[contrib] Allow Network Protocol header to display in rom-o-matic
[gpxe.git] / src / drivers / net / igb / igb_mac.c
blob237c6c75242e5b1da7a8831abf697348d70e5ef1
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 FILE_LICENCE ( GPL2_ONLY );
30 #include "igb.h"
32 static s32 igb_set_default_fc_generic(struct e1000_hw *hw);
33 static s32 igb_commit_fc_settings_generic(struct e1000_hw *hw);
34 static s32 igb_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
35 static s32 igb_validate_mdi_setting_generic(struct e1000_hw *hw);
36 static void igb_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
38 /**
39 * igb_init_mac_ops_generic - Initialize MAC function pointers
40 * @hw: pointer to the HW structure
42 * Setups up the function pointers to no-op functions
43 **/
44 void igb_init_mac_ops_generic(struct e1000_hw *hw)
46 struct e1000_mac_info *mac = &hw->mac;
47 DEBUGFUNC("igb_init_mac_ops_generic");
49 /* General Setup */
50 mac->ops.set_lan_id = igb_set_lan_id_multi_port_pcie;
51 mac->ops.read_mac_addr = igb_read_mac_addr_generic;
52 mac->ops.config_collision_dist = igb_config_collision_dist_generic;
53 /* LINK */
54 mac->ops.wait_autoneg = igb_wait_autoneg_generic;
55 /* Management */
56 #if 0
57 mac->ops.mng_host_if_write = igb_mng_host_if_write_generic;
58 mac->ops.mng_write_cmd_header = igb_mng_write_cmd_header_generic;
59 mac->ops.mng_enable_host_if = igb_mng_enable_host_if_generic;
60 #endif
61 /* VLAN, MC, etc. */
62 mac->ops.rar_set = igb_rar_set_generic;
63 mac->ops.validate_mdi_setting = igb_validate_mdi_setting_generic;
66 /**
67 * igb_get_bus_info_pcie_generic - Get PCIe bus information
68 * @hw: pointer to the HW structure
70 * Determines and stores the system bus information for a particular
71 * network interface. The following bus information is determined and stored:
72 * bus speed, bus width, type (PCIe), and PCIe function.
73 **/
74 s32 igb_get_bus_info_pcie_generic(struct e1000_hw *hw)
76 struct e1000_mac_info *mac = &hw->mac;
77 struct e1000_bus_info *bus = &hw->bus;
79 s32 ret_val;
80 u16 pcie_link_status;
82 DEBUGFUNC("igb_get_bus_info_pcie_generic");
84 bus->type = e1000_bus_type_pci_express;
85 bus->speed = e1000_bus_speed_2500;
87 ret_val = igb_read_pcie_cap_reg(hw,
88 PCIE_LINK_STATUS,
89 &pcie_link_status);
90 if (ret_val)
91 bus->width = e1000_bus_width_unknown;
92 else
93 bus->width = (enum e1000_bus_width)((pcie_link_status &
94 PCIE_LINK_WIDTH_MASK) >>
95 PCIE_LINK_WIDTH_SHIFT);
97 mac->ops.set_lan_id(hw);
99 return E1000_SUCCESS;
103 * igb_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
105 * @hw: pointer to the HW structure
107 * Determines the LAN function id by reading memory-mapped registers
108 * and swaps the port value if requested.
110 static void igb_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
112 struct e1000_bus_info *bus = &hw->bus;
113 u32 reg;
116 * The status register reports the correct function number
117 * for the device regardless of function swap state.
119 reg = E1000_READ_REG(hw, E1000_STATUS);
120 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
124 * igb_set_lan_id_single_port - Set LAN id for a single port device
125 * @hw: pointer to the HW structure
127 * Sets the LAN function id to zero for a single port device.
129 void igb_set_lan_id_single_port(struct e1000_hw *hw)
131 struct e1000_bus_info *bus = &hw->bus;
133 bus->func = 0;
137 * igb_clear_vfta_generic - Clear VLAN filter table
138 * @hw: pointer to the HW structure
140 * Clears the register array which contains the VLAN filter table by
141 * setting all the values to 0.
143 void igb_clear_vfta_generic(struct e1000_hw *hw)
145 u32 offset;
147 DEBUGFUNC("igb_clear_vfta_generic");
149 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
150 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
151 E1000_WRITE_FLUSH(hw);
156 * igb_write_vfta_generic - Write value to VLAN filter table
157 * @hw: pointer to the HW structure
158 * @offset: register offset in VLAN filter table
159 * @value: register value written to VLAN filter table
161 * Writes value at the given offset in the register array which stores
162 * the VLAN filter table.
164 void igb_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
166 DEBUGFUNC("igb_write_vfta_generic");
168 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
169 E1000_WRITE_FLUSH(hw);
173 * igb_init_rx_addrs_generic - Initialize receive address's
174 * @hw: pointer to the HW structure
175 * @rar_count: receive address registers
177 * Setups the receive address registers by setting the base receive address
178 * register to the devices MAC address and clearing all the other receive
179 * address registers to 0.
181 void igb_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
183 u32 i;
184 u8 mac_addr[ETH_ADDR_LEN] = {0};
186 DEBUGFUNC("igb_init_rx_addrs_generic");
188 /* Setup the receive address */
189 DEBUGOUT("Programming MAC Address into RAR[0]\n");
191 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
193 /* Zero out the other (rar_entry_count - 1) receive addresses */
194 DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
195 for (i = 1; i < rar_count; i++)
196 hw->mac.ops.rar_set(hw, mac_addr, i);
200 * igb_check_alt_mac_addr_generic - Check for alternate MAC addr
201 * @hw: pointer to the HW structure
203 * Checks the nvm for an alternate MAC address. An alternate MAC address
204 * can be setup by pre-boot software and must be treated like a permanent
205 * address and must override the actual permanent MAC address. If an
206 * alternate MAC address is found it is programmed into RAR0, replacing
207 * the permanent address that was installed into RAR0 by the Si on reset.
208 * This function will return SUCCESS unless it encounters an error while
209 * reading the EEPROM.
211 s32 igb_check_alt_mac_addr_generic(struct e1000_hw *hw)
213 u32 i;
214 s32 ret_val = E1000_SUCCESS;
215 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
216 u8 alt_mac_addr[ETH_ADDR_LEN];
218 DEBUGFUNC("igb_check_alt_mac_addr_generic");
220 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
221 &nvm_alt_mac_addr_offset);
222 if (ret_val) {
223 DEBUGOUT("NVM Read Error\n");
224 goto out;
227 if (nvm_alt_mac_addr_offset == 0xFFFF) {
228 /* There is no Alternate MAC Address */
229 goto out;
232 if (hw->bus.func == E1000_FUNC_1)
233 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
234 for (i = 0; i < ETH_ADDR_LEN; i += 2) {
235 offset = nvm_alt_mac_addr_offset + (i >> 1);
236 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
237 if (ret_val) {
238 DEBUGOUT("NVM Read Error\n");
239 goto out;
242 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
243 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
246 /* if multicast bit is set, the alternate address will not be used */
247 if (alt_mac_addr[0] & 0x01) {
248 DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
249 goto out;
253 * We have a valid alternate MAC address, and we want to treat it the
254 * same as the normal permanent MAC address stored by the HW into the
255 * RAR. Do this by mapping this address into RAR0.
257 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
259 out:
260 return ret_val;
264 * igb_rar_set_generic - Set receive address register
265 * @hw: pointer to the HW structure
266 * @addr: pointer to the receive address
267 * @index: receive address array register
269 * Sets the receive address array register at index to the address passed
270 * in by addr.
272 void igb_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
274 u32 rar_low, rar_high;
276 DEBUGFUNC("igb_rar_set_generic");
279 * HW expects these in little endian so we reverse the byte order
280 * from network order (big endian) to little endian
282 rar_low = ((u32) addr[0] |
283 ((u32) addr[1] << 8) |
284 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
286 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
288 /* If MAC address zero, no need to set the AV bit */
289 if (rar_low || rar_high)
290 rar_high |= E1000_RAH_AV;
293 * Some bridges will combine consecutive 32-bit writes into
294 * a single burst write, which will malfunction on some parts.
295 * The flushes avoid this.
297 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
298 E1000_WRITE_FLUSH(hw);
299 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
300 E1000_WRITE_FLUSH(hw);
304 * igb_mta_set_generic - Set multicast filter table address
305 * @hw: pointer to the HW structure
306 * @hash_value: determines the MTA register and bit to set
308 * The multicast table address is a register array of 32-bit registers.
309 * The hash_value is used to determine what register the bit is in, the
310 * current value is read, the new bit is OR'd in and the new value is
311 * written back into the register.
313 void igb_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
315 u32 hash_bit, hash_reg, mta;
317 DEBUGFUNC("igb_mta_set_generic");
319 * The MTA is a register array of 32-bit registers. It is
320 * treated like an array of (32*mta_reg_count) bits. We want to
321 * set bit BitArray[hash_value]. So we figure out what register
322 * the bit is in, read it, OR in the new bit, then write
323 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
324 * mask to bits 31:5 of the hash value which gives us the
325 * register we're modifying. The hash bit within that register
326 * is determined by the lower 5 bits of the hash value.
328 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
329 hash_bit = hash_value & 0x1F;
331 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
333 mta |= (1 << hash_bit);
335 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
336 E1000_WRITE_FLUSH(hw);
340 * igb_update_mc_addr_list_generic - Update Multicast addresses
341 * @hw: pointer to the HW structure
342 * @mc_addr_list: array of multicast addresses to program
343 * @mc_addr_count: number of multicast addresses to program
345 * Updates entire Multicast Table Array.
346 * The caller must have a packed mc_addr_list of multicast addresses.
348 void igb_update_mc_addr_list_generic(struct e1000_hw *hw,
349 u8 *mc_addr_list, u32 mc_addr_count)
351 u32 hash_value, hash_bit, hash_reg;
352 int i;
354 DEBUGFUNC("igb_update_mc_addr_list_generic");
356 /* clear mta_shadow */
357 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
359 /* update mta_shadow from mc_addr_list */
360 for (i = 0; (u32) i < mc_addr_count; i++) {
361 hash_value = igb_hash_mc_addr_generic(hw, mc_addr_list);
363 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
364 hash_bit = hash_value & 0x1F;
366 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
367 mc_addr_list += (ETH_ADDR_LEN);
370 /* replace the entire MTA table */
371 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
372 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
373 E1000_WRITE_FLUSH(hw);
377 * igb_hash_mc_addr_generic - Generate a multicast hash value
378 * @hw: pointer to the HW structure
379 * @mc_addr: pointer to a multicast address
381 * Generates a multicast address hash value which is used to determine
382 * the multicast filter table array address and new table value. See
383 * igb_mta_set_generic()
385 u32 igb_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
387 u32 hash_value, hash_mask;
388 u8 bit_shift = 0;
390 DEBUGFUNC("igb_hash_mc_addr_generic");
392 /* Register count multiplied by bits per register */
393 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
396 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
397 * where 0xFF would still fall within the hash mask.
399 while (hash_mask >> bit_shift != 0xFF)
400 bit_shift++;
403 * The portion of the address that is used for the hash table
404 * is determined by the mc_filter_type setting.
405 * The algorithm is such that there is a total of 8 bits of shifting.
406 * The bit_shift for a mc_filter_type of 0 represents the number of
407 * left-shifts where the MSB of mc_addr[5] would still fall within
408 * the hash_mask. Case 0 does this exactly. Since there are a total
409 * of 8 bits of shifting, then mc_addr[4] will shift right the
410 * remaining number of bits. Thus 8 - bit_shift. The rest of the
411 * cases are a variation of this algorithm...essentially raising the
412 * number of bits to shift mc_addr[5] left, while still keeping the
413 * 8-bit shifting total.
415 * For example, given the following Destination MAC Address and an
416 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
417 * we can see that the bit_shift for case 0 is 4. These are the hash
418 * values resulting from each mc_filter_type...
419 * [0] [1] [2] [3] [4] [5]
420 * 01 AA 00 12 34 56
421 * LSB MSB
423 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
424 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
425 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
426 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
428 switch (hw->mac.mc_filter_type) {
429 default:
430 case 0:
431 break;
432 case 1:
433 bit_shift += 1;
434 break;
435 case 2:
436 bit_shift += 2;
437 break;
438 case 3:
439 bit_shift += 4;
440 break;
443 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
444 (((u16) mc_addr[5]) << bit_shift)));
446 return hash_value;
450 * igb_clear_hw_cntrs_base_generic - Clear base hardware counters
451 * @hw: pointer to the HW structure
453 * Clears the base hardware counters by reading the counter registers.
455 void igb_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
457 DEBUGFUNC("igb_clear_hw_cntrs_base_generic");
459 E1000_READ_REG(hw, E1000_CRCERRS);
460 E1000_READ_REG(hw, E1000_SYMERRS);
461 E1000_READ_REG(hw, E1000_MPC);
462 E1000_READ_REG(hw, E1000_SCC);
463 E1000_READ_REG(hw, E1000_ECOL);
464 E1000_READ_REG(hw, E1000_MCC);
465 E1000_READ_REG(hw, E1000_LATECOL);
466 E1000_READ_REG(hw, E1000_COLC);
467 E1000_READ_REG(hw, E1000_DC);
468 E1000_READ_REG(hw, E1000_SEC);
469 E1000_READ_REG(hw, E1000_RLEC);
470 E1000_READ_REG(hw, E1000_XONRXC);
471 E1000_READ_REG(hw, E1000_XONTXC);
472 E1000_READ_REG(hw, E1000_XOFFRXC);
473 E1000_READ_REG(hw, E1000_XOFFTXC);
474 E1000_READ_REG(hw, E1000_FCRUC);
475 E1000_READ_REG(hw, E1000_GPRC);
476 E1000_READ_REG(hw, E1000_BPRC);
477 E1000_READ_REG(hw, E1000_MPRC);
478 E1000_READ_REG(hw, E1000_GPTC);
479 E1000_READ_REG(hw, E1000_GORCL);
480 E1000_READ_REG(hw, E1000_GORCH);
481 E1000_READ_REG(hw, E1000_GOTCL);
482 E1000_READ_REG(hw, E1000_GOTCH);
483 E1000_READ_REG(hw, E1000_RNBC);
484 E1000_READ_REG(hw, E1000_RUC);
485 E1000_READ_REG(hw, E1000_RFC);
486 E1000_READ_REG(hw, E1000_ROC);
487 E1000_READ_REG(hw, E1000_RJC);
488 E1000_READ_REG(hw, E1000_TORL);
489 E1000_READ_REG(hw, E1000_TORH);
490 E1000_READ_REG(hw, E1000_TOTL);
491 E1000_READ_REG(hw, E1000_TOTH);
492 E1000_READ_REG(hw, E1000_TPR);
493 E1000_READ_REG(hw, E1000_TPT);
494 E1000_READ_REG(hw, E1000_MPTC);
495 E1000_READ_REG(hw, E1000_BPTC);
499 * igb_check_for_copper_link_generic - Check for link (Copper)
500 * @hw: pointer to the HW structure
502 * Checks to see of the link status of the hardware has changed. If a
503 * change in link status has been detected, then we read the PHY registers
504 * to get the current speed/duplex if link exists.
506 s32 igb_check_for_copper_link_generic(struct e1000_hw *hw)
508 struct e1000_mac_info *mac = &hw->mac;
509 s32 ret_val;
510 bool link;
512 DEBUGFUNC("igb_check_for_copper_link");
515 * We only want to go out to the PHY registers to see if Auto-Neg
516 * has completed and/or if our link status has changed. The
517 * get_link_status flag is set upon receiving a Link Status
518 * Change or Rx Sequence Error interrupt.
520 if (!mac->get_link_status) {
521 ret_val = E1000_SUCCESS;
522 goto out;
526 * First we want to see if the MII Status Register reports
527 * link. If so, then we want to get the current speed/duplex
528 * of the PHY.
530 ret_val = igb_phy_has_link_generic(hw, 1, 0, &link);
531 if (ret_val)
532 goto out;
534 if (!link)
535 goto out; /* No link detected */
537 mac->get_link_status = false;
540 * Check if there was DownShift, must be checked
541 * immediately after link-up
543 igb_check_downshift_generic(hw);
546 * If we are forcing speed/duplex, then we simply return since
547 * we have already determined whether we have link or not.
549 if (!mac->autoneg) {
550 ret_val = -E1000_ERR_CONFIG;
551 goto out;
555 * Auto-Neg is enabled. Auto Speed Detection takes care
556 * of MAC speed/duplex configuration. So we only need to
557 * configure Collision Distance in the MAC.
559 igb_config_collision_dist_generic(hw);
562 * Configure Flow Control now that Auto-Neg has completed.
563 * First, we need to restore the desired flow control
564 * settings because we may have had to re-autoneg with a
565 * different link partner.
567 ret_val = igb_config_fc_after_link_up_generic(hw);
568 if (ret_val) {
569 DEBUGOUT("Error configuring flow control\n");
571 out:
572 return ret_val;
576 * igb_check_for_fiber_link_generic - Check for link (Fiber)
577 * @hw: pointer to the HW structure
579 * Checks for link up on the hardware. If link is not up and we have
580 * a signal, then we need to force link up.
582 s32 igb_check_for_fiber_link_generic(struct e1000_hw *hw)
584 struct e1000_mac_info *mac = &hw->mac;
585 u32 rxcw;
586 u32 ctrl;
587 u32 status;
588 s32 ret_val = E1000_SUCCESS;
590 DEBUGFUNC("igb_check_for_fiber_link_generic");
592 ctrl = E1000_READ_REG(hw, E1000_CTRL);
593 status = E1000_READ_REG(hw, E1000_STATUS);
594 rxcw = E1000_READ_REG(hw, E1000_RXCW);
597 * If we don't have link (auto-negotiation failed or link partner
598 * cannot auto-negotiate), the cable is plugged in (we have signal),
599 * and our link partner is not trying to auto-negotiate with us (we
600 * are receiving idles or data), we need to force link up. We also
601 * need to give auto-negotiation time to complete, in case the cable
602 * was just plugged in. The autoneg_failed flag does this.
604 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
605 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
606 (!(rxcw & E1000_RXCW_C))) {
607 if (mac->autoneg_failed == 0) {
608 mac->autoneg_failed = 1;
609 goto out;
611 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
613 /* Disable auto-negotiation in the TXCW register */
614 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
616 /* Force link-up and also force full-duplex. */
617 ctrl = E1000_READ_REG(hw, E1000_CTRL);
618 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
619 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
621 /* Configure Flow Control after forcing link up. */
622 ret_val = igb_config_fc_after_link_up_generic(hw);
623 if (ret_val) {
624 DEBUGOUT("Error configuring flow control\n");
625 goto out;
627 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
629 * If we are forcing link and we are receiving /C/ ordered
630 * sets, re-enable auto-negotiation in the TXCW register
631 * and disable forced link in the Device Control register
632 * in an attempt to auto-negotiate with our link partner.
634 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
635 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
636 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
638 mac->serdes_has_link = true;
641 out:
642 return ret_val;
646 * igb_check_for_serdes_link_generic - Check for link (Serdes)
647 * @hw: pointer to the HW structure
649 * Checks for link up on the hardware. If link is not up and we have
650 * a signal, then we need to force link up.
652 s32 igb_check_for_serdes_link_generic(struct e1000_hw *hw)
654 struct e1000_mac_info *mac = &hw->mac;
655 u32 rxcw;
656 u32 ctrl;
657 u32 status;
658 s32 ret_val = E1000_SUCCESS;
660 DEBUGFUNC("igb_check_for_serdes_link_generic");
662 ctrl = E1000_READ_REG(hw, E1000_CTRL);
663 status = E1000_READ_REG(hw, E1000_STATUS);
664 rxcw = E1000_READ_REG(hw, E1000_RXCW);
667 * If we don't have link (auto-negotiation failed or link partner
668 * cannot auto-negotiate), and our link partner is not trying to
669 * auto-negotiate with us (we are receiving idles or data),
670 * we need to force link up. We also need to give auto-negotiation
671 * time to complete.
673 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
674 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
675 if (mac->autoneg_failed == 0) {
676 mac->autoneg_failed = 1;
677 goto out;
679 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
681 /* Disable auto-negotiation in the TXCW register */
682 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
684 /* Force link-up and also force full-duplex. */
685 ctrl = E1000_READ_REG(hw, E1000_CTRL);
686 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
687 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
689 /* Configure Flow Control after forcing link up. */
690 ret_val = igb_config_fc_after_link_up_generic(hw);
691 if (ret_val) {
692 DEBUGOUT("Error configuring flow control\n");
693 goto out;
695 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
697 * If we are forcing link and we are receiving /C/ ordered
698 * sets, re-enable auto-negotiation in the TXCW register
699 * and disable forced link in the Device Control register
700 * in an attempt to auto-negotiate with our link partner.
702 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
703 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
704 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
706 mac->serdes_has_link = true;
707 } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
709 * If we force link for non-auto-negotiation switch, check
710 * link status based on MAC synchronization for internal
711 * serdes media type.
713 /* SYNCH bit and IV bit are sticky. */
714 usec_delay(10);
715 rxcw = E1000_READ_REG(hw, E1000_RXCW);
716 if (rxcw & E1000_RXCW_SYNCH) {
717 if (!(rxcw & E1000_RXCW_IV)) {
718 mac->serdes_has_link = true;
719 DEBUGOUT("SERDES: Link up - forced.\n");
721 } else {
722 mac->serdes_has_link = false;
723 DEBUGOUT("SERDES: Link down - force failed.\n");
727 if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
728 status = E1000_READ_REG(hw, E1000_STATUS);
729 if (status & E1000_STATUS_LU) {
730 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
731 usec_delay(10);
732 rxcw = E1000_READ_REG(hw, E1000_RXCW);
733 if (rxcw & E1000_RXCW_SYNCH) {
734 if (!(rxcw & E1000_RXCW_IV)) {
735 mac->serdes_has_link = true;
736 DEBUGOUT("SERDES: Link up - autoneg "
737 "completed sucessfully.\n");
738 } else {
739 mac->serdes_has_link = false;
740 DEBUGOUT("SERDES: Link down - invalid"
741 "codewords detected in autoneg.\n");
743 } else {
744 mac->serdes_has_link = false;
745 DEBUGOUT("SERDES: Link down - no sync.\n");
747 } else {
748 mac->serdes_has_link = false;
749 DEBUGOUT("SERDES: Link down - autoneg failed\n");
753 out:
754 return ret_val;
758 * igb_setup_link_generic - Setup flow control and link settings
759 * @hw: pointer to the HW structure
761 * Determines which flow control settings to use, then configures flow
762 * control. Calls the appropriate media-specific link configuration
763 * function. Assuming the adapter has a valid link partner, a valid link
764 * should be established. Assumes the hardware has previously been reset
765 * and the transmitter and receiver are not enabled.
767 s32 igb_setup_link_generic(struct e1000_hw *hw)
769 s32 ret_val = E1000_SUCCESS;
771 DEBUGFUNC("igb_setup_link_generic");
774 * In the case of the phy reset being blocked, we already have a link.
775 * We do not need to set it up again.
777 if (hw->phy.ops.check_reset_block)
778 if (hw->phy.ops.check_reset_block(hw))
779 goto out;
782 * If requested flow control is set to default, set flow control
783 * based on the EEPROM flow control settings.
785 if (hw->fc.requested_mode == e1000_fc_default) {
786 ret_val = igb_set_default_fc_generic(hw);
787 if (ret_val)
788 goto out;
792 * Save off the requested flow control mode for use later. Depending
793 * on the link partner's capabilities, we may or may not use this mode.
795 hw->fc.current_mode = hw->fc.requested_mode;
797 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
798 hw->fc.current_mode);
800 /* Call the necessary media_type subroutine to configure the link. */
801 ret_val = hw->mac.ops.setup_physical_interface(hw);
802 if (ret_val)
803 goto out;
806 * Initialize the flow control address, type, and PAUSE timer
807 * registers to their default values. This is done even if flow
808 * control is disabled, because it does not hurt anything to
809 * initialize these registers.
811 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
812 E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
813 E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
814 E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
816 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
818 ret_val = igb_set_fc_watermarks_generic(hw);
820 out:
821 return ret_val;
825 * igb_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
826 * @hw: pointer to the HW structure
828 * Configures collision distance and flow control for fiber and serdes
829 * links. Upon successful setup, poll for link.
831 s32 igb_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
833 u32 ctrl;
834 s32 ret_val = E1000_SUCCESS;
836 DEBUGFUNC("igb_setup_fiber_serdes_link_generic");
838 ctrl = E1000_READ_REG(hw, E1000_CTRL);
840 /* Take the link out of reset */
841 ctrl &= ~E1000_CTRL_LRST;
843 igb_config_collision_dist_generic(hw);
845 ret_val = igb_commit_fc_settings_generic(hw);
846 if (ret_val)
847 goto out;
850 * Since auto-negotiation is enabled, take the link out of reset (the
851 * link will be in reset, because we previously reset the chip). This
852 * will restart auto-negotiation. If auto-negotiation is successful
853 * then the link-up status bit will be set and the flow control enable
854 * bits (RFCE and TFCE) will be set according to their negotiated value.
856 DEBUGOUT("Auto-negotiation enabled\n");
858 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
859 E1000_WRITE_FLUSH(hw);
860 msec_delay(1);
863 * For these adapters, the SW definable pin 1 is set when the optics
864 * detect a signal. If we have a signal, then poll for a "Link-Up"
865 * indication.
867 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
868 (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
869 ret_val = igb_poll_fiber_serdes_link_generic(hw);
870 } else {
871 DEBUGOUT("No signal detected\n");
874 out:
875 return ret_val;
879 * igb_config_collision_dist_generic - Configure collision distance
880 * @hw: pointer to the HW structure
882 * Configures the collision distance to the default value and is used
883 * during link setup. Currently no func pointer exists and all
884 * implementations are handled in the generic version of this function.
886 void igb_config_collision_dist_generic(struct e1000_hw *hw)
888 u32 tctl;
890 DEBUGFUNC("igb_config_collision_dist_generic");
892 tctl = E1000_READ_REG(hw, E1000_TCTL);
894 tctl &= ~E1000_TCTL_COLD;
895 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
897 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
898 E1000_WRITE_FLUSH(hw);
902 * igb_poll_fiber_serdes_link_generic - Poll for link up
903 * @hw: pointer to the HW structure
905 * Polls for link up by reading the status register, if link fails to come
906 * up with auto-negotiation, then the link is forced if a signal is detected.
908 static s32 igb_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
910 struct e1000_mac_info *mac = &hw->mac;
911 u32 i, status;
912 s32 ret_val = E1000_SUCCESS;
914 DEBUGFUNC("igb_poll_fiber_serdes_link_generic");
917 * If we have a signal (the cable is plugged in, or assumed true for
918 * serdes media) then poll for a "Link-Up" indication in the Device
919 * Status Register. Time-out if a link isn't seen in 500 milliseconds
920 * seconds (Auto-negotiation should complete in less than 500
921 * milliseconds even if the other end is doing it in SW).
923 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
924 msec_delay(10);
925 status = E1000_READ_REG(hw, E1000_STATUS);
926 if (status & E1000_STATUS_LU)
927 break;
929 if (i == FIBER_LINK_UP_LIMIT) {
930 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
931 mac->autoneg_failed = 1;
933 * AutoNeg failed to achieve a link, so we'll call
934 * mac->check_for_link. This routine will force the
935 * link up if we detect a signal. This will allow us to
936 * communicate with non-autonegotiating link partners.
938 ret_val = hw->mac.ops.check_for_link(hw);
939 if (ret_val) {
940 DEBUGOUT("Error while checking for link\n");
941 goto out;
943 mac->autoneg_failed = 0;
944 } else {
945 mac->autoneg_failed = 0;
946 DEBUGOUT("Valid Link Found\n");
949 out:
950 return ret_val;
954 * igb_commit_fc_settings_generic - Configure flow control
955 * @hw: pointer to the HW structure
957 * Write the flow control settings to the Transmit Config Word Register (TXCW)
958 * base on the flow control settings in e1000_mac_info.
960 static s32 igb_commit_fc_settings_generic(struct e1000_hw *hw)
962 struct e1000_mac_info *mac = &hw->mac;
963 u32 txcw;
964 s32 ret_val = E1000_SUCCESS;
966 DEBUGFUNC("igb_commit_fc_settings_generic");
969 * Check for a software override of the flow control settings, and
970 * setup the device accordingly. If auto-negotiation is enabled, then
971 * software will have to set the "PAUSE" bits to the correct value in
972 * the Transmit Config Word Register (TXCW) and re-start auto-
973 * negotiation. However, if auto-negotiation is disabled, then
974 * software will have to manually configure the two flow control enable
975 * bits in the CTRL register.
977 * The possible values of the "fc" parameter are:
978 * 0: Flow control is completely disabled
979 * 1: Rx flow control is enabled (we can receive pause frames,
980 * but not send pause frames).
981 * 2: Tx flow control is enabled (we can send pause frames but we
982 * do not support receiving pause frames).
983 * 3: Both Rx and Tx flow control (symmetric) are enabled.
985 switch (hw->fc.current_mode) {
986 case e1000_fc_none:
987 /* Flow control completely disabled by a software over-ride. */
988 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
989 break;
990 case e1000_fc_rx_pause:
992 * Rx Flow control is enabled and Tx Flow control is disabled
993 * by a software over-ride. Since there really isn't a way to
994 * advertise that we are capable of Rx Pause ONLY, we will
995 * advertise that we support both symmetric and asymmetric RX
996 * PAUSE. Later, we will disable the adapter's ability to send
997 * PAUSE frames.
999 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1000 break;
1001 case e1000_fc_tx_pause:
1003 * Tx Flow control is enabled, and Rx Flow control is disabled,
1004 * by a software over-ride.
1006 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1007 break;
1008 case e1000_fc_full:
1010 * Flow control (both Rx and Tx) is enabled by a software
1011 * over-ride.
1013 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1014 break;
1015 default:
1016 DEBUGOUT("Flow control param set incorrectly\n");
1017 ret_val = -E1000_ERR_CONFIG;
1018 goto out;
1019 break;
1022 E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1023 mac->txcw = txcw;
1025 out:
1026 return ret_val;
1030 * igb_set_fc_watermarks_generic - Set flow control high/low watermarks
1031 * @hw: pointer to the HW structure
1033 * Sets the flow control high/low threshold (watermark) registers. If
1034 * flow control XON frame transmission is enabled, then set XON frame
1035 * transmission as well.
1037 s32 igb_set_fc_watermarks_generic(struct e1000_hw *hw)
1039 s32 ret_val = E1000_SUCCESS;
1040 u32 fcrtl = 0, fcrth = 0;
1042 DEBUGFUNC("igb_set_fc_watermarks_generic");
1045 * Set the flow control receive threshold registers. Normally,
1046 * these registers will be set to a default threshold that may be
1047 * adjusted later by the driver's runtime code. However, if the
1048 * ability to transmit pause frames is not enabled, then these
1049 * registers will be set to 0.
1051 if (hw->fc.current_mode & e1000_fc_tx_pause) {
1053 * We need to set up the Receive Threshold high and low water
1054 * marks as well as (optionally) enabling the transmission of
1055 * XON frames.
1057 fcrtl = hw->fc.low_water;
1058 if (hw->fc.send_xon)
1059 fcrtl |= E1000_FCRTL_XONE;
1061 fcrth = hw->fc.high_water;
1063 E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1064 E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1066 return ret_val;
1070 * igb_set_default_fc_generic - Set flow control default values
1071 * @hw: pointer to the HW structure
1073 * Read the EEPROM for the default values for flow control and store the
1074 * values.
1076 static s32 igb_set_default_fc_generic(struct e1000_hw *hw)
1078 s32 ret_val = E1000_SUCCESS;
1079 u16 nvm_data;
1081 DEBUGFUNC("igb_set_default_fc_generic");
1084 * Read and store word 0x0F of the EEPROM. This word contains bits
1085 * that determine the hardware's default PAUSE (flow control) mode,
1086 * a bit that determines whether the HW defaults to enabling or
1087 * disabling auto-negotiation, and the direction of the
1088 * SW defined pins. If there is no SW over-ride of the flow
1089 * control setting, then the variable hw->fc will
1090 * be initialized based on a value in the EEPROM.
1092 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
1094 if (ret_val) {
1095 DEBUGOUT("NVM Read Error\n");
1096 goto out;
1099 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
1100 hw->fc.requested_mode = e1000_fc_none;
1101 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
1102 NVM_WORD0F_ASM_DIR)
1103 hw->fc.requested_mode = e1000_fc_tx_pause;
1104 else
1105 hw->fc.requested_mode = e1000_fc_full;
1107 out:
1108 return ret_val;
1112 * igb_force_mac_fc_generic - Force the MAC's flow control settings
1113 * @hw: pointer to the HW structure
1115 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1116 * device control register to reflect the adapter settings. TFCE and RFCE
1117 * need to be explicitly set by software when a copper PHY is used because
1118 * autonegotiation is managed by the PHY rather than the MAC. Software must
1119 * also configure these bits when link is forced on a fiber connection.
1121 s32 igb_force_mac_fc_generic(struct e1000_hw *hw)
1123 u32 ctrl;
1124 s32 ret_val = E1000_SUCCESS;
1126 DEBUGFUNC("igb_force_mac_fc_generic");
1128 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1131 * Because we didn't get link via the internal auto-negotiation
1132 * mechanism (we either forced link or we got link via PHY
1133 * auto-neg), we have to manually enable/disable transmit an
1134 * receive flow control.
1136 * The "Case" statement below enables/disable flow control
1137 * according to the "hw->fc.current_mode" parameter.
1139 * The possible values of the "fc" parameter are:
1140 * 0: Flow control is completely disabled
1141 * 1: Rx flow control is enabled (we can receive pause
1142 * frames but not send pause frames).
1143 * 2: Tx flow control is enabled (we can send pause frames
1144 * frames but we do not receive pause frames).
1145 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1146 * other: No other values should be possible at this point.
1148 DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1150 switch (hw->fc.current_mode) {
1151 case e1000_fc_none:
1152 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1153 break;
1154 case e1000_fc_rx_pause:
1155 ctrl &= (~E1000_CTRL_TFCE);
1156 ctrl |= E1000_CTRL_RFCE;
1157 break;
1158 case e1000_fc_tx_pause:
1159 ctrl &= (~E1000_CTRL_RFCE);
1160 ctrl |= E1000_CTRL_TFCE;
1161 break;
1162 case e1000_fc_full:
1163 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1164 break;
1165 default:
1166 DEBUGOUT("Flow control param set incorrectly\n");
1167 ret_val = -E1000_ERR_CONFIG;
1168 goto out;
1171 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1173 out:
1174 return ret_val;
1178 * igb_config_fc_after_link_up_generic - Configures flow control after link
1179 * @hw: pointer to the HW structure
1181 * Checks the status of auto-negotiation after link up to ensure that the
1182 * speed and duplex were not forced. If the link needed to be forced, then
1183 * flow control needs to be forced also. If auto-negotiation is enabled
1184 * and did not fail, then we configure flow control based on our link
1185 * partner.
1187 s32 igb_config_fc_after_link_up_generic(struct e1000_hw *hw)
1189 struct e1000_mac_info *mac = &hw->mac;
1190 s32 ret_val = E1000_SUCCESS;
1191 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1192 u16 speed, duplex;
1194 DEBUGFUNC("igb_config_fc_after_link_up_generic");
1197 * Check for the case where we have fiber media and auto-neg failed
1198 * so we had to force link. In this case, we need to force the
1199 * configuration of the MAC to match the "fc" parameter.
1201 if (mac->autoneg_failed) {
1202 if (hw->phy.media_type == e1000_media_type_fiber ||
1203 hw->phy.media_type == e1000_media_type_internal_serdes)
1204 ret_val = igb_force_mac_fc_generic(hw);
1205 } else {
1206 if (hw->phy.media_type == e1000_media_type_copper)
1207 ret_val = igb_force_mac_fc_generic(hw);
1210 if (ret_val) {
1211 DEBUGOUT("Error forcing flow control settings\n");
1212 goto out;
1216 * Check for the case where we have copper media and auto-neg is
1217 * enabled. In this case, we need to check and see if Auto-Neg
1218 * has completed, and if so, how the PHY and link partner has
1219 * flow control configured.
1221 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1223 * Read the MII Status Register and check to see if AutoNeg
1224 * has completed. We read this twice because this reg has
1225 * some "sticky" (latched) bits.
1227 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1228 if (ret_val)
1229 goto out;
1230 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1231 if (ret_val)
1232 goto out;
1234 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1235 DEBUGOUT("Copper PHY and Auto Neg "
1236 "has not completed.\n");
1237 goto out;
1241 * The AutoNeg process has completed, so we now need to
1242 * read both the Auto Negotiation Advertisement
1243 * Register (Address 4) and the Auto_Negotiation Base
1244 * Page Ability Register (Address 5) to determine how
1245 * flow control was negotiated.
1247 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1248 &mii_nway_adv_reg);
1249 if (ret_val)
1250 goto out;
1251 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1252 &mii_nway_lp_ability_reg);
1253 if (ret_val)
1254 goto out;
1257 * Two bits in the Auto Negotiation Advertisement Register
1258 * (Address 4) and two bits in the Auto Negotiation Base
1259 * Page Ability Register (Address 5) determine flow control
1260 * for both the PHY and the link partner. The following
1261 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1262 * 1999, describes these PAUSE resolution bits and how flow
1263 * control is determined based upon these settings.
1264 * NOTE: DC = Don't Care
1266 * LOCAL DEVICE | LINK PARTNER
1267 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1268 *-------|---------|-------|---------|--------------------
1269 * 0 | 0 | DC | DC | e1000_fc_none
1270 * 0 | 1 | 0 | DC | e1000_fc_none
1271 * 0 | 1 | 1 | 0 | e1000_fc_none
1272 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1273 * 1 | 0 | 0 | DC | e1000_fc_none
1274 * 1 | DC | 1 | DC | e1000_fc_full
1275 * 1 | 1 | 0 | 0 | e1000_fc_none
1276 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1278 * Are both PAUSE bits set to 1? If so, this implies
1279 * Symmetric Flow Control is enabled at both ends. The
1280 * ASM_DIR bits are irrelevant per the spec.
1282 * For Symmetric Flow Control:
1284 * LOCAL DEVICE | LINK PARTNER
1285 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1286 *-------|---------|-------|---------|--------------------
1287 * 1 | DC | 1 | DC | E1000_fc_full
1290 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1291 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1293 * Now we need to check if the user selected Rx ONLY
1294 * of pause frames. In this case, we had to advertise
1295 * FULL flow control because we could not advertise RX
1296 * ONLY. Hence, we must now check to see if we need to
1297 * turn OFF the TRANSMISSION of PAUSE frames.
1299 if (hw->fc.requested_mode == e1000_fc_full) {
1300 hw->fc.current_mode = e1000_fc_full;
1301 DEBUGOUT("Flow Control = FULL.\r\n");
1302 } else {
1303 hw->fc.current_mode = e1000_fc_rx_pause;
1304 DEBUGOUT("Flow Control = "
1305 "RX PAUSE frames only.\r\n");
1309 * For receiving PAUSE frames ONLY.
1311 * LOCAL DEVICE | LINK PARTNER
1312 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1313 *-------|---------|-------|---------|--------------------
1314 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1316 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1317 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1318 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1319 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1320 hw->fc.current_mode = e1000_fc_tx_pause;
1321 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1324 * For transmitting PAUSE frames ONLY.
1326 * LOCAL DEVICE | LINK PARTNER
1327 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1328 *-------|---------|-------|---------|--------------------
1329 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1331 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1332 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1333 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1334 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1335 hw->fc.current_mode = e1000_fc_rx_pause;
1336 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1337 } else {
1339 * Per the IEEE spec, at this point flow control
1340 * should be disabled.
1342 hw->fc.current_mode = e1000_fc_none;
1343 DEBUGOUT("Flow Control = NONE.\r\n");
1347 * Now we need to do one last check... If we auto-
1348 * negotiated to HALF DUPLEX, flow control should not be
1349 * enabled per IEEE 802.3 spec.
1351 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1352 if (ret_val) {
1353 DEBUGOUT("Error getting link speed and duplex\n");
1354 goto out;
1357 if (duplex == HALF_DUPLEX)
1358 hw->fc.current_mode = e1000_fc_none;
1361 * Now we call a subroutine to actually force the MAC
1362 * controller to use the correct flow control settings.
1364 ret_val = igb_force_mac_fc_generic(hw);
1365 if (ret_val) {
1366 DEBUGOUT("Error forcing flow control settings\n");
1367 goto out;
1371 out:
1372 return ret_val;
1376 * igb_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1377 * @hw: pointer to the HW structure
1378 * @speed: stores the current speed
1379 * @duplex: stores the current duplex
1381 * Read the status register for the current speed/duplex and store the current
1382 * speed and duplex for copper connections.
1384 s32 igb_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1385 u16 *duplex)
1387 u32 status;
1389 DEBUGFUNC("igb_get_speed_and_duplex_copper_generic");
1391 status = E1000_READ_REG(hw, E1000_STATUS);
1392 if (status & E1000_STATUS_SPEED_1000) {
1393 *speed = SPEED_1000;
1394 DEBUGOUT("1000 Mbs, ");
1395 } else if (status & E1000_STATUS_SPEED_100) {
1396 *speed = SPEED_100;
1397 DEBUGOUT("100 Mbs, ");
1398 } else {
1399 *speed = SPEED_10;
1400 DEBUGOUT("10 Mbs, ");
1403 if (status & E1000_STATUS_FD) {
1404 *duplex = FULL_DUPLEX;
1405 DEBUGOUT("Full Duplex\n");
1406 } else {
1407 *duplex = HALF_DUPLEX;
1408 DEBUGOUT("Half Duplex\n");
1411 return E1000_SUCCESS;
1415 * igb_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1416 * @hw: pointer to the HW structure
1417 * @speed: stores the current speed
1418 * @duplex: stores the current duplex
1420 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1421 * for fiber/serdes links.
1423 s32 igb_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw __unused,
1424 u16 *speed, u16 *duplex)
1426 DEBUGFUNC("igb_get_speed_and_duplex_fiber_serdes_generic");
1428 *speed = SPEED_1000;
1429 *duplex = FULL_DUPLEX;
1431 return E1000_SUCCESS;
1435 * igb_get_hw_semaphore_generic - Acquire hardware semaphore
1436 * @hw: pointer to the HW structure
1438 * Acquire the HW semaphore to access the PHY or NVM
1440 s32 igb_get_hw_semaphore_generic(struct e1000_hw *hw)
1442 u32 swsm;
1443 s32 ret_val = E1000_SUCCESS;
1444 s32 timeout = hw->nvm.word_size + 1;
1445 s32 i = 0;
1447 DEBUGFUNC("igb_get_hw_semaphore_generic");
1449 /* Get the SW semaphore */
1450 while (i < timeout) {
1451 swsm = E1000_READ_REG(hw, E1000_SWSM);
1452 if (!(swsm & E1000_SWSM_SMBI))
1453 break;
1455 usec_delay(50);
1456 i++;
1459 if (i == timeout) {
1460 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1461 ret_val = -E1000_ERR_NVM;
1462 goto out;
1465 /* Get the FW semaphore. */
1466 for (i = 0; i < timeout; i++) {
1467 swsm = E1000_READ_REG(hw, E1000_SWSM);
1468 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1470 /* Semaphore acquired if bit latched */
1471 if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1472 break;
1474 usec_delay(50);
1477 if (i == timeout) {
1478 /* Release semaphores */
1479 igb_put_hw_semaphore_generic(hw);
1480 DEBUGOUT("Driver can't access the NVM\n");
1481 ret_val = -E1000_ERR_NVM;
1482 goto out;
1485 out:
1486 return ret_val;
1490 * igb_put_hw_semaphore_generic - Release hardware semaphore
1491 * @hw: pointer to the HW structure
1493 * Release hardware semaphore used to access the PHY or NVM
1495 void igb_put_hw_semaphore_generic(struct e1000_hw *hw)
1497 u32 swsm;
1499 DEBUGFUNC("igb_put_hw_semaphore_generic");
1501 swsm = E1000_READ_REG(hw, E1000_SWSM);
1503 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1505 E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1509 * igb_get_auto_rd_done_generic - Check for auto read completion
1510 * @hw: pointer to the HW structure
1512 * Check EEPROM for Auto Read done bit.
1514 s32 igb_get_auto_rd_done_generic(struct e1000_hw *hw)
1516 s32 i = 0;
1517 s32 ret_val = E1000_SUCCESS;
1519 DEBUGFUNC("igb_get_auto_rd_done_generic");
1521 while (i < AUTO_READ_DONE_TIMEOUT) {
1522 if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1523 break;
1524 msec_delay(1);
1525 i++;
1528 if (i == AUTO_READ_DONE_TIMEOUT) {
1529 DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1530 ret_val = -E1000_ERR_RESET;
1531 goto out;
1534 out:
1535 return ret_val;
1539 * igb_valid_led_default_generic - Verify a valid default LED config
1540 * @hw: pointer to the HW structure
1541 * @data: pointer to the NVM (EEPROM)
1543 * Read the EEPROM for the current default LED configuration. If the
1544 * LED configuration is not valid, set to a valid LED configuration.
1546 s32 igb_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1548 s32 ret_val;
1550 DEBUGFUNC("igb_valid_led_default_generic");
1552 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1553 if (ret_val) {
1554 DEBUGOUT("NVM Read Error\n");
1555 goto out;
1558 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1559 *data = ID_LED_DEFAULT;
1561 out:
1562 return ret_val;
1566 * e1000_id_led_init_generic -
1567 * @hw: pointer to the HW structure
1570 s32 igb_id_led_init_generic(struct e1000_hw *hw)
1572 struct e1000_mac_info *mac = &hw->mac;
1573 s32 ret_val;
1574 const u32 ledctl_mask = 0x000000FF;
1575 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1576 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1577 u16 data, i, temp;
1578 const u16 led_mask = 0x0F;
1580 DEBUGFUNC("igb_id_led_init_generic");
1582 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1583 if (ret_val)
1584 goto out;
1586 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1587 mac->ledctl_mode1 = mac->ledctl_default;
1588 mac->ledctl_mode2 = mac->ledctl_default;
1590 for (i = 0; i < 4; i++) {
1591 temp = (data >> (i << 2)) & led_mask;
1592 switch (temp) {
1593 case ID_LED_ON1_DEF2:
1594 case ID_LED_ON1_ON2:
1595 case ID_LED_ON1_OFF2:
1596 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1597 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1598 break;
1599 case ID_LED_OFF1_DEF2:
1600 case ID_LED_OFF1_ON2:
1601 case ID_LED_OFF1_OFF2:
1602 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1603 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1604 break;
1605 default:
1606 /* Do nothing */
1607 break;
1609 switch (temp) {
1610 case ID_LED_DEF1_ON2:
1611 case ID_LED_ON1_ON2:
1612 case ID_LED_OFF1_ON2:
1613 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1614 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1615 break;
1616 case ID_LED_DEF1_OFF2:
1617 case ID_LED_ON1_OFF2:
1618 case ID_LED_OFF1_OFF2:
1619 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1620 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1621 break;
1622 default:
1623 /* Do nothing */
1624 break;
1628 out:
1629 return ret_val;
1632 #if 0
1634 * igb_setup_led_generic - Configures SW controllable LED
1635 * @hw: pointer to the HW structure
1637 * This prepares the SW controllable LED for use and saves the current state
1638 * of the LED so it can be later restored.
1640 s32 igb_setup_led_generic(struct e1000_hw *hw)
1642 u32 ledctl;
1643 s32 ret_val = E1000_SUCCESS;
1645 DEBUGFUNC("igb_setup_led_generic");
1647 if (hw->mac.ops.setup_led != e1000_setup_led_generic) {
1648 ret_val = -E1000_ERR_CONFIG;
1649 goto out;
1652 if (hw->phy.media_type == e1000_media_type_fiber) {
1653 ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1654 hw->mac.ledctl_default = ledctl;
1655 /* Turn off LED0 */
1656 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
1657 E1000_LEDCTL_LED0_BLINK |
1658 E1000_LEDCTL_LED0_MODE_MASK);
1659 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1660 E1000_LEDCTL_LED0_MODE_SHIFT);
1661 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1662 } else if (hw->phy.media_type == e1000_media_type_copper) {
1663 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1666 out:
1667 return ret_val;
1671 * igb_cleanup_led_generic - Set LED config to default operation
1672 * @hw: pointer to the HW structure
1674 * Remove the current LED configuration and set the LED configuration
1675 * to the default value, saved from the EEPROM.
1677 s32 igb_cleanup_led_generic(struct e1000_hw *hw)
1679 s32 ret_val = E1000_SUCCESS;
1681 DEBUGFUNC("igb_cleanup_led_generic");
1683 if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) {
1684 ret_val = -E1000_ERR_CONFIG;
1685 goto out;
1688 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1690 out:
1691 return ret_val;
1695 * igb_blink_led_generic - Blink LED
1696 * @hw: pointer to the HW structure
1698 * Blink the LEDs which are set to be on.
1700 s32 igb_blink_led_generic(struct e1000_hw *hw)
1702 u32 ledctl_blink = 0;
1703 u32 i;
1705 DEBUGFUNC("igb_blink_led_generic");
1707 if (hw->phy.media_type == e1000_media_type_fiber) {
1708 /* always blink LED0 for PCI-E fiber */
1709 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1710 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1711 } else {
1713 * set the blink bit for each LED that's "on" (0x0E)
1714 * in ledctl_mode2
1716 ledctl_blink = hw->mac.ledctl_mode2;
1717 for (i = 0; i < 4; i++)
1718 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1719 E1000_LEDCTL_MODE_LED_ON)
1720 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1721 (i * 8));
1724 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1726 return E1000_SUCCESS;
1730 * igb_led_on_generic - Turn LED on
1731 * @hw: pointer to the HW structure
1733 * Turn LED on.
1735 s32 igb_led_on_generic(struct e1000_hw *hw)
1737 u32 ctrl;
1739 DEBUGFUNC("igb_led_on_generic");
1741 switch (hw->phy.media_type) {
1742 case e1000_media_type_fiber:
1743 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1744 ctrl &= ~E1000_CTRL_SWDPIN0;
1745 ctrl |= E1000_CTRL_SWDPIO0;
1746 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1747 break;
1748 case e1000_media_type_copper:
1749 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
1750 break;
1751 default:
1752 break;
1755 return E1000_SUCCESS;
1759 * igb_led_off_generic - Turn LED off
1760 * @hw: pointer to the HW structure
1762 * Turn LED off.
1764 s32 igb_led_off_generic(struct e1000_hw *hw)
1766 u32 ctrl;
1768 DEBUGFUNC("igb_led_off_generic");
1770 switch (hw->phy.media_type) {
1771 case e1000_media_type_fiber:
1772 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1773 ctrl |= E1000_CTRL_SWDPIN0;
1774 ctrl |= E1000_CTRL_SWDPIO0;
1775 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1776 break;
1777 case e1000_media_type_copper:
1778 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1779 break;
1780 default:
1781 break;
1784 return E1000_SUCCESS;
1786 #endif
1789 * igb_set_pcie_no_snoop_generic - Set PCI-express capabilities
1790 * @hw: pointer to the HW structure
1791 * @no_snoop: bitmap of snoop events
1793 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1795 void igb_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
1797 u32 gcr;
1799 DEBUGFUNC("igb_set_pcie_no_snoop_generic");
1801 if (hw->bus.type != e1000_bus_type_pci_express)
1802 goto out;
1804 if (no_snoop) {
1805 gcr = E1000_READ_REG(hw, E1000_GCR);
1806 gcr &= ~(PCIE_NO_SNOOP_ALL);
1807 gcr |= no_snoop;
1808 E1000_WRITE_REG(hw, E1000_GCR, gcr);
1810 out:
1811 return;
1815 * igb_disable_pcie_master_generic - Disables PCI-express master access
1816 * @hw: pointer to the HW structure
1818 * Returns 0 (E1000_SUCCESS) if successful, else returns -10
1819 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1820 * the master requests to be disabled.
1822 * Disables PCI-Express master access and verifies there are no pending
1823 * requests.
1825 s32 igb_disable_pcie_master_generic(struct e1000_hw *hw)
1827 u32 ctrl;
1828 s32 timeout = MASTER_DISABLE_TIMEOUT;
1829 s32 ret_val = E1000_SUCCESS;
1831 DEBUGFUNC("igb_disable_pcie_master_generic");
1833 if (hw->bus.type != e1000_bus_type_pci_express)
1834 goto out;
1836 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1837 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1838 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1840 while (timeout) {
1841 if (!(E1000_READ_REG(hw, E1000_STATUS) &
1842 E1000_STATUS_GIO_MASTER_ENABLE))
1843 break;
1844 usec_delay(100);
1845 timeout--;
1848 if (!timeout) {
1849 DEBUGOUT("Master requests are pending.\n");
1850 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1851 goto out;
1854 out:
1855 return ret_val;
1859 * igb_reset_adaptive_generic - Reset Adaptive Interframe Spacing
1860 * @hw: pointer to the HW structure
1862 * Reset the Adaptive Interframe Spacing throttle to default values.
1864 void igb_reset_adaptive_generic(struct e1000_hw *hw)
1866 struct e1000_mac_info *mac = &hw->mac;
1868 DEBUGFUNC("igb_reset_adaptive_generic");
1870 if (!mac->adaptive_ifs) {
1871 DEBUGOUT("Not in Adaptive IFS mode!\n");
1872 goto out;
1875 mac->current_ifs_val = 0;
1876 mac->ifs_min_val = IFS_MIN;
1877 mac->ifs_max_val = IFS_MAX;
1878 mac->ifs_step_size = IFS_STEP;
1879 mac->ifs_ratio = IFS_RATIO;
1881 mac->in_ifs_mode = false;
1882 E1000_WRITE_REG(hw, E1000_AIT, 0);
1883 out:
1884 return;
1888 * igb_update_adaptive_generic - Update Adaptive Interframe Spacing
1889 * @hw: pointer to the HW structure
1891 * Update the Adaptive Interframe Spacing Throttle value based on the
1892 * time between transmitted packets and time between collisions.
1894 void igb_update_adaptive_generic(struct e1000_hw *hw)
1896 struct e1000_mac_info *mac = &hw->mac;
1898 DEBUGFUNC("igb_update_adaptive_generic");
1900 if (!mac->adaptive_ifs) {
1901 DEBUGOUT("Not in Adaptive IFS mode!\n");
1902 goto out;
1905 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1906 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1907 mac->in_ifs_mode = true;
1908 if (mac->current_ifs_val < mac->ifs_max_val) {
1909 if (!mac->current_ifs_val)
1910 mac->current_ifs_val = mac->ifs_min_val;
1911 else
1912 mac->current_ifs_val +=
1913 mac->ifs_step_size;
1914 E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val);
1917 } else {
1918 if (mac->in_ifs_mode &&
1919 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1920 mac->current_ifs_val = 0;
1921 mac->in_ifs_mode = false;
1922 E1000_WRITE_REG(hw, E1000_AIT, 0);
1925 out:
1926 return;
1930 * igb_validate_mdi_setting_generic - Verify MDI/MDIx settings
1931 * @hw: pointer to the HW structure
1933 * Verify that when not using auto-negotiation that MDI/MDIx is correctly
1934 * set, which is forced to MDI mode only.
1936 static s32 igb_validate_mdi_setting_generic(struct e1000_hw *hw)
1938 s32 ret_val = E1000_SUCCESS;
1940 DEBUGFUNC("igb_validate_mdi_setting_generic");
1942 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1943 DEBUGOUT("Invalid MDI setting detected\n");
1944 hw->phy.mdix = 1;
1945 ret_val = -E1000_ERR_CONFIG;
1946 goto out;
1949 out:
1950 return ret_val;
1954 * igb_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
1955 * @hw: pointer to the HW structure
1956 * @reg: 32bit register offset such as E1000_SCTL
1957 * @offset: register offset to write to
1958 * @data: data to write at register offset
1960 * Writes an address/data control type register. There are several of these
1961 * and they all have the format address << 8 | data and bit 31 is polled for
1962 * completion.
1964 s32 igb_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
1965 u32 offset, u8 data)
1967 u32 i, regvalue = 0;
1968 s32 ret_val = E1000_SUCCESS;
1970 DEBUGFUNC("igb_write_8bit_ctrl_reg_generic");
1972 /* Set up the address and data */
1973 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1974 E1000_WRITE_REG(hw, reg, regvalue);
1976 /* Poll the ready bit to see if the MDI read completed */
1977 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1978 usec_delay(5);
1979 regvalue = E1000_READ_REG(hw, reg);
1980 if (regvalue & E1000_GEN_CTL_READY)
1981 break;
1983 if (!(regvalue & E1000_GEN_CTL_READY)) {
1984 DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
1985 ret_val = -E1000_ERR_PHY;
1986 goto out;
1989 out:
1990 return ret_val;