve available
1881 * just fit it on pcdac_out (it's supposed to cover the entire range of
1882 * available pwr levels since it's always the higher power curve). Extrapolate
1883 * below and above final table if needed.
1886 ath5k_combine_linear_pcdac_curves(struct ath5k_hw
*ah
, s16
* table_min
,
1887 s16
*table_max
, u8 pdcurves
)
1889 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
1896 s16 mid_pwr_idx
= 0;
1897 /* Edge flag turs on the 7nth bit on the PCDAC
1898 * to delcare the higher power curve (force values
1899 * to be greater than 64). If we only have one curve
1900 * we don't need to set this, if we have 2 curves and
1901 * fill the table backwards this can also be used to
1902 * switch from higher power curve to lower power curve */
1906 /* When we have only one curve available
1907 * that's the higher power curve. If we have
1908 * two curves the first is the high power curve
1909 * and the next is the low power curve. */
1911 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1];
1912 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
1913 mid_pwr_idx
= table_max
[1] - table_min
[1] - 1;
1914 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
1916 /* If table size goes beyond 31.5dB, keep the
1917 * upper 31.5dB range when setting tx power.
1918 * Note: 126 = 31.5 dB in quarter dB steps */
1919 if (table_max
[0] - table_min
[1] > 126)
1920 min_pwr_idx
= table_max
[0] - 126;
1922 min_pwr_idx
= table_min
[1];
1924 /* Since we fill table backwards
1925 * start from high power curve */
1926 pcdac_tmp
= pcdac_high_pwr
;
1930 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1]; /* Zeroed */
1931 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
1932 min_pwr_idx
= table_min
[0];
1933 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
1934 pcdac_tmp
= pcdac_high_pwr
;
1938 /* This is used when setting tx power*/
1939 ah
->ah_txpower
.txp_min_idx
= min_pwr_idx
/2;
1941 /* Fill Power to PCDAC table backwards */
1943 for (i
= 63; i
>= 0; i
--) {
1944 /* Entering lower power range, reset
1945 * edge flag and set pcdac_tmp to lower
1947 if (edge_flag
== 0x40 &&
1948 (2*pwr
<= (table_max
[1] - table_min
[0]) || pwr
== 0)) {
1950 pcdac_tmp
= pcdac_low_pwr
;
1951 pwr
= mid_pwr_idx
/2;
1954 /* Don't go below 1, extrapolate below if we have
1955 * already swithced to the lower power curve -or
1956 * we only have one curve and edge_flag is zero
1958 if (pcdac_tmp
[pwr
] < 1 && (edge_flag
== 0x00)) {
1960 pcdac_out
[i
] = pcdac_out
[i
+ 1];
1966 pcdac_out
[i
] = pcdac_tmp
[pwr
] | edge_flag
;
1968 /* Extrapolate above if pcdac is greater than
1969 * 126 -this can happen because we OR pcdac_out
1970 * value with edge_flag on high power curve */
1971 if (pcdac_out
[i
] > 126)
1974 /* Decrease by a 0.5dB step */
1979 /* Write PCDAC values on hw */
1981 ath5k_setup_pcdac_table(struct ath5k_hw
*ah
)
1983 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
1987 * Write TX power values
1989 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
1990 ath5k_hw_reg_write(ah
,
1991 (((pcdac_out
[2*i
+ 0] << 8 | 0xff) & 0xffff) << 0) |
1992 (((pcdac_out
[2*i
+ 1] << 8 | 0xff) & 0xffff) << 16),
1993 AR5K_PHY_PCDAC_TXPOWER(i
));
1999 * Power to PDADC table functions
2003 * Set the gain boundaries and create final Power to PDADC table
2005 * We can have up to 4 pd curves, we need to do a simmilar process
2006 * as we do for RF5112. This time we don't have an edge_flag but we
2007 * set the gain boundaries on a separate register.
2010 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw
*ah
,
2011 s16
*pwr_min
, s16
*pwr_max
, u8 pdcurves
)
2013 u8 gain_boundaries
[AR5K_EEPROM_N_PD_GAINS
];
2014 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
2017 u8 pdadc_i
, pdadc_n
, pwr_step
, pdg
, max_idx
, table_size
;
2020 /* Note: Register value is initialized on initvals
2021 * there is no feedback from hw.
2022 * XXX: What about pd_gain_overlap from EEPROM ? */
2023 pd_gain_overlap
= (u8
) ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG5
) &
2024 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
;
2026 /* Create final PDADC table */
2027 for (pdg
= 0, pdadc_i
= 0; pdg
< pdcurves
; pdg
++) {
2028 pdadc_tmp
= ah
->ah_txpower
.tmpL
[pdg
];
2030 if (pdg
== pdcurves
- 1)
2031 /* 2 dB boundary stretch for last
2032 * (higher power) curve */
2033 gain_boundaries
[pdg
] = pwr_max
[pdg
] + 4;
2035 /* Set gain boundary in the middle
2036 * between this curve and the next one */
2037 gain_boundaries
[pdg
] =
2038 (pwr_max
[pdg
] + pwr_min
[pdg
+ 1]) / 2;
2040 /* Sanity check in case our 2 db stretch got out of
2042 if (gain_boundaries
[pdg
] > AR5K_TUNE_MAX_TXPOWER
)
2043 gain_boundaries
[pdg
] = AR5K_TUNE_MAX_TXPOWER
;
2045 /* For the first curve (lower power)
2046 * start from 0 dB */
2050 /* For the other curves use the gain overlap */
2051 pdadc_0
= (gain_boundaries
[pdg
- 1] - pwr_min
[pdg
]) -
2054 /* Force each power step to be at least 0.5 dB */
2055 if ((pdadc_tmp
[1] - pdadc_tmp
[0]) > 1)
2056 pwr_step
= pdadc_tmp
[1] - pdadc_tmp
[0];
2060 /* If pdadc_0 is negative, we need to extrapolate
2061 * below this pdgain by a number of pwr_steps */
2062 while ((pdadc_0
< 0) && (pdadc_i
< 128)) {
2063 s16 tmp
= pdadc_tmp
[0] + pdadc_0
* pwr_step
;
2064 pdadc_out
[pdadc_i
++] = (tmp
< 0) ? 0 : (u8
) tmp
;
2068 /* Set last pwr level, using gain boundaries */
2069 pdadc_n
= gain_boundaries
[pdg
] + pd_gain_overlap
- pwr_min
[pdg
];
2070 /* Limit it to be inside pwr range */
2071 table_size
= pwr_max
[pdg
] - pwr_min
[pdg
];
2072 max_idx
= (pdadc_n
< table_size
) ? pdadc_n
: table_size
;
2074 /* Fill pdadc_out table */
2075 while (pdadc_0
< max_idx
)
2076 pdadc_out
[pdadc_i
++] = pdadc_tmp
[pdadc_0
++];
2078 /* Need to extrapolate above this pdgain? */
2079 if (pdadc_n
<= max_idx
)
2082 /* Force each power step to be at least 0.5 dB */
2083 if ((pdadc_tmp
[table_size
- 1] - pdadc_tmp
[table_size
- 2]) > 1)
2084 pwr_step
= pdadc_tmp
[table_size
- 1] -
2085 pdadc_tmp
[table_size
- 2];
2089 /* Extrapolate above */
2090 while ((pdadc_0
< (s16
) pdadc_n
) &&
2091 (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2)) {
2092 s16 tmp
= pdadc_tmp
[table_size
- 1] +
2093 (pdadc_0
- max_idx
) * pwr_step
;
2094 pdadc_out
[pdadc_i
++] = (tmp
> 127) ? 127 : (u8
) tmp
;
2099 while (pdg
< AR5K_EEPROM_N_PD_GAINS
) {
2100 gain_boundaries
[pdg
] = gain_boundaries
[pdg
- 1];
2104 while (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2) {
2105 pdadc_out
[pdadc_i
] = pdadc_out
[pdadc_i
- 1];
2109 /* Set gain boundaries */
2110 ath5k_hw_reg_write(ah
,
2111 AR5K_REG_SM(pd_gain_overlap
,
2112 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
) |
2113 AR5K_REG_SM(gain_boundaries
[0],
2114 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
) |
2115 AR5K_REG_SM(gain_boundaries
[1],
2116 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
) |
2117 AR5K_REG_SM(gain_boundaries
[2],
2118 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
) |
2119 AR5K_REG_SM(gain_boundaries
[3],
2120 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
),
2123 /* Used for setting rate power table */
2124 ah
->ah_txpower
.txp_min_idx
= pwr_min
[0];
2128 /* Write PDADC values on hw */
2130 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw
*ah
,
2131 u8 pdcurves
, u8
*pdg_to_idx
)
2133 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
2137 /* Select the right pdgain curves */
2139 /* Clear current settings */
2140 reg
= ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG1
);
2141 reg
&= ~(AR5K_PHY_TPC_RG1_PDGAIN_1
|
2142 AR5K_PHY_TPC_RG1_PDGAIN_2
|
2143 AR5K_PHY_TPC_RG1_PDGAIN_3
|
2144 AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
2147 * Use pd_gains curve from eeprom
2149 * This overrides the default setting from initvals
2150 * in case some vendors (e.g. Zcomax) don't use the default
2151 * curves. If we don't honor their settings we 'll get a
2152 * 5dB (1 * gain overlap ?) drop.
2154 reg
|= AR5K_REG_SM(pdcurves
, AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
2158 reg
|= AR5K_REG_SM(pdg_to_idx
[2], AR5K_PHY_TPC_RG1_PDGAIN_3
);
2161 reg
|= AR5K_REG_SM(pdg_to_idx
[1], AR5K_PHY_TPC_RG1_PDGAIN_2
);
2164 reg
|= AR5K_REG_SM(pdg_to_idx
[0], AR5K_PHY_TPC_RG1_PDGAIN_1
);
2167 ath5k_hw_reg_write(ah
, reg
, AR5K_PHY_TPC_RG1
);
2170 * Write TX power values
2172 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
2173 ath5k_hw_reg_write(ah
,
2174 ((pdadc_out
[4*i
+ 0] & 0xff) << 0) |
2175 ((pdadc_out
[4*i
+ 1] & 0xff) << 8) |
2176 ((pdadc_out
[4*i
+ 2] & 0xff) << 16) |
2177 ((pdadc_out
[4*i
+ 3] & 0xff) << 24),
2178 AR5K_PHY_PDADC_TXPOWER(i
));
2184 * Common code for PCDAC/PDADC tables
2188 * This is the main function that uses all of the above
2189 * to set PCDAC/PDADC table on hw for the current channel.
2190 * This table is used for tx power calibration on the basband,
2191 * without it we get weird tx power levels and in some cases
2192 * distorted spectral mask
2195 ath5k_setup_channel_powertable(struct ath5k_hw
*ah
,
2196 struct net80211_channel
*channel
,
2197 u8 ee_mode
, u8 type
)
2199 struct ath5k_pdgain_info
*pdg_L
, *pdg_R
;
2200 struct ath5k_chan_pcal_info
*pcinfo_L
;
2201 struct ath5k_chan_pcal_info
*pcinfo_R
;
2202 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2203 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
2204 s16 table_min
[AR5K_EEPROM_N_PD_GAINS
];
2205 s16 table_max
[AR5K_EEPROM_N_PD_GAINS
];
2208 u32 target
= channel
->center_freq
;
2211 /* Get surounding freq piers for this channel */
2212 ath5k_get_chan_pcal_surrounding_piers(ah
, channel
,
2216 /* Loop over pd gain curves on
2217 * surounding freq piers by index */
2218 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[ee_mode
]; pdg
++) {
2220 /* Fill curves in reverse order
2221 * from lower power (max gain)
2222 * to higher power. Use curve -> idx
2223 * backmaping we did on eeprom init */
2224 u8 idx
= pdg_curve_to_idx
[pdg
];
2226 /* Grab the needed curves by index */
2227 pdg_L
= &pcinfo_L
->pd_curves
[idx
];
2228 pdg_R
= &pcinfo_R
->pd_curves
[idx
];
2230 /* Initialize the temp tables */
2231 tmpL
= ah
->ah_txpower
.tmpL
[pdg
];
2232 tmpR
= ah
->ah_txpower
.tmpR
[pdg
];
2234 /* Set curve's x boundaries and create
2235 * curves so that they cover the same
2236 * range (if we don't do that one table
2237 * will have values on some range and the
2238 * other one won't have any so interpolation
2240 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
2241 pdg_R
->pd_pwr
[0]) / 2;
2243 table_max
[pdg
] = max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
2244 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]) / 2;
2246 /* Now create the curves on surrounding channels
2247 * and interpolate if needed to get the final
2248 * curve for this gain on this channel */
2250 case AR5K_PWRTABLE_LINEAR_PCDAC
:
2251 /* Override min/max so that we don't loose
2252 * accuracy (don't divide by 2) */
2253 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
2257 max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
2258 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]);
2260 /* Override minimum so that we don't get
2261 * out of bounds while extrapolating
2262 * below. Don't do this when we have 2
2263 * curves and we are on the high power curve
2264 * because table_min is ok in this case */
2265 if (!(ee
->ee_pd_gains
[ee_mode
] > 1 && pdg
== 0)) {
2268 ath5k_get_linear_pcdac_min(pdg_L
->pd_step
,
2273 /* Don't go too low because we will
2274 * miss the upper part of the curve.
2275 * Note: 126 = 31.5dB (max power supported)
2276 * in 0.25dB units */
2277 if (table_max
[pdg
] - table_min
[pdg
] > 126)
2278 table_min
[pdg
] = table_max
[pdg
] - 126;
2282 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
2283 case AR5K_PWRTABLE_PWR_TO_PDADC
:
2285 ath5k_create_power_curve(table_min
[pdg
],
2289 pdg_L
->pd_points
, tmpL
, type
);
2291 /* We are in a calibration
2292 * pier, no need to interpolate
2293 * between freq piers */
2294 if (pcinfo_L
== pcinfo_R
)
2297 ath5k_create_power_curve(table_min
[pdg
],
2301 pdg_R
->pd_points
, tmpR
, type
);
2307 /* Interpolate between curves
2308 * of surounding freq piers to
2309 * get the final curve for this
2310 * pd gain. Re-use tmpL for interpolation
2312 for (i
= 0; (i
< (u16
) (table_max
[pdg
] - table_min
[pdg
])) &&
2313 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
2314 tmpL
[i
] = (u8
) ath5k_get_interpolated_value(target
,
2315 (s16
) pcinfo_L
->freq
,
2316 (s16
) pcinfo_R
->freq
,
2322 /* Now we have a set of curves for this
2323 * channel on tmpL (x range is table_max - table_min
2324 * and y values are tmpL[pdg][]) sorted in the same
2325 * order as EEPROM (because we've used the backmaping).
2326 * So for RF5112 it's from higher power to lower power
2327 * and for RF2413 it's from lower power to higher power.
2328 * For RF5111 we only have one curve. */
2330 /* Fill min and max power levels for this
2331 * channel by interpolating the values on
2332 * surounding channels to complete the dataset */
2333 ah
->ah_txpower
.txp_min_pwr
= ath5k_get_interpolated_value(target
,
2334 (s16
) pcinfo_L
->freq
,
2335 (s16
) pcinfo_R
->freq
,
2336 pcinfo_L
->min_pwr
, pcinfo_R
->min_pwr
);
2338 ah
->ah_txpower
.txp_max_pwr
= ath5k_get_interpolated_value(target
,
2339 (s16
) pcinfo_L
->freq
,
2340 (s16
) pcinfo_R
->freq
,
2341 pcinfo_L
->max_pwr
, pcinfo_R
->max_pwr
);
2343 /* We are ready to go, fill PCDAC/PDADC
2344 * table and write settings on hardware */
2346 case AR5K_PWRTABLE_LINEAR_PCDAC
:
2347 /* For RF5112 we can have one or two curves
2348 * and each curve covers a certain power lvl
2349 * range so we need to do some more processing */
2350 ath5k_combine_linear_pcdac_curves(ah
, table_min
, table_max
,
2351 ee
->ee_pd_gains
[ee_mode
]);
2353 /* Set txp.offset so that we can
2354 * match max power value with max
2356 ah
->ah_txpower
.txp_offset
= 64 - (table_max
[0] / 2);
2358 /* Write settings on hw */
2359 ath5k_setup_pcdac_table(ah
);
2361 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
2362 /* We are done for RF5111 since it has only
2363 * one curve, just fit the curve on the table */
2364 ath5k_fill_pwr_to_pcdac_table(ah
, table_min
, table_max
);
2366 /* No rate powertable adjustment for RF5111 */
2367 ah
->ah_txpower
.txp_min_idx
= 0;
2368 ah
->ah_txpower
.txp_offset
= 0;
2370 /* Write settings on hw */
2371 ath5k_setup_pcdac_table(ah
);
2373 case AR5K_PWRTABLE_PWR_TO_PDADC
:
2374 /* Set PDADC boundaries and fill
2375 * final PDADC table */
2376 ath5k_combine_pwr_to_pdadc_curves(ah
, table_min
, table_max
,
2377 ee
->ee_pd_gains
[ee_mode
]);
2379 /* Write settings on hw */
2380 ath5k_setup_pwr_to_pdadc_table(ah
, pdg
, pdg_curve_to_idx
);
2382 /* Set txp.offset, note that table_min
2383 * can be negative */
2384 ah
->ah_txpower
.txp_offset
= table_min
[0];
2395 * Per-rate tx power setting
2397 * This is the code that sets the desired tx power (below
2398 * maximum) on hw for each rate (we also have TPC that sets
2399 * power per packet). We do that by providing an index on the
2400 * PCDAC/PDADC table we set up.
2404 * Set rate power table
2406 * For now we only limit txpower based on maximum tx power
2407 * supported by hw (what's inside rate_info). We need to limit
2408 * this even more, based on regulatory domain etc.
2410 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2411 * and is indexed as follows:
2412 * rates[0] - rates[7] -> OFDM rates
2413 * rates[8] - rates[14] -> CCK rates
2414 * rates[15] -> XR rates (they all have the same power)
2417 ath5k_setup_rate_powertable(struct ath5k_hw
*ah
, u16 max_pwr
,
2418 struct ath5k_rate_pcal_info
*rate_info
,
2424 /* max_pwr is power level we got from driver/user in 0.5dB
2425 * units, switch to 0.25dB units so we can compare */
2427 max_pwr
= min(max_pwr
, (u16
) ah
->ah_txpower
.txp_max_pwr
) / 2;
2429 /* apply rate limits */
2430 rates
= ah
->ah_txpower
.txp_rates_power_table
;
2432 /* OFDM rates 6 to 24Mb/s */
2433 for (i
= 0; i
< 5; i
++)
2434 rates
[i
] = min(max_pwr
, rate_info
->target_power_6to24
);
2436 /* Rest OFDM rates */
2437 rates
[5] = min(rates
[0], rate_info
->target_power_36
);
2438 rates
[6] = min(rates
[0], rate_info
->target_power_48
);
2439 rates
[7] = min(rates
[0], rate_info
->target_power_54
);
2443 rates
[8] = min(rates
[0], rate_info
->target_power_6to24
);
2445 rates
[9] = min(rates
[0], rate_info
->target_power_36
);
2447 rates
[10] = min(rates
[0], rate_info
->target_power_36
);
2449 rates
[11] = min(rates
[0], rate_info
->target_power_48
);
2451 rates
[12] = min(rates
[0], rate_info
->target_power_48
);
2453 rates
[13] = min(rates
[0], rate_info
->target_power_54
);
2455 rates
[14] = min(rates
[0], rate_info
->target_power_54
);
2458 rates
[15] = min(rates
[0], rate_info
->target_power_6to24
);
2460 /* CCK rates have different peak to average ratio
2461 * so we have to tweak their power so that gainf
2462 * correction works ok. For this we use OFDM to
2463 * CCK delta from eeprom */
2464 if ((ee_mode
== AR5K_EEPROM_MODE_11G
) &&
2465 (ah
->ah_phy_revision
< AR5K_SREV_PHY_5212A
))
2466 for (i
= 8; i
<= 15; i
++)
2467 rates
[i
] -= ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
;
2469 ah
->ah_txpower
.txp_min_pwr
= rates
[7];
2470 ah
->ah_txpower
.txp_max_pwr
= rates
[0];
2471 ah
->ah_txpower
.txp_ofdm
= rates
[7];
2476 * Set transmition power
2479 ath5k_hw_txpower(struct ath5k_hw
*ah
, struct net80211_channel
*channel
,
2480 u8 ee_mode
, u8 txpower
)
2482 struct ath5k_rate_pcal_info rate_info
;
2486 if (txpower
> AR5K_TUNE_MAX_TXPOWER
) {
2487 DBG("ath5k: invalid tx power %d\n", txpower
);
2491 txpower
= AR5K_TUNE_DEFAULT_TXPOWER
;
2493 /* Reset TX power values */
2494 memset(&ah
->ah_txpower
, 0, sizeof(ah
->ah_txpower
));
2495 ah
->ah_txpower
.txp_tpc
= AR5K_TUNE_TPC_TXPOWER
;
2496 ah
->ah_txpower
.txp_min_pwr
= 0;
2497 ah
->ah_txpower
.txp_max_pwr
= AR5K_TUNE_MAX_TXPOWER
;
2499 /* Initialize TX power table */
2500 switch (ah
->ah_radio
) {
2502 type
= AR5K_PWRTABLE_PWR_TO_PCDAC
;
2505 type
= AR5K_PWRTABLE_LINEAR_PCDAC
;
2512 type
= AR5K_PWRTABLE_PWR_TO_PDADC
;
2518 /* FIXME: Only on channel/mode change */
2519 ret
= ath5k_setup_channel_powertable(ah
, channel
, ee_mode
, type
);
2523 /* Limit max power if we have a CTL available */
2524 ath5k_get_max_ctl_power(ah
, channel
);
2526 /* FIXME: Tx power limit for this regdomain
2527 * XXX: Mac80211/CRDA will do that anyway ? */
2529 /* FIXME: Antenna reduction stuff */
2531 /* FIXME: Limit power on turbo modes */
2533 /* FIXME: TPC scale reduction */
2535 /* Get surounding channels for per-rate power table
2537 ath5k_get_rate_pcal_data(ah
, channel
, &rate_info
);
2539 /* Setup rate power table */
2540 ath5k_setup_rate_powertable(ah
, txpower
, &rate_info
, ee_mode
);
2542 /* Write rate power table on hw */
2543 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(3, 24) |
2544 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2545 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1
);
2547 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(7, 24) |
2548 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2549 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2
);
2551 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(10, 24) |
2552 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2553 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3
);
2555 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(14, 24) |
2556 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2557 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4
);
2559 /* FIXME: TPC support */
2560 if (ah
->ah_txpower
.txp_tpc
) {
2561 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
|
2562 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
2564 ath5k_hw_reg_write(ah
,
2565 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_ACK
) |
2566 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CTS
) |
2567 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CHIRP
),
2570 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX
|
2571 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
2577 int ath5k_hw_set_txpower_limit(struct ath5k_hw
*ah
, u8 mode
, u8 txpower
)
2579 struct net80211_channel
*channel
= ah
->ah_current_channel
;
2581 DBG2("ath5k: changing txpower to %d\n", txpower
);
2583 return ath5k_hw_txpower(ah
, channel
, mode
, txpower
);