[tcp] Merge boolean flags into a single "flags" field
[gpxe.git] / src / drivers / net / igb / igb_phy.c
blob16664fd1f02c9982ff2684c91245390a095ac4d5
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 FILE_LICENCE ( GPL2_ONLY );
30 #include "igb.h"
32 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
34 #if 0
35 /* Cable length tables */
36 static const u16 e1000_m88_cable_length_table[] =
37 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
38 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
39 (sizeof(e1000_m88_cable_length_table) / \
40 sizeof(e1000_m88_cable_length_table[0]))
42 static const u16 e1000_igp_2_cable_length_table[] =
43 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
44 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
45 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
46 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
47 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
48 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
49 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
50 104, 109, 114, 118, 121, 124};
51 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 (sizeof(e1000_igp_2_cable_length_table) / \
53 sizeof(e1000_igp_2_cable_length_table[0]))
54 #endif
56 /**
57 * igb_check_reset_block_generic - Check if PHY reset is blocked
58 * @hw: pointer to the HW structure
60 * Read the PHY management control register and check whether a PHY reset
61 * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
62 * return E1000_BLK_PHY_RESET (12).
63 **/
64 s32 igb_check_reset_block_generic(struct e1000_hw *hw)
66 u32 manc;
68 DEBUGFUNC("igb_check_reset_block");
70 manc = E1000_READ_REG(hw, E1000_MANC);
72 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
73 E1000_BLK_PHY_RESET : E1000_SUCCESS;
76 /**
77 * igb_get_phy_id - Retrieve the PHY ID and revision
78 * @hw: pointer to the HW structure
80 * Reads the PHY registers and stores the PHY ID and possibly the PHY
81 * revision in the hardware structure.
82 **/
83 s32 igb_get_phy_id(struct e1000_hw *hw)
85 struct e1000_phy_info *phy = &hw->phy;
86 s32 ret_val = E1000_SUCCESS;
87 u16 phy_id;
89 DEBUGFUNC("igb_get_phy_id");
91 if (!(phy->ops.read_reg))
92 goto out;
94 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
95 if (ret_val)
96 goto out;
98 phy->id = (u32)(phy_id << 16);
99 usec_delay(20);
100 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
101 if (ret_val)
102 goto out;
104 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
105 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
107 out:
108 return ret_val;
112 * igb_phy_reset_dsp_generic - Reset PHY DSP
113 * @hw: pointer to the HW structure
115 * Reset the digital signal processor.
117 s32 igb_phy_reset_dsp_generic(struct e1000_hw *hw)
119 s32 ret_val = E1000_SUCCESS;
121 DEBUGFUNC("igb_phy_reset_dsp_generic");
123 if (!(hw->phy.ops.write_reg))
124 goto out;
126 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
127 if (ret_val)
128 goto out;
130 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
132 out:
133 return ret_val;
137 * igb_read_phy_reg_mdic - Read MDI control register
138 * @hw: pointer to the HW structure
139 * @offset: register offset to be read
140 * @data: pointer to the read data
142 * Reads the MDI control register in the PHY at offset and stores the
143 * information read to data.
145 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
147 struct e1000_phy_info *phy = &hw->phy;
148 u32 i, mdic = 0;
149 s32 ret_val = E1000_SUCCESS;
151 DEBUGFUNC("igb_read_phy_reg_mdic");
154 * Set up Op-code, Phy Address, and register offset in the MDI
155 * Control register. The MAC will take care of interfacing with the
156 * PHY to retrieve the desired data.
158 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
159 (phy->addr << E1000_MDIC_PHY_SHIFT) |
160 (E1000_MDIC_OP_READ));
162 E1000_WRITE_REG(hw, E1000_MDIC, mdic);
165 * Poll the ready bit to see if the MDI read completed
166 * Increasing the time out as testing showed failures with
167 * the lower time out
169 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
170 usec_delay(50);
171 mdic = E1000_READ_REG(hw, E1000_MDIC);
172 if (mdic & E1000_MDIC_READY)
173 break;
175 if (!(mdic & E1000_MDIC_READY)) {
176 DEBUGOUT("MDI Read did not complete\n");
177 ret_val = -E1000_ERR_PHY;
178 goto out;
180 if (mdic & E1000_MDIC_ERROR) {
181 DEBUGOUT("MDI Error\n");
182 ret_val = -E1000_ERR_PHY;
183 goto out;
185 *data = (u16) mdic;
187 out:
188 return ret_val;
192 * igb_write_phy_reg_mdic - Write MDI control register
193 * @hw: pointer to the HW structure
194 * @offset: register offset to write to
195 * @data: data to write to register at offset
197 * Writes data to MDI control register in the PHY at offset.
199 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
201 struct e1000_phy_info *phy = &hw->phy;
202 u32 i, mdic = 0;
203 s32 ret_val = E1000_SUCCESS;
205 DEBUGFUNC("igb_write_phy_reg_mdic");
208 * Set up Op-code, Phy Address, and register offset in the MDI
209 * Control register. The MAC will take care of interfacing with the
210 * PHY to retrieve the desired data.
212 mdic = (((u32)data) |
213 (offset << E1000_MDIC_REG_SHIFT) |
214 (phy->addr << E1000_MDIC_PHY_SHIFT) |
215 (E1000_MDIC_OP_WRITE));
217 E1000_WRITE_REG(hw, E1000_MDIC, mdic);
220 * Poll the ready bit to see if the MDI read completed
221 * Increasing the time out as testing showed failures with
222 * the lower time out
224 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
225 usec_delay(50);
226 mdic = E1000_READ_REG(hw, E1000_MDIC);
227 if (mdic & E1000_MDIC_READY)
228 break;
230 if (!(mdic & E1000_MDIC_READY)) {
231 DEBUGOUT("MDI Write did not complete\n");
232 ret_val = -E1000_ERR_PHY;
233 goto out;
235 if (mdic & E1000_MDIC_ERROR) {
236 DEBUGOUT("MDI Error\n");
237 ret_val = -E1000_ERR_PHY;
238 goto out;
241 out:
242 return ret_val;
246 * igb_read_phy_reg_i2c - Read PHY register using i2c
247 * @hw: pointer to the HW structure
248 * @offset: register offset to be read
249 * @data: pointer to the read data
251 * Reads the PHY register at offset using the i2c interface and stores the
252 * retrieved information in data.
254 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
256 struct e1000_phy_info *phy = &hw->phy;
257 u32 i, i2ccmd = 0;
259 DEBUGFUNC("igb_read_phy_reg_i2c");
262 * Set up Op-code, Phy Address, and register address in the I2CCMD
263 * register. The MAC will take care of interfacing with the
264 * PHY to retrieve the desired data.
266 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
267 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
268 (E1000_I2CCMD_OPCODE_READ));
270 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
272 /* Poll the ready bit to see if the I2C read completed */
273 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
274 usec_delay(50);
275 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
276 if (i2ccmd & E1000_I2CCMD_READY)
277 break;
279 if (!(i2ccmd & E1000_I2CCMD_READY)) {
280 DEBUGOUT("I2CCMD Read did not complete\n");
281 return -E1000_ERR_PHY;
283 if (i2ccmd & E1000_I2CCMD_ERROR) {
284 DEBUGOUT("I2CCMD Error bit set\n");
285 return -E1000_ERR_PHY;
288 /* Need to byte-swap the 16-bit value. */
289 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
291 return E1000_SUCCESS;
295 * igb_write_phy_reg_i2c - Write PHY register using i2c
296 * @hw: pointer to the HW structure
297 * @offset: register offset to write to
298 * @data: data to write at register offset
300 * Writes the data to PHY register at the offset using the i2c interface.
302 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
304 struct e1000_phy_info *phy = &hw->phy;
305 u32 i, i2ccmd = 0;
306 u16 phy_data_swapped;
308 DEBUGFUNC("igb_write_phy_reg_i2c");
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
314 * Set up Op-code, Phy Address, and register address in the I2CCMD
315 * register. The MAC will take care of interfacing with the
316 * PHY to retrieve the desired data.
318 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
319 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
320 E1000_I2CCMD_OPCODE_WRITE |
321 phy_data_swapped);
323 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
325 /* Poll the ready bit to see if the I2C read completed */
326 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
327 usec_delay(50);
328 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
329 if (i2ccmd & E1000_I2CCMD_READY)
330 break;
332 if (!(i2ccmd & E1000_I2CCMD_READY)) {
333 DEBUGOUT("I2CCMD Write did not complete\n");
334 return -E1000_ERR_PHY;
336 if (i2ccmd & E1000_I2CCMD_ERROR) {
337 DEBUGOUT("I2CCMD Error bit set\n");
338 return -E1000_ERR_PHY;
341 return E1000_SUCCESS;
345 * igb_read_phy_reg_m88 - Read m88 PHY register
346 * @hw: pointer to the HW structure
347 * @offset: register offset to be read
348 * @data: pointer to the read data
350 * Acquires semaphore, if necessary, then reads the PHY register at offset
351 * and storing the retrieved information in data. Release any acquired
352 * semaphores before exiting.
354 s32 igb_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
356 s32 ret_val = E1000_SUCCESS;
358 DEBUGFUNC("igb_read_phy_reg_m88");
360 if (!(hw->phy.ops.acquire))
361 goto out;
363 ret_val = hw->phy.ops.acquire(hw);
364 if (ret_val)
365 goto out;
367 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
368 data);
370 hw->phy.ops.release(hw);
372 out:
373 return ret_val;
377 * igb_write_phy_reg_m88 - Write m88 PHY register
378 * @hw: pointer to the HW structure
379 * @offset: register offset to write to
380 * @data: data to write at register offset
382 * Acquires semaphore, if necessary, then writes the data to PHY register
383 * at the offset. Release any acquired semaphores before exiting.
385 s32 igb_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
387 s32 ret_val = E1000_SUCCESS;
389 DEBUGFUNC("igb_write_phy_reg_m88");
391 if (!(hw->phy.ops.acquire))
392 goto out;
394 ret_val = hw->phy.ops.acquire(hw);
395 if (ret_val)
396 goto out;
398 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
399 data);
401 hw->phy.ops.release(hw);
403 out:
404 return ret_val;
408 * __igb_read_phy_reg_igp - Read igp PHY register
409 * @hw: pointer to the HW structure
410 * @offset: register offset to be read
411 * @data: pointer to the read data
412 * @locked: semaphore has already been acquired or not
414 * Acquires semaphore, if necessary, then reads the PHY register at offset
415 * and stores the retrieved information in data. Release any acquired
416 * semaphores before exiting.
418 static s32 __igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
419 bool locked)
421 s32 ret_val = E1000_SUCCESS;
423 DEBUGFUNC("__igb_read_phy_reg_igp");
425 if (!locked) {
426 if (!(hw->phy.ops.acquire))
427 goto out;
429 ret_val = hw->phy.ops.acquire(hw);
430 if (ret_val)
431 goto out;
434 if (offset > MAX_PHY_MULTI_PAGE_REG) {
435 ret_val = igb_write_phy_reg_mdic(hw,
436 IGP01E1000_PHY_PAGE_SELECT,
437 (u16)offset);
438 if (ret_val)
439 goto release;
442 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
443 data);
445 release:
446 if (!locked)
447 hw->phy.ops.release(hw);
448 out:
449 return ret_val;
452 * igb_read_phy_reg_igp - Read igp PHY register
453 * @hw: pointer to the HW structure
454 * @offset: register offset to be read
455 * @data: pointer to the read data
457 * Acquires semaphore then reads the PHY register at offset and stores the
458 * retrieved information in data.
459 * Release the acquired semaphore before exiting.
461 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
463 return __igb_read_phy_reg_igp(hw, offset, data, false);
467 * igb_read_phy_reg_igp_locked - Read igp PHY register
468 * @hw: pointer to the HW structure
469 * @offset: register offset to be read
470 * @data: pointer to the read data
472 * Reads the PHY register at offset and stores the retrieved information
473 * in data. Assumes semaphore already acquired.
475 s32 igb_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
477 return __igb_read_phy_reg_igp(hw, offset, data, true);
481 * igb_write_phy_reg_igp - Write igp PHY register
482 * @hw: pointer to the HW structure
483 * @offset: register offset to write to
484 * @data: data to write at register offset
485 * @locked: semaphore has already been acquired or not
487 * Acquires semaphore, if necessary, then writes the data to PHY register
488 * at the offset. Release any acquired semaphores before exiting.
490 static s32 __igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
491 bool locked)
493 s32 ret_val = E1000_SUCCESS;
495 DEBUGFUNC("igb_write_phy_reg_igp");
497 if (!locked) {
498 if (!(hw->phy.ops.acquire))
499 goto out;
501 ret_val = hw->phy.ops.acquire(hw);
502 if (ret_val)
503 goto out;
506 if (offset > MAX_PHY_MULTI_PAGE_REG) {
507 ret_val = igb_write_phy_reg_mdic(hw,
508 IGP01E1000_PHY_PAGE_SELECT,
509 (u16)offset);
510 if (ret_val)
511 goto release;
514 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
515 data);
517 release:
518 if (!locked)
519 hw->phy.ops.release(hw);
521 out:
522 return ret_val;
526 * igb_write_phy_reg_igp - Write igp PHY register
527 * @hw: pointer to the HW structure
528 * @offset: register offset to write to
529 * @data: data to write at register offset
531 * Acquires semaphore then writes the data to PHY register
532 * at the offset. Release any acquired semaphores before exiting.
534 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
536 return __igb_write_phy_reg_igp(hw, offset, data, false);
540 * igb_write_phy_reg_igp_locked - Write igp PHY register
541 * @hw: pointer to the HW structure
542 * @offset: register offset to write to
543 * @data: data to write at register offset
545 * Writes the data to PHY register at the offset.
546 * Assumes semaphore already acquired.
548 s32 igb_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
550 return __igb_write_phy_reg_igp(hw, offset, data, true);
554 * __igb_read_kmrn_reg - Read kumeran register
555 * @hw: pointer to the HW structure
556 * @offset: register offset to be read
557 * @data: pointer to the read data
558 * @locked: semaphore has already been acquired or not
560 * Acquires semaphore, if necessary. Then reads the PHY register at offset
561 * using the kumeran interface. The information retrieved is stored in data.
562 * Release any acquired semaphores before exiting.
564 static s32 __igb_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
565 bool locked)
567 u32 kmrnctrlsta;
568 s32 ret_val = E1000_SUCCESS;
570 DEBUGFUNC("__igb_read_kmrn_reg");
572 if (!locked) {
573 if (!(hw->phy.ops.acquire))
574 goto out;
576 ret_val = hw->phy.ops.acquire(hw);
577 if (ret_val)
578 goto out;
581 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
582 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
583 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
585 usec_delay(2);
587 kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
588 *data = (u16)kmrnctrlsta;
590 if (!locked)
591 hw->phy.ops.release(hw);
593 out:
594 return ret_val;
598 * igb_read_kmrn_reg_generic - Read kumeran register
599 * @hw: pointer to the HW structure
600 * @offset: register offset to be read
601 * @data: pointer to the read data
603 * Acquires semaphore then reads the PHY register at offset using the
604 * kumeran interface. The information retrieved is stored in data.
605 * Release the acquired semaphore before exiting.
607 s32 igb_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
609 return __igb_read_kmrn_reg(hw, offset, data, false);
613 * igb_read_kmrn_reg_locked - Read kumeran register
614 * @hw: pointer to the HW structure
615 * @offset: register offset to be read
616 * @data: pointer to the read data
618 * Reads the PHY register at offset using the kumeran interface. The
619 * information retrieved is stored in data.
620 * Assumes semaphore already acquired.
622 s32 igb_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
624 return __igb_read_kmrn_reg(hw, offset, data, true);
628 * __igb_write_kmrn_reg - Write kumeran register
629 * @hw: pointer to the HW structure
630 * @offset: register offset to write to
631 * @data: data to write at register offset
632 * @locked: semaphore has already been acquired or not
634 * Acquires semaphore, if necessary. Then write the data to PHY register
635 * at the offset using the kumeran interface. Release any acquired semaphores
636 * before exiting.
638 static s32 __igb_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
639 bool locked)
641 u32 kmrnctrlsta;
642 s32 ret_val = E1000_SUCCESS;
644 DEBUGFUNC("igb_write_kmrn_reg_generic");
646 if (!locked) {
647 if (!(hw->phy.ops.acquire))
648 goto out;
650 ret_val = hw->phy.ops.acquire(hw);
651 if (ret_val)
652 goto out;
655 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
656 E1000_KMRNCTRLSTA_OFFSET) | data;
657 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
659 usec_delay(2);
661 if (!locked)
662 hw->phy.ops.release(hw);
664 out:
665 return ret_val;
669 * igb_write_kmrn_reg_generic - Write kumeran register
670 * @hw: pointer to the HW structure
671 * @offset: register offset to write to
672 * @data: data to write at register offset
674 * Acquires semaphore then writes the data to the PHY register at the offset
675 * using the kumeran interface. Release the acquired semaphore before exiting.
677 s32 igb_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
679 return __igb_write_kmrn_reg(hw, offset, data, false);
683 * igb_write_kmrn_reg_locked - Write kumeran register
684 * @hw: pointer to the HW structure
685 * @offset: register offset to write to
686 * @data: data to write at register offset
688 * Write the data to PHY register at the offset using the kumeran interface.
689 * Assumes semaphore already acquired.
691 s32 igb_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
693 return __igb_write_kmrn_reg(hw, offset, data, true);
697 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
698 * @hw: pointer to the HW structure
700 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
701 * and downshift values are set also.
703 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
705 struct e1000_phy_info *phy = &hw->phy;
706 s32 ret_val;
707 u16 phy_data;
709 DEBUGFUNC("igb_copper_link_setup_m88");
711 if (phy->reset_disable) {
712 ret_val = E1000_SUCCESS;
713 goto out;
716 /* Enable CRS on TX. This must be set for half-duplex operation. */
717 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
718 if (ret_val)
719 goto out;
721 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
724 * Options:
725 * MDI/MDI-X = 0 (default)
726 * 0 - Auto for all speeds
727 * 1 - MDI mode
728 * 2 - MDI-X mode
729 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
731 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
733 switch (phy->mdix) {
734 case 1:
735 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
736 break;
737 case 2:
738 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
739 break;
740 case 3:
741 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
742 break;
743 case 0:
744 default:
745 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
746 break;
750 * Options:
751 * disable_polarity_correction = 0 (default)
752 * Automatic Correction for Reversed Cable Polarity
753 * 0 - Disabled
754 * 1 - Enabled
756 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
757 if (phy->disable_polarity_correction == 1)
758 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
760 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
761 if (ret_val)
762 goto out;
764 if (phy->revision < E1000_REVISION_4) {
766 * Force TX_CLK in the Extended PHY Specific Control Register
767 * to 25MHz clock.
769 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
770 &phy_data);
771 if (ret_val)
772 goto out;
774 phy_data |= M88E1000_EPSCR_TX_CLK_25;
776 if ((phy->revision == E1000_REVISION_2) &&
777 (phy->id == M88E1111_I_PHY_ID)) {
778 /* 82573L PHY - set the downshift counter to 5x. */
779 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
780 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
781 } else {
782 /* Configure Master and Slave downshift values */
783 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
784 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
785 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
786 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
788 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
789 phy_data);
790 if (ret_val)
791 goto out;
794 /* Commit the changes. */
795 ret_val = phy->ops.commit(hw);
796 if (ret_val) {
797 DEBUGOUT("Error committing the PHY changes\n");
798 goto out;
801 out:
802 return ret_val;
806 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
807 * @hw: pointer to the HW structure
809 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
810 * igp PHY's.
812 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
814 struct e1000_phy_info *phy = &hw->phy;
815 s32 ret_val;
816 u16 data;
818 DEBUGFUNC("igb_copper_link_setup_igp");
820 if (phy->reset_disable) {
821 ret_val = E1000_SUCCESS;
822 goto out;
825 ret_val = hw->phy.ops.reset(hw);
826 if (ret_val) {
827 DEBUGOUT("Error resetting the PHY.\n");
828 goto out;
832 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
833 * timeout issues when LFS is enabled.
835 msec_delay(100);
838 * The NVM settings will configure LPLU in D3 for
839 * non-IGP1 PHYs.
841 if (phy->type == e1000_phy_igp) {
842 /* disable lplu d3 during driver init */
843 ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
844 if (ret_val) {
845 DEBUGOUT("Error Disabling LPLU D3\n");
846 goto out;
850 /* disable lplu d0 during driver init */
851 if (hw->phy.ops.set_d0_lplu_state) {
852 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
853 if (ret_val) {
854 DEBUGOUT("Error Disabling LPLU D0\n");
855 goto out;
858 /* Configure mdi-mdix settings */
859 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
860 if (ret_val)
861 goto out;
863 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
865 switch (phy->mdix) {
866 case 1:
867 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
868 break;
869 case 2:
870 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
871 break;
872 case 0:
873 default:
874 data |= IGP01E1000_PSCR_AUTO_MDIX;
875 break;
877 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
878 if (ret_val)
879 goto out;
881 /* set auto-master slave resolution settings */
882 if (hw->mac.autoneg) {
884 * when autonegotiation advertisement is only 1000Mbps then we
885 * should disable SmartSpeed and enable Auto MasterSlave
886 * resolution as hardware default.
888 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
889 /* Disable SmartSpeed */
890 ret_val = phy->ops.read_reg(hw,
891 IGP01E1000_PHY_PORT_CONFIG,
892 &data);
893 if (ret_val)
894 goto out;
896 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
897 ret_val = phy->ops.write_reg(hw,
898 IGP01E1000_PHY_PORT_CONFIG,
899 data);
900 if (ret_val)
901 goto out;
903 /* Set auto Master/Slave resolution process */
904 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
905 if (ret_val)
906 goto out;
908 data &= ~CR_1000T_MS_ENABLE;
909 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
910 if (ret_val)
911 goto out;
914 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
915 if (ret_val)
916 goto out;
918 /* load defaults for future use */
919 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
920 ((data & CR_1000T_MS_VALUE) ?
921 e1000_ms_force_master :
922 e1000_ms_force_slave) :
923 e1000_ms_auto;
925 switch (phy->ms_type) {
926 case e1000_ms_force_master:
927 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
928 break;
929 case e1000_ms_force_slave:
930 data |= CR_1000T_MS_ENABLE;
931 data &= ~(CR_1000T_MS_VALUE);
932 break;
933 case e1000_ms_auto:
934 data &= ~CR_1000T_MS_ENABLE;
935 default:
936 break;
938 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
939 if (ret_val)
940 goto out;
943 out:
944 return ret_val;
948 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
949 * @hw: pointer to the HW structure
951 * Performs initial bounds checking on autoneg advertisement parameter, then
952 * configure to advertise the full capability. Setup the PHY to autoneg
953 * and restart the negotiation process between the link partner. If
954 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
956 s32 igb_copper_link_autoneg(struct e1000_hw *hw)
958 struct e1000_phy_info *phy = &hw->phy;
959 s32 ret_val;
960 u16 phy_ctrl;
962 DEBUGFUNC("igb_copper_link_autoneg");
965 * Perform some bounds checking on the autoneg advertisement
966 * parameter.
968 phy->autoneg_advertised &= phy->autoneg_mask;
971 * If autoneg_advertised is zero, we assume it was not defaulted
972 * by the calling code so we set to advertise full capability.
974 if (phy->autoneg_advertised == 0)
975 phy->autoneg_advertised = phy->autoneg_mask;
977 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
978 ret_val = igb_phy_setup_autoneg(hw);
979 if (ret_val) {
980 DEBUGOUT("Error Setting up Auto-Negotiation\n");
981 goto out;
983 DEBUGOUT("Restarting Auto-Neg\n");
986 * Restart auto-negotiation by setting the Auto Neg Enable bit and
987 * the Auto Neg Restart bit in the PHY control register.
989 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
990 if (ret_val)
991 goto out;
993 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
994 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
995 if (ret_val)
996 goto out;
999 * Does the user want to wait for Auto-Neg to complete here, or
1000 * check at a later time (for example, callback routine).
1002 if (phy->autoneg_wait_to_complete) {
1003 ret_val = hw->mac.ops.wait_autoneg(hw);
1004 if (ret_val) {
1005 DEBUGOUT("Error while waiting for "
1006 "autoneg to complete\n");
1007 goto out;
1011 hw->mac.get_link_status = true;
1013 out:
1014 return ret_val;
1018 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
1019 * @hw: pointer to the HW structure
1021 * Reads the MII auto-neg advertisement register and/or the 1000T control
1022 * register and if the PHY is already setup for auto-negotiation, then
1023 * return successful. Otherwise, setup advertisement and flow control to
1024 * the appropriate values for the wanted auto-negotiation.
1026 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
1028 struct e1000_phy_info *phy = &hw->phy;
1029 s32 ret_val;
1030 u16 mii_autoneg_adv_reg;
1031 u16 mii_1000t_ctrl_reg = 0;
1033 DEBUGFUNC("igb_phy_setup_autoneg");
1035 phy->autoneg_advertised &= phy->autoneg_mask;
1037 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1038 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1039 if (ret_val)
1040 goto out;
1042 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1043 /* Read the MII 1000Base-T Control Register (Address 9). */
1044 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1045 &mii_1000t_ctrl_reg);
1046 if (ret_val)
1047 goto out;
1051 * Need to parse both autoneg_advertised and fc and set up
1052 * the appropriate PHY registers. First we will parse for
1053 * autoneg_advertised software override. Since we can advertise
1054 * a plethora of combinations, we need to check each bit
1055 * individually.
1059 * First we clear all the 10/100 mb speed bits in the Auto-Neg
1060 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1061 * the 1000Base-T Control Register (Address 9).
1063 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1064 NWAY_AR_100TX_HD_CAPS |
1065 NWAY_AR_10T_FD_CAPS |
1066 NWAY_AR_10T_HD_CAPS);
1067 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1069 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1071 /* Do we want to advertise 10 Mb Half Duplex? */
1072 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1073 DEBUGOUT("Advertise 10mb Half duplex\n");
1074 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1077 /* Do we want to advertise 10 Mb Full Duplex? */
1078 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1079 DEBUGOUT("Advertise 10mb Full duplex\n");
1080 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1083 /* Do we want to advertise 100 Mb Half Duplex? */
1084 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1085 DEBUGOUT("Advertise 100mb Half duplex\n");
1086 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1089 /* Do we want to advertise 100 Mb Full Duplex? */
1090 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1091 DEBUGOUT("Advertise 100mb Full duplex\n");
1092 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1095 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1096 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) {
1097 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1099 /* Do we want to advertise 1000 Mb Full Duplex? */
1100 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1101 DEBUGOUT("Advertise 1000mb Full duplex\n");
1102 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1106 * Check for a software override of the flow control settings, and
1107 * setup the PHY advertisement registers accordingly. If
1108 * auto-negotiation is enabled, then software will have to set the
1109 * "PAUSE" bits to the correct value in the Auto-Negotiation
1110 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1111 * negotiation.
1113 * The possible values of the "fc" parameter are:
1114 * 0: Flow control is completely disabled
1115 * 1: Rx flow control is enabled (we can receive pause frames
1116 * but not send pause frames).
1117 * 2: Tx flow control is enabled (we can send pause frames
1118 * but we do not support receiving pause frames).
1119 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1120 * other: No software override. The flow control configuration
1121 * in the EEPROM is used.
1123 switch (hw->fc.current_mode) {
1124 case e1000_fc_none:
1126 * Flow control (Rx & Tx) is completely disabled by a
1127 * software over-ride.
1129 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1130 break;
1131 case e1000_fc_rx_pause:
1133 * Rx Flow control is enabled, and Tx Flow control is
1134 * disabled, by a software over-ride.
1136 * Since there really isn't a way to advertise that we are
1137 * capable of Rx Pause ONLY, we will advertise that we
1138 * support both symmetric and asymmetric Rx PAUSE. Later
1139 * (in e1000_config_fc_after_link_up) we will disable the
1140 * hw's ability to send PAUSE frames.
1142 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1143 break;
1144 case e1000_fc_tx_pause:
1146 * Tx Flow control is enabled, and Rx Flow control is
1147 * disabled, by a software over-ride.
1149 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1150 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1151 break;
1152 case e1000_fc_full:
1154 * Flow control (both Rx and Tx) is enabled by a software
1155 * over-ride.
1157 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1158 break;
1159 default:
1160 DEBUGOUT("Flow control param set incorrectly\n");
1161 ret_val = -E1000_ERR_CONFIG;
1162 goto out;
1165 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1166 if (ret_val)
1167 goto out;
1169 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1171 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1172 ret_val = phy->ops.write_reg(hw,
1173 PHY_1000T_CTRL,
1174 mii_1000t_ctrl_reg);
1175 if (ret_val)
1176 goto out;
1179 out:
1180 return ret_val;
1184 * igb_setup_copper_link_generic - Configure copper link settings
1185 * @hw: pointer to the HW structure
1187 * Calls the appropriate function to configure the link for auto-neg or forced
1188 * speed and duplex. Then we check for link, once link is established calls
1189 * to configure collision distance and flow control are called. If link is
1190 * not established, we return -E1000_ERR_PHY (-2).
1192 s32 igb_setup_copper_link_generic(struct e1000_hw *hw)
1194 s32 ret_val;
1195 bool link;
1197 DEBUGFUNC("igb_setup_copper_link_generic");
1199 if (hw->mac.autoneg) {
1201 * Setup autoneg and flow control advertisement and perform
1202 * autonegotiation.
1204 ret_val = igb_copper_link_autoneg(hw);
1205 if (ret_val)
1206 goto out;
1207 } else {
1208 #if 0
1210 * PHY will be set to 10H, 10F, 100H or 100F
1211 * depending on user settings.
1213 DEBUGOUT("Forcing Speed and Duplex\n");
1214 ret_val = hw->phy.ops.force_speed_duplex(hw);
1215 if (ret_val) {
1216 DEBUGOUT("Error Forcing Speed and Duplex\n");
1217 goto out;
1219 #endif
1223 * Check link status. Wait up to 100 microseconds for link to become
1224 * valid.
1226 ret_val = igb_phy_has_link_generic(hw,
1227 COPPER_LINK_UP_LIMIT,
1229 &link);
1230 if (ret_val)
1231 goto out;
1233 if (link) {
1234 DEBUGOUT("Valid link established!!!\n");
1235 igb_config_collision_dist_generic(hw);
1236 ret_val = igb_config_fc_after_link_up_generic(hw);
1237 } else {
1238 DEBUGOUT("Unable to establish link!!!\n");
1241 out:
1242 return ret_val;
1245 #if 0
1247 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1248 * @hw: pointer to the HW structure
1250 * Calls the PHY setup function to force speed and duplex. Clears the
1251 * auto-crossover to force MDI manually. Waits for link and returns
1252 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1254 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1256 struct e1000_phy_info *phy = &hw->phy;
1257 s32 ret_val;
1258 u16 phy_data;
1259 bool link;
1261 DEBUGFUNC("igb_phy_force_speed_duplex_igp");
1263 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1264 if (ret_val)
1265 goto out;
1267 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1269 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1270 if (ret_val)
1271 goto out;
1274 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1275 * forced whenever speed and duplex are forced.
1277 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1278 if (ret_val)
1279 goto out;
1281 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1282 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1284 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1285 if (ret_val)
1286 goto out;
1288 DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1290 usec_delay(1);
1292 if (phy->autoneg_wait_to_complete) {
1293 DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1295 ret_val = igb_phy_has_link_generic(hw,
1296 PHY_FORCE_LIMIT,
1297 100000,
1298 &link);
1299 if (ret_val)
1300 goto out;
1302 if (!link) {
1303 DEBUGOUT("Link taking longer than expected.\n");
1305 /* Try once more */
1306 ret_val = igb_phy_has_link_generic(hw,
1307 PHY_FORCE_LIMIT,
1308 100000,
1309 &link);
1310 if (ret_val)
1311 goto out;
1314 out:
1315 return ret_val;
1317 #endif
1319 #if 0
1321 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1322 * @hw: pointer to the HW structure
1324 * Calls the PHY setup function to force speed and duplex. Clears the
1325 * auto-crossover to force MDI manually. Resets the PHY to commit the
1326 * changes. If time expires while waiting for link up, we reset the DSP.
1327 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1328 * successful completion, else return corresponding error code.
1330 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1332 struct e1000_phy_info *phy = &hw->phy;
1333 s32 ret_val;
1334 u16 phy_data;
1335 bool link;
1337 DEBUGFUNC("igb_phy_force_speed_duplex_m88");
1340 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1341 * forced whenever speed and duplex are forced.
1343 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1344 if (ret_val)
1345 goto out;
1347 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1348 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1349 if (ret_val)
1350 goto out;
1352 DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1354 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1355 if (ret_val)
1356 goto out;
1358 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1360 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1361 if (ret_val)
1362 goto out;
1364 /* Reset the phy to commit changes. */
1365 ret_val = hw->phy.ops.commit(hw);
1366 if (ret_val)
1367 goto out;
1369 if (phy->autoneg_wait_to_complete) {
1370 DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1372 ret_val = igb_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1373 100000, &link);
1374 if (ret_val)
1375 goto out;
1377 if (!link) {
1379 * We didn't get link.
1380 * Reset the DSP and cross our fingers.
1382 ret_val = phy->ops.write_reg(hw,
1383 M88E1000_PHY_PAGE_SELECT,
1384 0x001d);
1385 if (ret_val)
1386 goto out;
1387 ret_val = igb_phy_reset_dsp_generic(hw);
1388 if (ret_val)
1389 goto out;
1392 /* Try once more */
1393 ret_val = igb_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1394 100000, &link);
1395 if (ret_val)
1396 goto out;
1399 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1400 if (ret_val)
1401 goto out;
1404 * Resetting the phy means we need to re-force TX_CLK in the
1405 * Extended PHY Specific Control Register to 25MHz clock from
1406 * the reset value of 2.5MHz.
1408 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1409 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1410 if (ret_val)
1411 goto out;
1414 * In addition, we must re-enable CRS on Tx for both half and full
1415 * duplex.
1417 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1418 if (ret_val)
1419 goto out;
1421 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1422 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1424 out:
1425 return ret_val;
1427 #endif
1429 #if 0
1431 * igb_phy_force_speed_duplex_ife - Force PHY speed & duplex
1432 * @hw: pointer to the HW structure
1434 * Forces the speed and duplex settings of the PHY.
1435 * This is a function pointer entry point only called by
1436 * PHY setup routines.
1438 s32 igb_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1440 struct e1000_phy_info *phy = &hw->phy;
1441 s32 ret_val;
1442 u16 data;
1443 bool link;
1445 DEBUGFUNC("igb_phy_force_speed_duplex_ife");
1447 if (phy->type != e1000_phy_ife) {
1448 ret_val = igb_phy_force_speed_duplex_igp(hw);
1449 goto out;
1452 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1453 if (ret_val)
1454 goto out;
1456 igb_phy_force_speed_duplex_setup(hw, &data);
1458 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1459 if (ret_val)
1460 goto out;
1462 /* Disable MDI-X support for 10/100 */
1463 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1464 if (ret_val)
1465 goto out;
1467 data &= ~IFE_PMC_AUTO_MDIX;
1468 data &= ~IFE_PMC_FORCE_MDIX;
1470 ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1471 if (ret_val)
1472 goto out;
1474 DEBUGOUT1("IFE PMC: %X\n", data);
1476 usec_delay(1);
1478 if (phy->autoneg_wait_to_complete) {
1479 DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1481 ret_val = igb_phy_has_link_generic(hw,
1482 PHY_FORCE_LIMIT,
1483 100000,
1484 &link);
1485 if (ret_val)
1486 goto out;
1488 if (!link) {
1489 DEBUGOUT("Link taking longer than expected.\n");
1491 /* Try once more */
1492 ret_val = igb_phy_has_link_generic(hw,
1493 PHY_FORCE_LIMIT,
1494 100000,
1495 &link);
1496 if (ret_val)
1497 goto out;
1500 out:
1501 return ret_val;
1503 #endif
1505 #if 0
1507 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1508 * @hw: pointer to the HW structure
1509 * @phy_ctrl: pointer to current value of PHY_CONTROL
1511 * Forces speed and duplex on the PHY by doing the following: disable flow
1512 * control, force speed/duplex on the MAC, disable auto speed detection,
1513 * disable auto-negotiation, configure duplex, configure speed, configure
1514 * the collision distance, write configuration to CTRL register. The
1515 * caller must write to the PHY_CONTROL register for these settings to
1516 * take affect.
1518 void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1520 struct e1000_mac_info *mac = &hw->mac;
1521 u32 ctrl;
1523 DEBUGFUNC("igb_phy_force_speed_duplex_setup");
1525 /* Turn off flow control when forcing speed/duplex */
1526 hw->fc.current_mode = e1000_fc_none;
1528 /* Force speed/duplex on the mac */
1529 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1530 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1531 ctrl &= ~E1000_CTRL_SPD_SEL;
1533 /* Disable Auto Speed Detection */
1534 ctrl &= ~E1000_CTRL_ASDE;
1536 /* Disable autoneg on the phy */
1537 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1539 /* Forcing Full or Half Duplex? */
1540 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1541 ctrl &= ~E1000_CTRL_FD;
1542 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1543 DEBUGOUT("Half Duplex\n");
1544 } else {
1545 ctrl |= E1000_CTRL_FD;
1546 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1547 DEBUGOUT("Full Duplex\n");
1550 /* Forcing 10mb or 100mb? */
1551 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1552 ctrl |= E1000_CTRL_SPD_100;
1553 *phy_ctrl |= MII_CR_SPEED_100;
1554 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1555 DEBUGOUT("Forcing 100mb\n");
1556 } else {
1557 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1558 *phy_ctrl |= MII_CR_SPEED_10;
1559 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1560 DEBUGOUT("Forcing 10mb\n");
1563 igb_config_collision_dist_generic(hw);
1565 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1567 #endif
1570 * igb_set_d3_lplu_state_generic - Sets low power link up state for D3
1571 * @hw: pointer to the HW structure
1572 * @active: boolean used to enable/disable lplu
1574 * Success returns 0, Failure returns 1
1576 * The low power link up (lplu) state is set to the power management level D3
1577 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1578 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1579 * is used during Dx states where the power conservation is most important.
1580 * During driver activity, SmartSpeed should be enabled so performance is
1581 * maintained.
1583 s32 igb_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
1585 struct e1000_phy_info *phy = &hw->phy;
1586 s32 ret_val = E1000_SUCCESS;
1587 u16 data;
1589 DEBUGFUNC("igb_set_d3_lplu_state_generic");
1591 if (!(hw->phy.ops.read_reg))
1592 goto out;
1594 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1595 if (ret_val)
1596 goto out;
1598 if (!active) {
1599 data &= ~IGP02E1000_PM_D3_LPLU;
1600 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1601 data);
1602 if (ret_val)
1603 goto out;
1605 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1606 * during Dx states where the power conservation is most
1607 * important. During driver activity we should enable
1608 * SmartSpeed, so performance is maintained.
1610 if (phy->smart_speed == e1000_smart_speed_on) {
1611 ret_val = phy->ops.read_reg(hw,
1612 IGP01E1000_PHY_PORT_CONFIG,
1613 &data);
1614 if (ret_val)
1615 goto out;
1617 data |= IGP01E1000_PSCFR_SMART_SPEED;
1618 ret_val = phy->ops.write_reg(hw,
1619 IGP01E1000_PHY_PORT_CONFIG,
1620 data);
1621 if (ret_val)
1622 goto out;
1623 } else if (phy->smart_speed == e1000_smart_speed_off) {
1624 ret_val = phy->ops.read_reg(hw,
1625 IGP01E1000_PHY_PORT_CONFIG,
1626 &data);
1627 if (ret_val)
1628 goto out;
1630 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1631 ret_val = phy->ops.write_reg(hw,
1632 IGP01E1000_PHY_PORT_CONFIG,
1633 data);
1634 if (ret_val)
1635 goto out;
1637 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1638 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1639 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1640 data |= IGP02E1000_PM_D3_LPLU;
1641 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1642 data);
1643 if (ret_val)
1644 goto out;
1646 /* When LPLU is enabled, we should disable SmartSpeed */
1647 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1648 &data);
1649 if (ret_val)
1650 goto out;
1652 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1653 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1654 data);
1657 out:
1658 return ret_val;
1662 * igb_check_downshift_generic - Checks whether a downshift in speed occurred
1663 * @hw: pointer to the HW structure
1665 * Success returns 0, Failure returns 1
1667 * A downshift is detected by querying the PHY link health.
1669 s32 igb_check_downshift_generic(struct e1000_hw *hw)
1671 struct e1000_phy_info *phy = &hw->phy;
1672 s32 ret_val;
1673 u16 phy_data, offset, mask;
1675 DEBUGFUNC("igb_check_downshift_generic");
1677 switch (phy->type) {
1678 case e1000_phy_m88:
1679 case e1000_phy_gg82563:
1680 offset = M88E1000_PHY_SPEC_STATUS;
1681 mask = M88E1000_PSSR_DOWNSHIFT;
1682 break;
1683 case e1000_phy_igp_2:
1684 case e1000_phy_igp:
1685 case e1000_phy_igp_3:
1686 offset = IGP01E1000_PHY_LINK_HEALTH;
1687 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1688 break;
1689 default:
1690 /* speed downshift not supported */
1691 phy->speed_downgraded = false;
1692 ret_val = E1000_SUCCESS;
1693 goto out;
1696 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1698 if (!ret_val)
1699 phy->speed_downgraded = (phy_data & mask) ? true : false;
1701 out:
1702 return ret_val;
1706 * igb_check_polarity_m88 - Checks the polarity.
1707 * @hw: pointer to the HW structure
1709 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1711 * Polarity is determined based on the PHY specific status register.
1713 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1715 struct e1000_phy_info *phy = &hw->phy;
1716 s32 ret_val;
1717 u16 data;
1719 DEBUGFUNC("igb_check_polarity_m88");
1721 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1723 if (!ret_val)
1724 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1725 ? e1000_rev_polarity_reversed
1726 : e1000_rev_polarity_normal;
1728 return ret_val;
1732 * igb_check_polarity_igp - Checks the polarity.
1733 * @hw: pointer to the HW structure
1735 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1737 * Polarity is determined based on the PHY port status register, and the
1738 * current speed (since there is no polarity at 100Mbps).
1740 s32 igb_check_polarity_igp(struct e1000_hw *hw)
1742 struct e1000_phy_info *phy = &hw->phy;
1743 s32 ret_val;
1744 u16 data, offset, mask;
1746 DEBUGFUNC("igb_check_polarity_igp");
1749 * Polarity is determined based on the speed of
1750 * our connection.
1752 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1753 if (ret_val)
1754 goto out;
1756 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1757 IGP01E1000_PSSR_SPEED_1000MBPS) {
1758 offset = IGP01E1000_PHY_PCS_INIT_REG;
1759 mask = IGP01E1000_PHY_POLARITY_MASK;
1760 } else {
1762 * This really only applies to 10Mbps since
1763 * there is no polarity for 100Mbps (always 0).
1765 offset = IGP01E1000_PHY_PORT_STATUS;
1766 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1769 ret_val = phy->ops.read_reg(hw, offset, &data);
1771 if (!ret_val)
1772 phy->cable_polarity = (data & mask)
1773 ? e1000_rev_polarity_reversed
1774 : e1000_rev_polarity_normal;
1776 out:
1777 return ret_val;
1781 * igb_check_polarity_ife - Check cable polarity for IFE PHY
1782 * @hw: pointer to the HW structure
1784 * Polarity is determined on the polarity reversal feature being enabled.
1786 s32 igb_check_polarity_ife(struct e1000_hw *hw)
1788 struct e1000_phy_info *phy = &hw->phy;
1789 s32 ret_val;
1790 u16 phy_data, offset, mask;
1792 DEBUGFUNC("igb_check_polarity_ife");
1795 * Polarity is determined based on the reversal feature being enabled.
1797 if (phy->polarity_correction) {
1798 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1799 mask = IFE_PESC_POLARITY_REVERSED;
1800 } else {
1801 offset = IFE_PHY_SPECIAL_CONTROL;
1802 mask = IFE_PSC_FORCE_POLARITY;
1805 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1807 if (!ret_val)
1808 phy->cable_polarity = (phy_data & mask)
1809 ? e1000_rev_polarity_reversed
1810 : e1000_rev_polarity_normal;
1812 return ret_val;
1816 * igb_wait_autoneg_generic - Wait for auto-neg completion
1817 * @hw: pointer to the HW structure
1819 * Waits for auto-negotiation to complete or for the auto-negotiation time
1820 * limit to expire, which ever happens first.
1822 s32 igb_wait_autoneg_generic(struct e1000_hw *hw)
1824 s32 ret_val = E1000_SUCCESS;
1825 u16 i, phy_status;
1827 DEBUGFUNC("igb_wait_autoneg_generic");
1829 if (!(hw->phy.ops.read_reg))
1830 return E1000_SUCCESS;
1832 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1833 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1834 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1835 if (ret_val)
1836 break;
1837 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1838 if (ret_val)
1839 break;
1840 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1841 break;
1842 msec_delay(100);
1846 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1847 * has completed.
1849 return ret_val;
1853 * igb_phy_has_link_generic - Polls PHY for link
1854 * @hw: pointer to the HW structure
1855 * @iterations: number of times to poll for link
1856 * @usec_interval: delay between polling attempts
1857 * @success: pointer to whether polling was successful or not
1859 * Polls the PHY status register for link, 'iterations' number of times.
1861 s32 igb_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1862 u32 usec_interval, bool *success)
1864 s32 ret_val = E1000_SUCCESS;
1865 u16 i, phy_status;
1867 DEBUGFUNC("igb_phy_has_link_generic");
1869 if (!(hw->phy.ops.read_reg))
1870 return E1000_SUCCESS;
1872 for (i = 0; i < iterations; i++) {
1874 * Some PHYs require the PHY_STATUS register to be read
1875 * twice due to the link bit being sticky. No harm doing
1876 * it across the board.
1878 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1879 if (ret_val) {
1881 * If the first read fails, another entity may have
1882 * ownership of the resources, wait and try again to
1883 * see if they have relinquished the resources yet.
1885 usec_delay(usec_interval);
1887 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1888 if (ret_val)
1889 break;
1890 if (phy_status & MII_SR_LINK_STATUS)
1891 break;
1892 if (usec_interval >= 1000)
1893 msec_delay_irq(usec_interval/1000);
1894 else
1895 usec_delay(usec_interval);
1898 *success = (i < iterations) ? true : false;
1900 return ret_val;
1903 #if 0
1905 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1906 * @hw: pointer to the HW structure
1908 * Reads the PHY specific status register to retrieve the cable length
1909 * information. The cable length is determined by averaging the minimum and
1910 * maximum values to get the "average" cable length. The m88 PHY has four
1911 * possible cable length values, which are:
1912 * Register Value Cable Length
1913 * 0 < 50 meters
1914 * 1 50 - 80 meters
1915 * 2 80 - 110 meters
1916 * 3 110 - 140 meters
1917 * 4 > 140 meters
1919 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1921 struct e1000_phy_info *phy = &hw->phy;
1922 s32 ret_val;
1923 u16 phy_data, index;
1925 DEBUGFUNC("igb_get_cable_length_m88");
1927 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1928 if (ret_val)
1929 goto out;
1931 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1932 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1933 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1934 ret_val = -E1000_ERR_PHY;
1935 goto out;
1938 phy->min_cable_length = e1000_m88_cable_length_table[index];
1939 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1941 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1943 out:
1944 return ret_val;
1948 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1949 * @hw: pointer to the HW structure
1951 * The automatic gain control (agc) normalizes the amplitude of the
1952 * received signal, adjusting for the attenuation produced by the
1953 * cable. By reading the AGC registers, which represent the
1954 * combination of coarse and fine gain value, the value can be put
1955 * into a lookup table to obtain the approximate cable length
1956 * for each channel.
1958 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1960 struct e1000_phy_info *phy = &hw->phy;
1961 s32 ret_val = E1000_SUCCESS;
1962 u16 phy_data, i, agc_value = 0;
1963 u16 cur_agc_index, max_agc_index = 0;
1964 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1965 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1966 {IGP02E1000_PHY_AGC_A,
1967 IGP02E1000_PHY_AGC_B,
1968 IGP02E1000_PHY_AGC_C,
1969 IGP02E1000_PHY_AGC_D};
1971 DEBUGFUNC("igb_get_cable_length_igp_2");
1973 /* Read the AGC registers for all channels */
1974 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1975 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1976 if (ret_val)
1977 goto out;
1980 * Getting bits 15:9, which represent the combination of
1981 * coarse and fine gain values. The result is a number
1982 * that can be put into the lookup table to obtain the
1983 * approximate cable length.
1985 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1986 IGP02E1000_AGC_LENGTH_MASK;
1988 /* Array index bound check. */
1989 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1990 (cur_agc_index == 0)) {
1991 ret_val = -E1000_ERR_PHY;
1992 goto out;
1995 /* Remove min & max AGC values from calculation. */
1996 if (e1000_igp_2_cable_length_table[min_agc_index] >
1997 e1000_igp_2_cable_length_table[cur_agc_index])
1998 min_agc_index = cur_agc_index;
1999 if (e1000_igp_2_cable_length_table[max_agc_index] <
2000 e1000_igp_2_cable_length_table[cur_agc_index])
2001 max_agc_index = cur_agc_index;
2003 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
2006 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
2007 e1000_igp_2_cable_length_table[max_agc_index]);
2008 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
2010 /* Calculate cable length with the error range of +/- 10 meters. */
2011 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
2012 (agc_value - IGP02E1000_AGC_RANGE) : 0;
2013 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
2015 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2017 out:
2018 return ret_val;
2020 #endif
2023 * igb_get_phy_info_m88 - Retrieve PHY information
2024 * @hw: pointer to the HW structure
2026 * Valid for only copper links. Read the PHY status register (sticky read)
2027 * to verify that link is up. Read the PHY special control register to
2028 * determine the polarity and 10base-T extended distance. Read the PHY
2029 * special status register to determine MDI/MDIx and current speed. If
2030 * speed is 1000, then determine cable length, local and remote receiver.
2032 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
2034 struct e1000_phy_info *phy = &hw->phy;
2035 s32 ret_val;
2036 u16 phy_data;
2037 bool link;
2039 DEBUGFUNC("igb_get_phy_info_m88");
2041 if (phy->media_type != e1000_media_type_copper) {
2042 DEBUGOUT("Phy info is only valid for copper media\n");
2043 ret_val = -E1000_ERR_CONFIG;
2044 goto out;
2047 ret_val = igb_phy_has_link_generic(hw, 1, 0, &link);
2048 if (ret_val)
2049 goto out;
2051 if (!link) {
2052 DEBUGOUT("Phy info is only valid if link is up\n");
2053 ret_val = -E1000_ERR_CONFIG;
2054 goto out;
2057 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2058 if (ret_val)
2059 goto out;
2061 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
2062 ? true : false;
2064 ret_val = igb_check_polarity_m88(hw);
2065 if (ret_val)
2066 goto out;
2068 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2069 if (ret_val)
2070 goto out;
2072 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
2074 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2075 #if 0
2076 ret_val = hw->phy.ops.get_cable_length(hw);
2077 #endif
2078 ret_val = -E1000_ERR_CONFIG;
2079 if (ret_val)
2080 goto out;
2081 #if 0
2082 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2083 if (ret_val)
2084 goto out;
2086 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2087 ? e1000_1000t_rx_status_ok
2088 : e1000_1000t_rx_status_not_ok;
2090 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2091 ? e1000_1000t_rx_status_ok
2092 : e1000_1000t_rx_status_not_ok;
2093 #endif
2094 } else {
2095 /* Set values to "undefined" */
2096 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2097 phy->local_rx = e1000_1000t_rx_status_undefined;
2098 phy->remote_rx = e1000_1000t_rx_status_undefined;
2101 out:
2102 return ret_val;
2106 * igb_get_phy_info_igp - Retrieve igp PHY information
2107 * @hw: pointer to the HW structure
2109 * Read PHY status to determine if link is up. If link is up, then
2110 * set/determine 10base-T extended distance and polarity correction. Read
2111 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2112 * determine on the cable length, local and remote receiver.
2114 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2116 struct e1000_phy_info *phy = &hw->phy;
2117 s32 ret_val;
2118 u16 data;
2119 bool link;
2121 DEBUGFUNC("igb_get_phy_info_igp");
2123 ret_val = igb_phy_has_link_generic(hw, 1, 0, &link);
2124 if (ret_val)
2125 goto out;
2127 if (!link) {
2128 DEBUGOUT("Phy info is only valid if link is up\n");
2129 ret_val = -E1000_ERR_CONFIG;
2130 goto out;
2133 phy->polarity_correction = true;
2135 ret_val = igb_check_polarity_igp(hw);
2136 if (ret_val)
2137 goto out;
2139 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2140 if (ret_val)
2141 goto out;
2143 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2145 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2146 IGP01E1000_PSSR_SPEED_1000MBPS) {
2147 #if 0
2148 ret_val = phy->ops.get_cable_length(hw);
2149 #endif
2150 ret_val = -E1000_ERR_CONFIG;
2151 if (ret_val)
2152 goto out;
2153 #if 0
2154 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2155 if (ret_val)
2156 goto out;
2158 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2159 ? e1000_1000t_rx_status_ok
2160 : e1000_1000t_rx_status_not_ok;
2162 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2163 ? e1000_1000t_rx_status_ok
2164 : e1000_1000t_rx_status_not_ok;
2165 #endif
2166 } else {
2167 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2168 phy->local_rx = e1000_1000t_rx_status_undefined;
2169 phy->remote_rx = e1000_1000t_rx_status_undefined;
2172 out:
2173 return ret_val;
2177 * igb_phy_sw_reset_generic - PHY software reset
2178 * @hw: pointer to the HW structure
2180 * Does a software reset of the PHY by reading the PHY control register and
2181 * setting/write the control register reset bit to the PHY.
2183 s32 igb_phy_sw_reset_generic(struct e1000_hw *hw)
2185 s32 ret_val = E1000_SUCCESS;
2186 u16 phy_ctrl;
2188 DEBUGFUNC("igb_phy_sw_reset_generic");
2190 if (!(hw->phy.ops.read_reg))
2191 goto out;
2193 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2194 if (ret_val)
2195 goto out;
2197 phy_ctrl |= MII_CR_RESET;
2198 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2199 if (ret_val)
2200 goto out;
2202 usec_delay(1);
2204 out:
2205 return ret_val;
2209 * igb_phy_hw_reset_generic - PHY hardware reset
2210 * @hw: pointer to the HW structure
2212 * Verify the reset block is not blocking us from resetting. Acquire
2213 * semaphore (if necessary) and read/set/write the device control reset
2214 * bit in the PHY. Wait the appropriate delay time for the device to
2215 * reset and release the semaphore (if necessary).
2217 s32 igb_phy_hw_reset_generic(struct e1000_hw *hw)
2219 struct e1000_phy_info *phy = &hw->phy;
2220 s32 ret_val = E1000_SUCCESS;
2221 u32 ctrl;
2223 DEBUGFUNC("igb_phy_hw_reset_generic");
2225 ret_val = phy->ops.check_reset_block(hw);
2226 if (ret_val) {
2227 ret_val = E1000_SUCCESS;
2228 goto out;
2231 ret_val = phy->ops.acquire(hw);
2232 if (ret_val)
2233 goto out;
2235 ctrl = E1000_READ_REG(hw, E1000_CTRL);
2236 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2237 E1000_WRITE_FLUSH(hw);
2239 usec_delay(phy->reset_delay_us);
2241 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2242 E1000_WRITE_FLUSH(hw);
2244 usec_delay(150);
2246 phy->ops.release(hw);
2248 ret_val = phy->ops.get_cfg_done(hw);
2250 out:
2251 return ret_val;
2255 * igb_get_cfg_done_generic - Generic configuration done
2256 * @hw: pointer to the HW structure
2258 * Generic function to wait 10 milli-seconds for configuration to complete
2259 * and return success.
2261 s32 igb_get_cfg_done_generic(struct e1000_hw *hw __unused)
2263 DEBUGFUNC("igb_get_cfg_done_generic");
2265 msec_delay_irq(10);
2267 return E1000_SUCCESS;
2271 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2272 * @hw: pointer to the HW structure
2274 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2276 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2278 DEBUGOUT("Running IGP 3 PHY init script\n");
2280 /* PHY init IGP 3 */
2281 /* Enable rise/fall, 10-mode work in class-A */
2282 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2283 /* Remove all caps from Replica path filter */
2284 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2285 /* Bias trimming for ADC, AFE and Driver (Default) */
2286 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2287 /* Increase Hybrid poly bias */
2288 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2289 /* Add 4% to Tx amplitude in Gig mode */
2290 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2291 /* Disable trimming (TTT) */
2292 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2293 /* Poly DC correction to 94.6% + 2% for all channels */
2294 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2295 /* ABS DC correction to 95.9% */
2296 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2297 /* BG temp curve trim */
2298 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2299 /* Increasing ADC OPAMP stage 1 currents to max */
2300 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2301 /* Force 1000 ( required for enabling PHY regs configuration) */
2302 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2303 /* Set upd_freq to 6 */
2304 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2305 /* Disable NPDFE */
2306 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2307 /* Disable adaptive fixed FFE (Default) */
2308 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2309 /* Enable FFE hysteresis */
2310 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2311 /* Fixed FFE for short cable lengths */
2312 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2313 /* Fixed FFE for medium cable lengths */
2314 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2315 /* Fixed FFE for long cable lengths */
2316 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2317 /* Enable Adaptive Clip Threshold */
2318 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2319 /* AHT reset limit to 1 */
2320 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2321 /* Set AHT master delay to 127 msec */
2322 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2323 /* Set scan bits for AHT */
2324 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2325 /* Set AHT Preset bits */
2326 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2327 /* Change integ_factor of channel A to 3 */
2328 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2329 /* Change prop_factor of channels BCD to 8 */
2330 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2331 /* Change cg_icount + enable integbp for channels BCD */
2332 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2334 * Change cg_icount + enable integbp + change prop_factor_master
2335 * to 8 for channel A
2337 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2338 /* Disable AHT in Slave mode on channel A */
2339 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2341 * Enable LPLU and disable AN to 1000 in non-D0a states,
2342 * Enable SPD+B2B
2344 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2345 /* Enable restart AN on an1000_dis change */
2346 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2347 /* Enable wh_fifo read clock in 10/100 modes */
2348 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2349 /* Restart AN, Speed selection is 1000 */
2350 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2352 return E1000_SUCCESS;
2356 * igb_get_phy_type_from_id - Get PHY type from id
2357 * @phy_id: phy_id read from the phy
2359 * Returns the phy type from the id.
2361 enum e1000_phy_type igb_get_phy_type_from_id(u32 phy_id)
2363 enum e1000_phy_type phy_type = e1000_phy_unknown;
2365 switch (phy_id) {
2366 case M88E1000_I_PHY_ID:
2367 case M88E1000_E_PHY_ID:
2368 case M88E1111_I_PHY_ID:
2369 case M88E1011_I_PHY_ID:
2370 phy_type = e1000_phy_m88;
2371 break;
2372 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2373 phy_type = e1000_phy_igp_2;
2374 break;
2375 case GG82563_E_PHY_ID:
2376 phy_type = e1000_phy_gg82563;
2377 break;
2378 case IGP03E1000_E_PHY_ID:
2379 phy_type = e1000_phy_igp_3;
2380 break;
2381 case IFE_E_PHY_ID:
2382 case IFE_PLUS_E_PHY_ID:
2383 case IFE_C_E_PHY_ID:
2384 phy_type = e1000_phy_ife;
2385 break;
2386 default:
2387 phy_type = e1000_phy_unknown;
2388 break;
2390 return phy_type;
2394 * igb_determine_phy_address - Determines PHY address.
2395 * @hw: pointer to the HW structure
2397 * This uses a trial and error method to loop through possible PHY
2398 * addresses. It tests each by reading the PHY ID registers and
2399 * checking for a match.
2401 s32 igb_determine_phy_address(struct e1000_hw *hw)
2403 s32 ret_val = -E1000_ERR_PHY_TYPE;
2404 u32 phy_addr = 0;
2405 u32 i;
2406 enum e1000_phy_type phy_type = e1000_phy_unknown;
2408 hw->phy.id = phy_type;
2410 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2411 hw->phy.addr = phy_addr;
2412 i = 0;
2414 do {
2415 igb_get_phy_id(hw);
2416 phy_type = igb_get_phy_type_from_id(hw->phy.id);
2419 * If phy_type is valid, break - we found our
2420 * PHY address
2422 if (phy_type != e1000_phy_unknown) {
2423 ret_val = E1000_SUCCESS;
2424 goto out;
2426 msec_delay(1);
2427 i++;
2428 } while (i < 10);
2431 out:
2432 return ret_val;
2436 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2437 * @hw: pointer to the HW structure
2439 * In the case of a PHY power down to save power, or to turn off link during a
2440 * driver unload, or wake on lan is not enabled, restore the link to previous
2441 * settings.
2443 void igb_power_up_phy_copper(struct e1000_hw *hw)
2445 u16 mii_reg = 0;
2447 /* The PHY will retain its settings across a power down/up cycle */
2448 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2449 mii_reg &= ~MII_CR_POWER_DOWN;
2450 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2454 * igb_power_down_phy_copper - Restore copper link in case of PHY power down
2455 * @hw: pointer to the HW structure
2457 * In the case of a PHY power down to save power, or to turn off link during a
2458 * driver unload, or wake on lan is not enabled, restore the link to previous
2459 * settings.
2461 void igb_power_down_phy_copper(struct e1000_hw *hw)
2463 u16 mii_reg = 0;
2465 /* The PHY will retain its settings across a power down/up cycle */
2466 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2467 mii_reg |= MII_CR_POWER_DOWN;
2468 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2469 msec_delay(1);