2 * Copyright (c) 2009 Joshua Oreman <oremanj@rwcr.net>.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation; either version 2 of the
7 * License, or any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 FILE_LICENCE ( GPL2_OR_LATER
);
21 #include <gpxe/crypto.h>
22 #include <gpxe/sha1.h>
23 #include <gpxe/hmac.h>
28 * SHA1 pseudorandom function for creating derived keys
30 * @v key Master key with which this call is associated
31 * @v key_len Length of key
32 * @v label NUL-terminated ASCII string describing purpose of PRF data
33 * @v data Further data that should be included in the PRF
34 * @v data_len Length of further PRF data
35 * @v prf_len Bytes of PRF to generate
36 * @ret prf Pseudorandom function bytes
38 * This is the PRF variant used by 802.11, defined in IEEE 802.11-2007
39 * 8.5.5.1. EAP-FAST uses a different SHA1-based PRF, and TLS uses an
42 void prf_sha1 ( const void *key
, size_t key_len
, const char *label
,
43 const void *data
, size_t data_len
, void *prf
, size_t prf_len
)
46 u8 keym
[key_len
]; /* modifiable copy of key */
47 u8 in
[strlen ( label
) + 1 + data_len
+ 1]; /* message to HMAC */
48 u8
*in_blknr
; /* pointer to last byte of in, block number */
49 u8 out
[SHA1_SIZE
]; /* HMAC-SHA1 result */
50 u8 sha1_ctx
[SHA1_CTX_SIZE
]; /* SHA1 context */
51 const size_t label_len
= strlen ( label
);
53 /* The HMAC-SHA-1 is calculated using the given key on the
54 message text `label', followed by a NUL, followed by one
55 byte indicating the block number (0 for first). */
57 memcpy ( keym
, key
, key_len
);
59 memcpy ( in
, label
, strlen ( label
) + 1 );
60 memcpy ( in
+ label_len
+ 1, data
, data_len
);
61 in_blknr
= in
+ label_len
+ 1 + data_len
;
63 for ( blk
= 0 ;; blk
++ ) {
66 hmac_init ( &sha1_algorithm
, sha1_ctx
, keym
, &key_len
);
67 hmac_update ( &sha1_algorithm
, sha1_ctx
, in
, sizeof ( in
) );
68 hmac_final ( &sha1_algorithm
, sha1_ctx
, keym
, &key_len
, out
);
70 if ( prf_len
<= SHA1_SIZE
) {
71 memcpy ( prf
, out
, prf_len
);
75 memcpy ( prf
, out
, SHA1_SIZE
);
82 * PBKDF2 key derivation function inner block operation
84 * @v passphrase Passphrase from which to derive key
85 * @v pass_len Length of passphrase
86 * @v salt Salt to include in key
87 * @v salt_len Length of salt
88 * @v iterations Number of iterations of SHA1 to perform
89 * @v blocknr Index of this block, starting at 1
90 * @ret block SHA1_SIZE bytes of PBKDF2 data
92 * The operation of this function is described in RFC 2898.
94 static void pbkdf2_sha1_f ( const void *passphrase
, size_t pass_len
,
95 const void *salt
, size_t salt_len
,
96 int iterations
, u32 blocknr
, u8
*block
)
98 u8 pass
[pass_len
]; /* modifiable passphrase */
99 u8 in
[salt_len
+ 4]; /* input buffer to first round */
100 u8 last
[SHA1_SIZE
]; /* output of round N, input of N+1 */
101 u8 sha1_ctx
[SHA1_CTX_SIZE
];
102 u8
*next_in
= in
; /* changed to `last' after first round */
103 int next_size
= sizeof ( in
);
106 blocknr
= htonl ( blocknr
);
108 memcpy ( pass
, passphrase
, pass_len
);
109 memcpy ( in
, salt
, salt_len
);
110 memcpy ( in
+ salt_len
, &blocknr
, 4 );
111 memset ( block
, 0, SHA1_SIZE
);
113 for ( i
= 0; i
< iterations
; i
++ ) {
114 hmac_init ( &sha1_algorithm
, sha1_ctx
, pass
, &pass_len
);
115 hmac_update ( &sha1_algorithm
, sha1_ctx
, next_in
, next_size
);
116 hmac_final ( &sha1_algorithm
, sha1_ctx
, pass
, &pass_len
, last
);
118 for ( j
= 0; j
< SHA1_SIZE
; j
++ ) {
123 next_size
= SHA1_SIZE
;
128 * PBKDF2 key derivation function using SHA1
130 * @v passphrase Passphrase from which to derive key
131 * @v pass_len Length of passphrase
132 * @v salt Salt to include in key
133 * @v salt_len Length of salt
134 * @v iterations Number of iterations of SHA1 to perform
135 * @v key_len Length of key to generate
136 * @ret key Generated key bytes
138 * This is used most notably in 802.11 WPA passphrase hashing, in
139 * which case the salt is the SSID, 4096 iterations are used, and a
140 * 32-byte key is generated that serves as the Pairwise Master Key for
141 * EAPOL authentication.
143 * The operation of this function is further described in RFC 2898.
145 void pbkdf2_sha1 ( const void *passphrase
, size_t pass_len
,
146 const void *salt
, size_t salt_len
,
147 int iterations
, void *key
, size_t key_len
)
149 u32 blocks
= ( key_len
+ SHA1_SIZE
- 1 ) / SHA1_SIZE
;
153 for ( blk
= 1; blk
<= blocks
; blk
++ ) {
154 pbkdf2_sha1_f ( passphrase
, pass_len
, salt
, salt_len
,
155 iterations
, blk
, buf
);
156 if ( key_len
<= SHA1_SIZE
) {
157 memcpy ( key
, buf
, key_len
);
161 memcpy ( key
, buf
, SHA1_SIZE
);
162 key_len
-= SHA1_SIZE
;