1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 FILE_LICENCE ( GPL2_OR_LATER
);
31 #include "e1000_api.h"
34 /* Cable length tables */
35 static const u16 e1000_m88_cable_length_table
[] =
36 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
37 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
38 (sizeof(e1000_m88_cable_length_table) / \
39 sizeof(e1000_m88_cable_length_table[0]))
41 static const u16 e1000_igp_2_cable_length_table
[] =
42 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
43 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
44 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
45 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
46 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
47 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
48 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
49 104, 109, 114, 118, 121, 124};
50 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
51 (sizeof(e1000_igp_2_cable_length_table) / \
52 sizeof(e1000_igp_2_cable_length_table[0]))
56 * e1000_init_phy_ops_generic - Initialize PHY function pointers
57 * @hw: pointer to the HW structure
59 * Setups up the function pointers to no-op functions
61 void e1000_init_phy_ops_generic(struct e1000_hw
*hw
)
63 struct e1000_phy_info
*phy
= &hw
->phy
;
64 DEBUGFUNC("e1000_init_phy_ops_generic");
66 /* Initialize function pointers */
67 phy
->ops
.init_params
= e1000_null_ops_generic
;
68 phy
->ops
.acquire
= e1000_null_ops_generic
;
69 phy
->ops
.check_polarity
= e1000_null_ops_generic
;
70 phy
->ops
.check_reset_block
= e1000_null_ops_generic
;
71 phy
->ops
.commit
= e1000_null_ops_generic
;
73 phy
->ops
.force_speed_duplex
= e1000_null_ops_generic
;
75 phy
->ops
.get_cfg_done
= e1000_null_ops_generic
;
77 phy
->ops
.get_cable_length
= e1000_null_ops_generic
;
79 phy
->ops
.get_info
= e1000_null_ops_generic
;
80 phy
->ops
.read_reg
= e1000_null_read_reg
;
81 phy
->ops
.release
= e1000_null_phy_generic
;
82 phy
->ops
.reset
= e1000_null_ops_generic
;
83 phy
->ops
.set_d0_lplu_state
= e1000_null_lplu_state
;
84 phy
->ops
.set_d3_lplu_state
= e1000_null_lplu_state
;
85 phy
->ops
.write_reg
= e1000_null_write_reg
;
86 phy
->ops
.power_up
= e1000_null_phy_generic
;
87 phy
->ops
.power_down
= e1000_null_phy_generic
;
91 * e1000_null_read_reg - No-op function, return 0
92 * @hw: pointer to the HW structure
94 s32
e1000_null_read_reg(struct e1000_hw
*hw __unused
, u32 offset __unused
,
97 DEBUGFUNC("e1000_null_read_reg");
102 * e1000_null_phy_generic - No-op function, return void
103 * @hw: pointer to the HW structure
105 void e1000_null_phy_generic(struct e1000_hw
*hw __unused
)
107 DEBUGFUNC("e1000_null_phy_generic");
112 * e1000_null_lplu_state - No-op function, return 0
113 * @hw: pointer to the HW structure
115 s32
e1000_null_lplu_state(struct e1000_hw
*hw __unused
, bool active __unused
)
117 DEBUGFUNC("e1000_null_lplu_state");
118 return E1000_SUCCESS
;
122 * e1000_null_write_reg - No-op function, return 0
123 * @hw: pointer to the HW structure
125 s32
e1000_null_write_reg(struct e1000_hw
*hw __unused
, u32 offset __unused
,
128 DEBUGFUNC("e1000_null_write_reg");
129 return E1000_SUCCESS
;
133 * e1000_check_reset_block_generic - Check if PHY reset is blocked
134 * @hw: pointer to the HW structure
136 * Read the PHY management control register and check whether a PHY reset
137 * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
138 * return E1000_BLK_PHY_RESET (12).
140 s32
e1000_check_reset_block_generic(struct e1000_hw
*hw
)
144 DEBUGFUNC("e1000_check_reset_block");
146 manc
= E1000_READ_REG(hw
, E1000_MANC
);
148 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
149 E1000_BLK_PHY_RESET
: E1000_SUCCESS
;
153 * e1000_get_phy_id - Retrieve the PHY ID and revision
154 * @hw: pointer to the HW structure
156 * Reads the PHY registers and stores the PHY ID and possibly the PHY
157 * revision in the hardware structure.
159 s32
e1000_get_phy_id(struct e1000_hw
*hw
)
161 struct e1000_phy_info
*phy
= &hw
->phy
;
162 s32 ret_val
= E1000_SUCCESS
;
165 DEBUGFUNC("e1000_get_phy_id");
167 if (!(phy
->ops
.read_reg
))
170 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
174 phy
->id
= (u32
)(phy_id
<< 16);
176 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
180 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
181 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
188 * e1000_phy_reset_dsp_generic - Reset PHY DSP
189 * @hw: pointer to the HW structure
191 * Reset the digital signal processor.
193 s32
e1000_phy_reset_dsp_generic(struct e1000_hw
*hw
)
195 s32 ret_val
= E1000_SUCCESS
;
197 DEBUGFUNC("e1000_phy_reset_dsp_generic");
199 if (!(hw
->phy
.ops
.write_reg
))
202 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
206 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
213 * e1000_read_phy_reg_mdic - Read MDI control register
214 * @hw: pointer to the HW structure
215 * @offset: register offset to be read
216 * @data: pointer to the read data
218 * Reads the MDI control register in the PHY at offset and stores the
219 * information read to data.
221 s32
e1000_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
223 struct e1000_phy_info
*phy
= &hw
->phy
;
225 s32 ret_val
= E1000_SUCCESS
;
227 DEBUGFUNC("e1000_read_phy_reg_mdic");
230 * Set up Op-code, Phy Address, and register offset in the MDI
231 * Control register. The MAC will take care of interfacing with the
232 * PHY to retrieve the desired data.
234 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
235 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
236 (E1000_MDIC_OP_READ
));
238 E1000_WRITE_REG(hw
, E1000_MDIC
, mdic
);
241 * Poll the ready bit to see if the MDI read completed
242 * Increasing the time out as testing showed failures with
245 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
247 mdic
= E1000_READ_REG(hw
, E1000_MDIC
);
248 if (mdic
& E1000_MDIC_READY
)
251 if (!(mdic
& E1000_MDIC_READY
)) {
252 DEBUGOUT("MDI Read did not complete\n");
253 ret_val
= -E1000_ERR_PHY
;
256 if (mdic
& E1000_MDIC_ERROR
) {
257 DEBUGOUT("MDI Error\n");
258 ret_val
= -E1000_ERR_PHY
;
268 * e1000_write_phy_reg_mdic - Write MDI control register
269 * @hw: pointer to the HW structure
270 * @offset: register offset to write to
271 * @data: data to write to register at offset
273 * Writes data to MDI control register in the PHY at offset.
275 s32
e1000_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
277 struct e1000_phy_info
*phy
= &hw
->phy
;
279 s32 ret_val
= E1000_SUCCESS
;
281 DEBUGFUNC("e1000_write_phy_reg_mdic");
284 * Set up Op-code, Phy Address, and register offset in the MDI
285 * Control register. The MAC will take care of interfacing with the
286 * PHY to retrieve the desired data.
288 mdic
= (((u32
)data
) |
289 (offset
<< E1000_MDIC_REG_SHIFT
) |
290 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
291 (E1000_MDIC_OP_WRITE
));
293 E1000_WRITE_REG(hw
, E1000_MDIC
, mdic
);
296 * Poll the ready bit to see if the MDI read completed
297 * Increasing the time out as testing showed failures with
300 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
302 mdic
= E1000_READ_REG(hw
, E1000_MDIC
);
303 if (mdic
& E1000_MDIC_READY
)
306 if (!(mdic
& E1000_MDIC_READY
)) {
307 DEBUGOUT("MDI Write did not complete\n");
308 ret_val
= -E1000_ERR_PHY
;
311 if (mdic
& E1000_MDIC_ERROR
) {
312 DEBUGOUT("MDI Error\n");
313 ret_val
= -E1000_ERR_PHY
;
322 * e1000_read_phy_reg_m88 - Read m88 PHY register
323 * @hw: pointer to the HW structure
324 * @offset: register offset to be read
325 * @data: pointer to the read data
327 * Acquires semaphore, if necessary, then reads the PHY register at offset
328 * and storing the retrieved information in data. Release any acquired
329 * semaphores before exiting.
331 s32
e1000_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
333 s32 ret_val
= E1000_SUCCESS
;
335 DEBUGFUNC("e1000_read_phy_reg_m88");
337 if (!(hw
->phy
.ops
.acquire
))
340 ret_val
= hw
->phy
.ops
.acquire(hw
);
344 ret_val
= e1000_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
347 hw
->phy
.ops
.release(hw
);
354 * e1000_write_phy_reg_m88 - Write m88 PHY register
355 * @hw: pointer to the HW structure
356 * @offset: register offset to write to
357 * @data: data to write at register offset
359 * Acquires semaphore, if necessary, then writes the data to PHY register
360 * at the offset. Release any acquired semaphores before exiting.
362 s32
e1000_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
364 s32 ret_val
= E1000_SUCCESS
;
366 DEBUGFUNC("e1000_write_phy_reg_m88");
368 if (!(hw
->phy
.ops
.acquire
))
371 ret_val
= hw
->phy
.ops
.acquire(hw
);
375 ret_val
= e1000_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
378 hw
->phy
.ops
.release(hw
);
385 * e1000_read_phy_reg_igp - Read igp PHY register
386 * @hw: pointer to the HW structure
387 * @offset: register offset to be read
388 * @data: pointer to the read data
390 * Acquires semaphore, if necessary, then reads the PHY register at offset
391 * and storing the retrieved information in data. Release any acquired
392 * semaphores before exiting.
394 s32
e1000_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
396 s32 ret_val
= E1000_SUCCESS
;
398 DEBUGFUNC("e1000_read_phy_reg_igp");
400 if (!(hw
->phy
.ops
.acquire
))
403 ret_val
= hw
->phy
.ops
.acquire(hw
);
407 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
408 ret_val
= e1000_write_phy_reg_mdic(hw
,
409 IGP01E1000_PHY_PAGE_SELECT
,
412 hw
->phy
.ops
.release(hw
);
417 ret_val
= e1000_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
420 hw
->phy
.ops
.release(hw
);
427 * e1000_write_phy_reg_igp - Write igp PHY register
428 * @hw: pointer to the HW structure
429 * @offset: register offset to write to
430 * @data: data to write at register offset
432 * Acquires semaphore, if necessary, then writes the data to PHY register
433 * at the offset. Release any acquired semaphores before exiting.
435 s32
e1000_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
437 s32 ret_val
= E1000_SUCCESS
;
439 DEBUGFUNC("e1000_write_phy_reg_igp");
441 if (!(hw
->phy
.ops
.acquire
))
444 ret_val
= hw
->phy
.ops
.acquire(hw
);
448 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
449 ret_val
= e1000_write_phy_reg_mdic(hw
,
450 IGP01E1000_PHY_PAGE_SELECT
,
453 hw
->phy
.ops
.release(hw
);
458 ret_val
= e1000_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
461 hw
->phy
.ops
.release(hw
);
468 * e1000_read_kmrn_reg_generic - Read kumeran register
469 * @hw: pointer to the HW structure
470 * @offset: register offset to be read
471 * @data: pointer to the read data
473 * Acquires semaphore, if necessary. Then reads the PHY register at offset
474 * using the kumeran interface. The information retrieved is stored in data.
475 * Release any acquired semaphores before exiting.
477 s32
e1000_read_kmrn_reg_generic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
480 s32 ret_val
= E1000_SUCCESS
;
482 DEBUGFUNC("e1000_read_kmrn_reg_generic");
484 if (!(hw
->phy
.ops
.acquire
))
487 ret_val
= hw
->phy
.ops
.acquire(hw
);
491 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
492 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
493 E1000_WRITE_REG(hw
, E1000_KMRNCTRLSTA
, kmrnctrlsta
);
497 kmrnctrlsta
= E1000_READ_REG(hw
, E1000_KMRNCTRLSTA
);
498 *data
= (u16
)kmrnctrlsta
;
500 hw
->phy
.ops
.release(hw
);
507 * e1000_write_kmrn_reg_generic - Write kumeran register
508 * @hw: pointer to the HW structure
509 * @offset: register offset to write to
510 * @data: data to write at register offset
512 * Acquires semaphore, if necessary. Then write the data to PHY register
513 * at the offset using the kumeran interface. Release any acquired semaphores
516 s32
e1000_write_kmrn_reg_generic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
519 s32 ret_val
= E1000_SUCCESS
;
521 DEBUGFUNC("e1000_write_kmrn_reg_generic");
523 if (!(hw
->phy
.ops
.acquire
))
526 ret_val
= hw
->phy
.ops
.acquire(hw
);
530 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
531 E1000_KMRNCTRLSTA_OFFSET
) | data
;
532 E1000_WRITE_REG(hw
, E1000_KMRNCTRLSTA
, kmrnctrlsta
);
535 hw
->phy
.ops
.release(hw
);
542 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
543 * @hw: pointer to the HW structure
545 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
546 * and downshift values are set also.
548 s32
e1000_copper_link_setup_m88(struct e1000_hw
*hw
)
550 struct e1000_phy_info
*phy
= &hw
->phy
;
554 DEBUGFUNC("e1000_copper_link_setup_m88");
556 if (phy
->reset_disable
) {
557 ret_val
= E1000_SUCCESS
;
561 /* Enable CRS on TX. This must be set for half-duplex operation. */
562 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
566 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
570 * MDI/MDI-X = 0 (default)
571 * 0 - Auto for all speeds
574 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
576 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
580 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
583 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
586 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
590 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
596 * disable_polarity_correction = 0 (default)
597 * Automatic Correction for Reversed Cable Polarity
601 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
602 if (phy
->disable_polarity_correction
== 1)
603 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
605 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
609 if (phy
->revision
< E1000_REVISION_4
) {
611 * Force TX_CLK in the Extended PHY Specific Control Register
614 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
619 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
621 if ((phy
->revision
== E1000_REVISION_2
) &&
622 (phy
->id
== M88E1111_I_PHY_ID
)) {
623 /* 82573L PHY - set the downshift counter to 5x. */
624 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
625 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
627 /* Configure Master and Slave downshift values */
628 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
629 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
630 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
631 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
633 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
639 /* Commit the changes. */
640 ret_val
= phy
->ops
.commit(hw
);
642 DEBUGOUT("Error committing the PHY changes\n");
651 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
652 * @hw: pointer to the HW structure
654 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
657 s32
e1000_copper_link_setup_igp(struct e1000_hw
*hw
)
659 struct e1000_phy_info
*phy
= &hw
->phy
;
663 DEBUGFUNC("e1000_copper_link_setup_igp");
665 if (phy
->reset_disable
) {
666 ret_val
= E1000_SUCCESS
;
670 ret_val
= hw
->phy
.ops
.reset(hw
);
672 DEBUGOUT("Error resetting the PHY.\n");
677 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
678 * timeout issues when LFS is enabled.
683 * The NVM settings will configure LPLU in D3 for
686 if (phy
->type
== e1000_phy_igp
) {
687 /* disable lplu d3 during driver init */
688 ret_val
= hw
->phy
.ops
.set_d3_lplu_state(hw
, false);
690 DEBUGOUT("Error Disabling LPLU D3\n");
695 /* disable lplu d0 during driver init */
696 if (hw
->phy
.ops
.set_d0_lplu_state
) {
697 ret_val
= hw
->phy
.ops
.set_d0_lplu_state(hw
, false);
699 DEBUGOUT("Error Disabling LPLU D0\n");
703 /* Configure mdi-mdix settings */
704 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
708 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
712 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
715 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
719 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
722 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
726 /* set auto-master slave resolution settings */
727 if (hw
->mac
.autoneg
) {
729 * when autonegotiation advertisement is only 1000Mbps then we
730 * should disable SmartSpeed and enable Auto MasterSlave
731 * resolution as hardware default.
733 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
734 /* Disable SmartSpeed */
735 ret_val
= phy
->ops
.read_reg(hw
,
736 IGP01E1000_PHY_PORT_CONFIG
,
741 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
742 ret_val
= phy
->ops
.write_reg(hw
,
743 IGP01E1000_PHY_PORT_CONFIG
,
748 /* Set auto Master/Slave resolution process */
749 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
753 data
&= ~CR_1000T_MS_ENABLE
;
754 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
759 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
763 /* load defaults for future use */
764 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
765 ((data
& CR_1000T_MS_VALUE
) ?
766 e1000_ms_force_master
:
767 e1000_ms_force_slave
) :
770 switch (phy
->ms_type
) {
771 case e1000_ms_force_master
:
772 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
774 case e1000_ms_force_slave
:
775 data
|= CR_1000T_MS_ENABLE
;
776 data
&= ~(CR_1000T_MS_VALUE
);
779 data
&= ~CR_1000T_MS_ENABLE
;
783 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
793 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
794 * @hw: pointer to the HW structure
796 * Performs initial bounds checking on autoneg advertisement parameter, then
797 * configure to advertise the full capability. Setup the PHY to autoneg
798 * and restart the negotiation process between the link partner. If
799 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
801 s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
803 struct e1000_phy_info
*phy
= &hw
->phy
;
807 DEBUGFUNC("e1000_copper_link_autoneg");
810 * Perform some bounds checking on the autoneg advertisement
813 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
816 * If autoneg_advertised is zero, we assume it was not defaulted
817 * by the calling code so we set to advertise full capability.
819 if (phy
->autoneg_advertised
== 0)
820 phy
->autoneg_advertised
= phy
->autoneg_mask
;
822 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
823 ret_val
= e1000_phy_setup_autoneg(hw
);
825 DEBUGOUT("Error Setting up Auto-Negotiation\n");
828 DEBUGOUT("Restarting Auto-Neg\n");
831 * Restart auto-negotiation by setting the Auto Neg Enable bit and
832 * the Auto Neg Restart bit in the PHY control register.
834 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
838 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
839 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
844 * Does the user want to wait for Auto-Neg to complete here, or
845 * check at a later time (for example, callback routine).
847 if (phy
->autoneg_wait_to_complete
) {
848 ret_val
= hw
->mac
.ops
.wait_autoneg(hw
);
850 DEBUGOUT("Error while waiting for "
851 "autoneg to complete\n");
856 hw
->mac
.get_link_status
= true;
863 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
864 * @hw: pointer to the HW structure
866 * Reads the MII auto-neg advertisement register and/or the 1000T control
867 * register and if the PHY is already setup for auto-negotiation, then
868 * return successful. Otherwise, setup advertisement and flow control to
869 * the appropriate values for the wanted auto-negotiation.
871 s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
873 struct e1000_phy_info
*phy
= &hw
->phy
;
875 u16 mii_autoneg_adv_reg
;
876 u16 mii_1000t_ctrl_reg
= 0;
878 DEBUGFUNC("e1000_phy_setup_autoneg");
880 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
882 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
883 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
887 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
888 /* Read the MII 1000Base-T Control Register (Address 9). */
889 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
890 &mii_1000t_ctrl_reg
);
896 * Need to parse both autoneg_advertised and fc and set up
897 * the appropriate PHY registers. First we will parse for
898 * autoneg_advertised software override. Since we can advertise
899 * a plethora of combinations, we need to check each bit
904 * First we clear all the 10/100 mb speed bits in the Auto-Neg
905 * Advertisement Register (Address 4) and the 1000 mb speed bits in
906 * the 1000Base-T Control Register (Address 9).
908 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
909 NWAY_AR_100TX_HD_CAPS
|
910 NWAY_AR_10T_FD_CAPS
|
911 NWAY_AR_10T_HD_CAPS
);
912 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
914 DEBUGOUT1("autoneg_advertised %x\n", phy
->autoneg_advertised
);
916 /* Do we want to advertise 10 Mb Half Duplex? */
917 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
918 DEBUGOUT("Advertise 10mb Half duplex\n");
919 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
922 /* Do we want to advertise 10 Mb Full Duplex? */
923 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
924 DEBUGOUT("Advertise 10mb Full duplex\n");
925 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
928 /* Do we want to advertise 100 Mb Half Duplex? */
929 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
930 DEBUGOUT("Advertise 100mb Half duplex\n");
931 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
934 /* Do we want to advertise 100 Mb Full Duplex? */
935 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
936 DEBUGOUT("Advertise 100mb Full duplex\n");
937 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
940 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
941 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
942 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
944 /* Do we want to advertise 1000 Mb Full Duplex? */
945 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
946 DEBUGOUT("Advertise 1000mb Full duplex\n");
947 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
951 * Check for a software override of the flow control settings, and
952 * setup the PHY advertisement registers accordingly. If
953 * auto-negotiation is enabled, then software will have to set the
954 * "PAUSE" bits to the correct value in the Auto-Negotiation
955 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
958 * The possible values of the "fc" parameter are:
959 * 0: Flow control is completely disabled
960 * 1: Rx flow control is enabled (we can receive pause frames
961 * but not send pause frames).
962 * 2: Tx flow control is enabled (we can send pause frames
963 * but we do not support receiving pause frames).
964 * 3: Both Rx and Tx flow control (symmetric) are enabled.
965 * other: No software override. The flow control configuration
966 * in the EEPROM is used.
968 switch (hw
->fc
.current_mode
) {
971 * Flow control (Rx & Tx) is completely disabled by a
972 * software over-ride.
974 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
976 case e1000_fc_rx_pause
:
978 * Rx Flow control is enabled, and Tx Flow control is
979 * disabled, by a software over-ride.
981 * Since there really isn't a way to advertise that we are
982 * capable of Rx Pause ONLY, we will advertise that we
983 * support both symmetric and asymmetric Rx PAUSE. Later
984 * (in e1000_config_fc_after_link_up) we will disable the
985 * hw's ability to send PAUSE frames.
987 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
989 case e1000_fc_tx_pause
:
991 * Tx Flow control is enabled, and Rx Flow control is
992 * disabled, by a software over-ride.
994 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
995 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
999 * Flow control (both Rx and Tx) is enabled by a software
1002 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1005 DEBUGOUT("Flow control param set incorrectly\n");
1006 ret_val
= -E1000_ERR_CONFIG
;
1010 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1014 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1016 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1017 ret_val
= phy
->ops
.write_reg(hw
,
1019 mii_1000t_ctrl_reg
);
1029 * e1000_setup_copper_link_generic - Configure copper link settings
1030 * @hw: pointer to the HW structure
1032 * Calls the appropriate function to configure the link for auto-neg or forced
1033 * speed and duplex. Then we check for link, once link is established calls
1034 * to configure collision distance and flow control are called. If link is
1035 * not established, we return -E1000_ERR_PHY (-2).
1037 s32
e1000_setup_copper_link_generic(struct e1000_hw
*hw
)
1042 DEBUGFUNC("e1000_setup_copper_link_generic");
1044 if (hw
->mac
.autoneg
) {
1046 * Setup autoneg and flow control advertisement and perform
1049 ret_val
= e1000_copper_link_autoneg(hw
);
1055 * PHY will be set to 10H, 10F, 100H or 100F
1056 * depending on user settings.
1058 DEBUGOUT("Forcing Speed and Duplex\n");
1059 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1061 DEBUGOUT("Error Forcing Speed and Duplex\n");
1068 * Check link status. Wait up to 100 microseconds for link to become
1071 ret_val
= e1000_phy_has_link_generic(hw
,
1072 COPPER_LINK_UP_LIMIT
,
1079 DEBUGOUT("Valid link established!!!\n");
1080 e1000_config_collision_dist_generic(hw
);
1081 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
1083 DEBUGOUT("Unable to establish link!!!\n");
1092 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1093 * @hw: pointer to the HW structure
1095 * Calls the PHY setup function to force speed and duplex. Clears the
1096 * auto-crossover to force MDI manually. Waits for link and returns
1097 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1099 s32
e1000_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1101 struct e1000_phy_info
*phy
= &hw
->phy
;
1106 DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1108 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1112 e1000_phy_force_speed_duplex_setup(hw
, &phy_data
);
1114 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1119 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1120 * forced whenever speed and duplex are forced.
1122 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1126 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1127 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1129 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1133 DEBUGOUT1("IGP PSCR: %X\n", phy_data
);
1137 if (phy
->autoneg_wait_to_complete
) {
1138 DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1140 ret_val
= e1000_phy_has_link_generic(hw
,
1148 DEBUGOUT("Link taking longer than expected.\n");
1151 ret_val
= e1000_phy_has_link_generic(hw
,
1164 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1165 * @hw: pointer to the HW structure
1167 * Calls the PHY setup function to force speed and duplex. Clears the
1168 * auto-crossover to force MDI manually. Resets the PHY to commit the
1169 * changes. If time expires while waiting for link up, we reset the DSP.
1170 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1171 * successful completion, else return corresponding error code.
1173 s32
e1000_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1175 struct e1000_phy_info
*phy
= &hw
->phy
;
1180 DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1183 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1184 * forced whenever speed and duplex are forced.
1186 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1190 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1191 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1195 DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data
);
1197 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1201 e1000_phy_force_speed_duplex_setup(hw
, &phy_data
);
1203 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1207 /* Reset the phy to commit changes. */
1208 ret_val
= hw
->phy
.ops
.commit(hw
);
1212 if (phy
->autoneg_wait_to_complete
) {
1213 DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1215 ret_val
= e1000_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1222 * We didn't get link.
1223 * Reset the DSP and cross our fingers.
1225 ret_val
= phy
->ops
.write_reg(hw
,
1226 M88E1000_PHY_PAGE_SELECT
,
1230 ret_val
= e1000_phy_reset_dsp_generic(hw
);
1236 ret_val
= e1000_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1242 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1247 * Resetting the phy means we need to re-force TX_CLK in the
1248 * Extended PHY Specific Control Register to 25MHz clock from
1249 * the reset value of 2.5MHz.
1251 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1252 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1257 * In addition, we must re-enable CRS on Tx for both half and full
1260 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1264 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1265 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1272 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1273 * @hw: pointer to the HW structure
1275 * Forces the speed and duplex settings of the PHY.
1276 * This is a function pointer entry point only called by
1277 * PHY setup routines.
1279 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1281 struct e1000_phy_info
*phy
= &hw
->phy
;
1286 DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
1288 if (phy
->type
!= e1000_phy_ife
) {
1289 ret_val
= e1000_phy_force_speed_duplex_igp(hw
);
1293 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &data
);
1297 e1000_phy_force_speed_duplex_setup(hw
, &data
);
1299 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, data
);
1303 /* Disable MDI-X support for 10/100 */
1304 ret_val
= phy
->ops
.read_reg(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1308 data
&= ~IFE_PMC_AUTO_MDIX
;
1309 data
&= ~IFE_PMC_FORCE_MDIX
;
1311 ret_val
= phy
->ops
.write_reg(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1315 DEBUGOUT1("IFE PMC: %X\n", data
);
1319 if (phy
->autoneg_wait_to_complete
) {
1320 DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1322 ret_val
= e1000_phy_has_link_generic(hw
,
1330 DEBUGOUT("Link taking longer than expected.\n");
1333 ret_val
= e1000_phy_has_link_generic(hw
,
1346 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1347 * @hw: pointer to the HW structure
1348 * @phy_ctrl: pointer to current value of PHY_CONTROL
1350 * Forces speed and duplex on the PHY by doing the following: disable flow
1351 * control, force speed/duplex on the MAC, disable auto speed detection,
1352 * disable auto-negotiation, configure duplex, configure speed, configure
1353 * the collision distance, write configuration to CTRL register. The
1354 * caller must write to the PHY_CONTROL register for these settings to
1357 void e1000_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1359 struct e1000_mac_info
*mac
= &hw
->mac
;
1362 DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
1364 /* Turn off flow control when forcing speed/duplex */
1365 hw
->fc
.current_mode
= e1000_fc_none
;
1367 /* Force speed/duplex on the mac */
1368 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1369 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1370 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1372 /* Disable Auto Speed Detection */
1373 ctrl
&= ~E1000_CTRL_ASDE
;
1375 /* Disable autoneg on the phy */
1376 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1378 /* Forcing Full or Half Duplex? */
1379 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1380 ctrl
&= ~E1000_CTRL_FD
;
1381 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1382 DEBUGOUT("Half Duplex\n");
1384 ctrl
|= E1000_CTRL_FD
;
1385 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1386 DEBUGOUT("Full Duplex\n");
1389 /* Forcing 10mb or 100mb? */
1390 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1391 ctrl
|= E1000_CTRL_SPD_100
;
1392 *phy_ctrl
|= MII_CR_SPEED_100
;
1393 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1394 DEBUGOUT("Forcing 100mb\n");
1396 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1397 *phy_ctrl
|= MII_CR_SPEED_10
;
1398 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1399 DEBUGOUT("Forcing 10mb\n");
1402 e1000_config_collision_dist_generic(hw
);
1404 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1409 * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
1410 * @hw: pointer to the HW structure
1411 * @active: boolean used to enable/disable lplu
1413 * Success returns 0, Failure returns 1
1415 * The low power link up (lplu) state is set to the power management level D3
1416 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1417 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1418 * is used during Dx states where the power conservation is most important.
1419 * During driver activity, SmartSpeed should be enabled so performance is
1422 s32
e1000_set_d3_lplu_state_generic(struct e1000_hw
*hw
, bool active
)
1424 struct e1000_phy_info
*phy
= &hw
->phy
;
1425 s32 ret_val
= E1000_SUCCESS
;
1428 DEBUGFUNC("e1000_set_d3_lplu_state_generic");
1430 if (!(hw
->phy
.ops
.read_reg
))
1433 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1438 data
&= ~IGP02E1000_PM_D3_LPLU
;
1439 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1444 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1445 * during Dx states where the power conservation is most
1446 * important. During driver activity we should enable
1447 * SmartSpeed, so performance is maintained.
1449 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1450 ret_val
= phy
->ops
.read_reg(hw
,
1451 IGP01E1000_PHY_PORT_CONFIG
,
1456 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1457 ret_val
= phy
->ops
.write_reg(hw
,
1458 IGP01E1000_PHY_PORT_CONFIG
,
1462 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1463 ret_val
= phy
->ops
.read_reg(hw
,
1464 IGP01E1000_PHY_PORT_CONFIG
,
1469 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1470 ret_val
= phy
->ops
.write_reg(hw
,
1471 IGP01E1000_PHY_PORT_CONFIG
,
1476 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1477 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1478 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1479 data
|= IGP02E1000_PM_D3_LPLU
;
1480 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1485 /* When LPLU is enabled, we should disable SmartSpeed */
1486 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1491 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1492 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1501 * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
1502 * @hw: pointer to the HW structure
1504 * Success returns 0, Failure returns 1
1506 * A downshift is detected by querying the PHY link health.
1508 s32
e1000_check_downshift_generic(struct e1000_hw
*hw
)
1510 struct e1000_phy_info
*phy
= &hw
->phy
;
1512 u16 phy_data
, offset
, mask
;
1514 DEBUGFUNC("e1000_check_downshift_generic");
1516 switch (phy
->type
) {
1518 case e1000_phy_gg82563
:
1519 offset
= M88E1000_PHY_SPEC_STATUS
;
1520 mask
= M88E1000_PSSR_DOWNSHIFT
;
1522 case e1000_phy_igp_2
:
1524 case e1000_phy_igp_3
:
1525 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1526 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1529 /* speed downshift not supported */
1530 phy
->speed_downgraded
= false;
1531 ret_val
= E1000_SUCCESS
;
1535 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1538 phy
->speed_downgraded
= (phy_data
& mask
) ? true : false;
1545 * e1000_check_polarity_m88 - Checks the polarity.
1546 * @hw: pointer to the HW structure
1548 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1550 * Polarity is determined based on the PHY specific status register.
1552 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1554 struct e1000_phy_info
*phy
= &hw
->phy
;
1558 DEBUGFUNC("e1000_check_polarity_m88");
1560 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1563 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1564 ? e1000_rev_polarity_reversed
1565 : e1000_rev_polarity_normal
;
1571 * e1000_check_polarity_igp - Checks the polarity.
1572 * @hw: pointer to the HW structure
1574 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1576 * Polarity is determined based on the PHY port status register, and the
1577 * current speed (since there is no polarity at 100Mbps).
1579 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1581 struct e1000_phy_info
*phy
= &hw
->phy
;
1583 u16 data
, offset
, mask
;
1585 DEBUGFUNC("e1000_check_polarity_igp");
1588 * Polarity is determined based on the speed of
1591 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1595 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1596 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1597 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1598 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1601 * This really only applies to 10Mbps since
1602 * there is no polarity for 100Mbps (always 0).
1604 offset
= IGP01E1000_PHY_PORT_STATUS
;
1605 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1608 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1611 phy
->cable_polarity
= (data
& mask
)
1612 ? e1000_rev_polarity_reversed
1613 : e1000_rev_polarity_normal
;
1620 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1621 * @hw: pointer to the HW structure
1623 * Polarity is determined on the polarity reversal feature being enabled.
1625 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1627 struct e1000_phy_info
*phy
= &hw
->phy
;
1629 u16 phy_data
, offset
, mask
;
1631 DEBUGFUNC("e1000_check_polarity_ife");
1634 * Polarity is determined based on the reversal feature being enabled.
1636 if (phy
->polarity_correction
) {
1637 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1638 mask
= IFE_PESC_POLARITY_REVERSED
;
1640 offset
= IFE_PHY_SPECIAL_CONTROL
;
1641 mask
= IFE_PSC_FORCE_POLARITY
;
1644 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1647 phy
->cable_polarity
= (phy_data
& mask
)
1648 ? e1000_rev_polarity_reversed
1649 : e1000_rev_polarity_normal
;
1655 * e1000_wait_autoneg_generic - Wait for auto-neg completion
1656 * @hw: pointer to the HW structure
1658 * Waits for auto-negotiation to complete or for the auto-negotiation time
1659 * limit to expire, which ever happens first.
1661 s32
e1000_wait_autoneg_generic(struct e1000_hw
*hw
)
1663 s32 ret_val
= E1000_SUCCESS
;
1666 DEBUGFUNC("e1000_wait_autoneg_generic");
1668 if (!(hw
->phy
.ops
.read_reg
))
1669 return E1000_SUCCESS
;
1671 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1672 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1673 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1676 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1679 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1685 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1692 * e1000_phy_has_link_generic - Polls PHY for link
1693 * @hw: pointer to the HW structure
1694 * @iterations: number of times to poll for link
1695 * @usec_interval: delay between polling attempts
1696 * @success: pointer to whether polling was successful or not
1698 * Polls the PHY status register for link, 'iterations' number of times.
1700 s32
e1000_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1701 u32 usec_interval
, bool *success
)
1703 s32 ret_val
= E1000_SUCCESS
;
1706 DEBUGFUNC("e1000_phy_has_link_generic");
1708 if (!(hw
->phy
.ops
.read_reg
))
1709 return E1000_SUCCESS
;
1711 for (i
= 0; i
< iterations
; i
++) {
1713 * Some PHYs require the PHY_STATUS register to be read
1714 * twice due to the link bit being sticky. No harm doing
1715 * it across the board.
1717 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1720 * If the first read fails, another entity may have
1721 * ownership of the resources, wait and try again to
1722 * see if they have relinquished the resources yet.
1724 usec_delay(usec_interval
);
1726 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1729 if (phy_status
& MII_SR_LINK_STATUS
)
1731 if (usec_interval
>= 1000)
1732 msec_delay_irq(usec_interval
/1000);
1734 usec_delay(usec_interval
);
1737 *success
= (i
< iterations
) ? true : false;
1744 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
1745 * @hw: pointer to the HW structure
1747 * Reads the PHY specific status register to retrieve the cable length
1748 * information. The cable length is determined by averaging the minimum and
1749 * maximum values to get the "average" cable length. The m88 PHY has four
1750 * possible cable length values, which are:
1751 * Register Value Cable Length
1755 * 3 110 - 140 meters
1758 s32
e1000_get_cable_length_m88(struct e1000_hw
*hw
)
1760 struct e1000_phy_info
*phy
= &hw
->phy
;
1762 u16 phy_data
, index
;
1764 DEBUGFUNC("e1000_get_cable_length_m88");
1766 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1770 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1771 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1772 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
+ 1) {
1773 ret_val
= E1000_ERR_PHY
;
1777 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1778 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+1];
1780 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1787 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1788 * @hw: pointer to the HW structure
1790 * The automatic gain control (agc) normalizes the amplitude of the
1791 * received signal, adjusting for the attenuation produced by the
1792 * cable. By reading the AGC registers, which represent the
1793 * combination of coarse and fine gain value, the value can be put
1794 * into a lookup table to obtain the approximate cable length
1797 s32
e1000_get_cable_length_igp_2(struct e1000_hw
*hw
)
1799 struct e1000_phy_info
*phy
= &hw
->phy
;
1800 s32 ret_val
= E1000_SUCCESS
;
1801 u16 phy_data
, i
, agc_value
= 0;
1802 u16 cur_agc_index
, max_agc_index
= 0;
1803 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1804 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1805 {IGP02E1000_PHY_AGC_A
,
1806 IGP02E1000_PHY_AGC_B
,
1807 IGP02E1000_PHY_AGC_C
,
1808 IGP02E1000_PHY_AGC_D
};
1810 DEBUGFUNC("e1000_get_cable_length_igp_2");
1812 /* Read the AGC registers for all channels */
1813 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1814 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1819 * Getting bits 15:9, which represent the combination of
1820 * coarse and fine gain values. The result is a number
1821 * that can be put into the lookup table to obtain the
1822 * approximate cable length.
1824 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1825 IGP02E1000_AGC_LENGTH_MASK
;
1827 /* Array index bound check. */
1828 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1829 (cur_agc_index
== 0)) {
1830 ret_val
= -E1000_ERR_PHY
;
1834 /* Remove min & max AGC values from calculation. */
1835 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1836 e1000_igp_2_cable_length_table
[cur_agc_index
])
1837 min_agc_index
= cur_agc_index
;
1838 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1839 e1000_igp_2_cable_length_table
[cur_agc_index
])
1840 max_agc_index
= cur_agc_index
;
1842 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1845 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1846 e1000_igp_2_cable_length_table
[max_agc_index
]);
1847 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1849 /* Calculate cable length with the error range of +/- 10 meters. */
1850 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1851 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1852 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1854 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1862 * e1000_get_phy_info_m88 - Retrieve PHY information
1863 * @hw: pointer to the HW structure
1865 * Valid for only copper links. Read the PHY status register (sticky read)
1866 * to verify that link is up. Read the PHY special control register to
1867 * determine the polarity and 10base-T extended distance. Read the PHY
1868 * special status register to determine MDI/MDIx and current speed. If
1869 * speed is 1000, then determine cable length, local and remote receiver.
1871 s32
e1000_get_phy_info_m88(struct e1000_hw
*hw
)
1873 struct e1000_phy_info
*phy
= &hw
->phy
;
1878 DEBUGFUNC("e1000_get_phy_info_m88");
1880 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
1881 DEBUGOUT("Phy info is only valid for copper media\n");
1882 ret_val
= -E1000_ERR_CONFIG
;
1886 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
1891 DEBUGOUT("Phy info is only valid if link is up\n");
1892 ret_val
= -E1000_ERR_CONFIG
;
1896 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1900 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
1903 ret_val
= e1000_check_polarity_m88(hw
);
1907 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1911 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? true : false;
1913 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1915 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1917 ret_val
= -E1000_ERR_CONFIG
;
1921 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
1925 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1926 ? e1000_1000t_rx_status_ok
1927 : e1000_1000t_rx_status_not_ok
;
1929 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1930 ? e1000_1000t_rx_status_ok
1931 : e1000_1000t_rx_status_not_ok
;
1933 /* Set values to "undefined" */
1934 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1935 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1936 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1944 * e1000_get_phy_info_igp - Retrieve igp PHY information
1945 * @hw: pointer to the HW structure
1947 * Read PHY status to determine if link is up. If link is up, then
1948 * set/determine 10base-T extended distance and polarity correction. Read
1949 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1950 * determine on the cable length, local and remote receiver.
1952 s32
e1000_get_phy_info_igp(struct e1000_hw
*hw
)
1954 struct e1000_phy_info
*phy
= &hw
->phy
;
1959 DEBUGFUNC("e1000_get_phy_info_igp");
1961 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
1966 DEBUGOUT("Phy info is only valid if link is up\n");
1967 ret_val
= -E1000_ERR_CONFIG
;
1971 phy
->polarity_correction
= true;
1973 ret_val
= e1000_check_polarity_igp(hw
);
1977 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1981 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? true : false;
1984 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1985 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1986 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
1990 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
1994 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1995 ? e1000_1000t_rx_status_ok
1996 : e1000_1000t_rx_status_not_ok
;
1998 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1999 ? e1000_1000t_rx_status_ok
2000 : e1000_1000t_rx_status_not_ok
;
2003 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2004 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2005 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2015 * e1000_phy_sw_reset_generic - PHY software reset
2016 * @hw: pointer to the HW structure
2018 * Does a software reset of the PHY by reading the PHY control register and
2019 * setting/write the control register reset bit to the PHY.
2021 s32
e1000_phy_sw_reset_generic(struct e1000_hw
*hw
)
2023 s32 ret_val
= E1000_SUCCESS
;
2026 DEBUGFUNC("e1000_phy_sw_reset_generic");
2028 if (!(hw
->phy
.ops
.read_reg
))
2031 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
2035 phy_ctrl
|= MII_CR_RESET
;
2036 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
2047 * e1000_phy_hw_reset_generic - PHY hardware reset
2048 * @hw: pointer to the HW structure
2050 * Verify the reset block is not blocking us from resetting. Acquire
2051 * semaphore (if necessary) and read/set/write the device control reset
2052 * bit in the PHY. Wait the appropriate delay time for the device to
2053 * reset and release the semaphore (if necessary).
2055 s32
e1000_phy_hw_reset_generic(struct e1000_hw
*hw
)
2057 struct e1000_phy_info
*phy
= &hw
->phy
;
2058 s32 ret_val
= E1000_SUCCESS
;
2061 DEBUGFUNC("e1000_phy_hw_reset_generic");
2063 ret_val
= phy
->ops
.check_reset_block(hw
);
2065 ret_val
= E1000_SUCCESS
;
2069 ret_val
= phy
->ops
.acquire(hw
);
2073 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
2074 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2075 E1000_WRITE_FLUSH(hw
);
2077 usec_delay(phy
->reset_delay_us
);
2079 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
2080 E1000_WRITE_FLUSH(hw
);
2084 phy
->ops
.release(hw
);
2086 ret_val
= phy
->ops
.get_cfg_done(hw
);
2093 * e1000_get_cfg_done_generic - Generic configuration done
2094 * @hw: pointer to the HW structure
2096 * Generic function to wait 10 milli-seconds for configuration to complete
2097 * and return success.
2099 s32
e1000_get_cfg_done_generic(struct e1000_hw
*hw __unused
)
2101 DEBUGFUNC("e1000_get_cfg_done_generic");
2105 return E1000_SUCCESS
;
2109 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
2110 * @hw: pointer to the HW structure
2112 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2114 s32
e1000_phy_init_script_igp3(struct e1000_hw
*hw
)
2116 DEBUGOUT("Running IGP 3 PHY init script\n");
2118 /* PHY init IGP 3 */
2119 /* Enable rise/fall, 10-mode work in class-A */
2120 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
2121 /* Remove all caps from Replica path filter */
2122 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
2123 /* Bias trimming for ADC, AFE and Driver (Default) */
2124 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
2125 /* Increase Hybrid poly bias */
2126 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
2127 /* Add 4% to Tx amplitude in Gig mode */
2128 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
2129 /* Disable trimming (TTT) */
2130 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
2131 /* Poly DC correction to 94.6% + 2% for all channels */
2132 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
2133 /* ABS DC correction to 95.9% */
2134 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
2135 /* BG temp curve trim */
2136 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
2137 /* Increasing ADC OPAMP stage 1 currents to max */
2138 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
2139 /* Force 1000 ( required for enabling PHY regs configuration) */
2140 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
2141 /* Set upd_freq to 6 */
2142 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
2144 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
2145 /* Disable adaptive fixed FFE (Default) */
2146 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
2147 /* Enable FFE hysteresis */
2148 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
2149 /* Fixed FFE for short cable lengths */
2150 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
2151 /* Fixed FFE for medium cable lengths */
2152 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
2153 /* Fixed FFE for long cable lengths */
2154 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
2155 /* Enable Adaptive Clip Threshold */
2156 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
2157 /* AHT reset limit to 1 */
2158 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
2159 /* Set AHT master delay to 127 msec */
2160 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
2161 /* Set scan bits for AHT */
2162 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
2163 /* Set AHT Preset bits */
2164 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
2165 /* Change integ_factor of channel A to 3 */
2166 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
2167 /* Change prop_factor of channels BCD to 8 */
2168 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
2169 /* Change cg_icount + enable integbp for channels BCD */
2170 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
2172 * Change cg_icount + enable integbp + change prop_factor_master
2173 * to 8 for channel A
2175 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
2176 /* Disable AHT in Slave mode on channel A */
2177 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
2179 * Enable LPLU and disable AN to 1000 in non-D0a states,
2182 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
2183 /* Enable restart AN on an1000_dis change */
2184 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
2185 /* Enable wh_fifo read clock in 10/100 modes */
2186 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
2187 /* Restart AN, Speed selection is 1000 */
2188 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
2190 return E1000_SUCCESS
;
2194 * e1000_get_phy_type_from_id - Get PHY type from id
2195 * @phy_id: phy_id read from the phy
2197 * Returns the phy type from the id.
2199 enum e1000_phy_type
e1000_get_phy_type_from_id(u32 phy_id
)
2201 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2204 case M88E1000_I_PHY_ID
:
2205 case M88E1000_E_PHY_ID
:
2206 case M88E1111_I_PHY_ID
:
2207 case M88E1011_I_PHY_ID
:
2208 phy_type
= e1000_phy_m88
;
2210 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2211 phy_type
= e1000_phy_igp_2
;
2213 case GG82563_E_PHY_ID
:
2214 phy_type
= e1000_phy_gg82563
;
2216 case IGP03E1000_E_PHY_ID
:
2217 phy_type
= e1000_phy_igp_3
;
2220 case IFE_PLUS_E_PHY_ID
:
2221 case IFE_C_E_PHY_ID
:
2222 phy_type
= e1000_phy_ife
;
2225 phy_type
= e1000_phy_unknown
;
2232 * e1000_determine_phy_address - Determines PHY address.
2233 * @hw: pointer to the HW structure
2235 * This uses a trial and error method to loop through possible PHY
2236 * addresses. It tests each by reading the PHY ID registers and
2237 * checking for a match.
2239 s32
e1000_determine_phy_address(struct e1000_hw
*hw
)
2241 s32 ret_val
= -E1000_ERR_PHY_TYPE
;
2244 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2246 hw
->phy
.id
= phy_type
;
2248 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2249 hw
->phy
.addr
= phy_addr
;
2253 e1000_get_phy_id(hw
);
2254 phy_type
= e1000_get_phy_type_from_id(hw
->phy
.id
);
2257 * If phy_type is valid, break - we found our
2260 if (phy_type
!= e1000_phy_unknown
) {
2261 ret_val
= E1000_SUCCESS
;
2274 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2275 * @hw: pointer to the HW structure
2277 * In the case of a PHY power down to save power, or to turn off link during a
2278 * driver unload, or wake on lan is not enabled, restore the link to previous
2281 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2285 /* The PHY will retain its settings across a power down/up cycle */
2286 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2287 mii_reg
&= ~MII_CR_POWER_DOWN
;
2288 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2292 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2293 * @hw: pointer to the HW structure
2295 * In the case of a PHY power down to save power, or to turn off link during a
2296 * driver unload, or wake on lan is not enabled, restore the link to previous
2299 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2303 /* The PHY will retain its settings across a power down/up cycle */
2304 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2305 mii_reg
|= MII_CR_POWER_DOWN
;
2306 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);