1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 FILE_LICENCE ( GPL2_OR_LATER
);
31 #include "e1000_api.h"
33 static s32
e1000_validate_mdi_setting_generic(struct e1000_hw
*hw
);
34 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
);
37 * e1000_init_mac_ops_generic - Initialize MAC function pointers
38 * @hw: pointer to the HW structure
40 * Setups up the function pointers to no-op functions
42 void e1000_init_mac_ops_generic(struct e1000_hw
*hw
)
44 struct e1000_mac_info
*mac
= &hw
->mac
;
45 DEBUGFUNC("e1000_init_mac_ops_generic");
48 mac
->ops
.init_params
= e1000_null_ops_generic
;
49 mac
->ops
.init_hw
= e1000_null_ops_generic
;
50 mac
->ops
.reset_hw
= e1000_null_ops_generic
;
51 mac
->ops
.setup_physical_interface
= e1000_null_ops_generic
;
52 mac
->ops
.get_bus_info
= e1000_null_ops_generic
;
53 mac
->ops
.set_lan_id
= e1000_set_lan_id_multi_port_pcie
;
54 mac
->ops
.read_mac_addr
= e1000_read_mac_addr_generic
;
55 mac
->ops
.config_collision_dist
= e1000_config_collision_dist_generic
;
56 mac
->ops
.clear_hw_cntrs
= e1000_null_mac_generic
;
58 mac
->ops
.cleanup_led
= e1000_null_ops_generic
;
59 mac
->ops
.setup_led
= e1000_null_ops_generic
;
60 mac
->ops
.blink_led
= e1000_null_ops_generic
;
61 mac
->ops
.led_on
= e1000_null_ops_generic
;
62 mac
->ops
.led_off
= e1000_null_ops_generic
;
64 mac
->ops
.setup_link
= e1000_null_ops_generic
;
65 mac
->ops
.get_link_up_info
= e1000_null_link_info
;
66 mac
->ops
.check_for_link
= e1000_null_ops_generic
;
67 mac
->ops
.wait_autoneg
= e1000_wait_autoneg_generic
;
70 mac
->ops
.check_mng_mode
= e1000_null_mng_mode
;
71 mac
->ops
.mng_host_if_write
= e1000_mng_host_if_write_generic
;
72 mac
->ops
.mng_write_cmd_header
= e1000_mng_write_cmd_header_generic
;
73 mac
->ops
.mng_enable_host_if
= e1000_mng_enable_host_if_generic
;
76 mac
->ops
.update_mc_addr_list
= e1000_null_update_mc
;
77 mac
->ops
.clear_vfta
= e1000_null_mac_generic
;
78 mac
->ops
.write_vfta
= e1000_null_write_vfta
;
79 mac
->ops
.mta_set
= e1000_null_mta_set
;
80 mac
->ops
.rar_set
= e1000_rar_set_generic
;
81 mac
->ops
.validate_mdi_setting
= e1000_validate_mdi_setting_generic
;
85 * e1000_null_ops_generic - No-op function, returns 0
86 * @hw: pointer to the HW structure
88 s32
e1000_null_ops_generic(struct e1000_hw
*hw __unused
)
90 DEBUGFUNC("e1000_null_ops_generic");
95 * e1000_null_mac_generic - No-op function, return void
96 * @hw: pointer to the HW structure
98 void e1000_null_mac_generic(struct e1000_hw
*hw __unused
)
100 DEBUGFUNC("e1000_null_mac_generic");
105 * e1000_null_link_info - No-op function, return 0
106 * @hw: pointer to the HW structure
108 s32
e1000_null_link_info(struct e1000_hw
*hw __unused
,
109 u16
*s __unused
, u16
*d __unused
)
111 DEBUGFUNC("e1000_null_link_info");
112 return E1000_SUCCESS
;
116 * e1000_null_mng_mode - No-op function, return false
117 * @hw: pointer to the HW structure
119 bool e1000_null_mng_mode(struct e1000_hw
*hw __unused
)
121 DEBUGFUNC("e1000_null_mng_mode");
126 * e1000_null_update_mc - No-op function, return void
127 * @hw: pointer to the HW structure
129 void e1000_null_update_mc(struct e1000_hw
*hw __unused
,
130 u8
*h __unused
, u32 a __unused
)
132 DEBUGFUNC("e1000_null_update_mc");
137 * e1000_null_write_vfta - No-op function, return void
138 * @hw: pointer to the HW structure
140 void e1000_null_write_vfta(struct e1000_hw
*hw __unused
,
141 u32 a __unused
, u32 b __unused
)
143 DEBUGFUNC("e1000_null_write_vfta");
148 * e1000_null_set_mta - No-op function, return void
149 * @hw: pointer to the HW structure
151 void e1000_null_mta_set(struct e1000_hw
*hw __unused
, u32 a __unused
)
153 DEBUGFUNC("e1000_null_mta_set");
158 * e1000_null_rar_set - No-op function, return void
159 * @hw: pointer to the HW structure
161 void e1000_null_rar_set(struct e1000_hw
*hw __unused
, u8
*h __unused
,
164 DEBUGFUNC("e1000_null_rar_set");
169 * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
170 * @hw: pointer to the HW structure
172 * Determines and stores the system bus information for a particular
173 * network interface. The following bus information is determined and stored:
174 * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
176 s32
e1000_get_bus_info_pci_generic(struct e1000_hw
*hw __unused
)
179 struct e1000_mac_info
*mac
= &hw
->mac
;
180 struct e1000_bus_info
*bus
= &hw
->bus
;
181 u32 status
= E1000_READ_REG(hw
, E1000_STATUS
);
182 s32 ret_val
= E1000_SUCCESS
;
184 DEBUGFUNC("e1000_get_bus_info_pci_generic");
187 bus
->type
= (status
& E1000_STATUS_PCIX_MODE
)
188 ? e1000_bus_type_pcix
189 : e1000_bus_type_pci
;
192 if (bus
->type
== e1000_bus_type_pci
) {
193 bus
->speed
= (status
& E1000_STATUS_PCI66
)
195 : e1000_bus_speed_33
;
197 switch (status
& E1000_STATUS_PCIX_SPEED
) {
198 case E1000_STATUS_PCIX_SPEED_66
:
199 bus
->speed
= e1000_bus_speed_66
;
201 case E1000_STATUS_PCIX_SPEED_100
:
202 bus
->speed
= e1000_bus_speed_100
;
204 case E1000_STATUS_PCIX_SPEED_133
:
205 bus
->speed
= e1000_bus_speed_133
;
208 bus
->speed
= e1000_bus_speed_reserved
;
214 bus
->width
= (status
& E1000_STATUS_BUS64
)
216 : e1000_bus_width_32
;
218 /* Which PCI(-X) function? */
219 mac
->ops
.set_lan_id(hw
);
227 * e1000_get_bus_info_pcie_generic - Get PCIe bus information
228 * @hw: pointer to the HW structure
230 * Determines and stores the system bus information for a particular
231 * network interface. The following bus information is determined and stored:
232 * bus speed, bus width, type (PCIe), and PCIe function.
234 s32
e1000_get_bus_info_pcie_generic(struct e1000_hw
*hw __unused
)
237 struct e1000_mac_info
*mac
= &hw
->mac
;
238 struct e1000_bus_info
*bus
= &hw
->bus
;
241 u16 pcie_link_status
;
243 DEBUGFUNC("e1000_get_bus_info_pcie_generic");
245 bus
->type
= e1000_bus_type_pci_express
;
246 bus
->speed
= e1000_bus_speed_2500
;
248 ret_val
= e1000_read_pcie_cap_reg(hw
,
252 bus
->width
= e1000_bus_width_unknown
;
254 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
255 PCIE_LINK_WIDTH_MASK
) >>
256 PCIE_LINK_WIDTH_SHIFT
);
258 mac
->ops
.set_lan_id(hw
);
260 return E1000_SUCCESS
;
266 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
268 * @hw: pointer to the HW structure
270 * Determines the LAN function id by reading memory-mapped registers
271 * and swaps the port value if requested.
273 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
)
275 struct e1000_bus_info
*bus
= &hw
->bus
;
279 * The status register reports the correct function number
280 * for the device regardless of function swap state.
282 reg
= E1000_READ_REG(hw
, E1000_STATUS
);
283 bus
->func
= (reg
& E1000_STATUS_FUNC_MASK
) >> E1000_STATUS_FUNC_SHIFT
;
287 * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
288 * @hw: pointer to the HW structure
290 * Determines the LAN function id by reading PCI config space.
292 void e1000_set_lan_id_multi_port_pci(struct e1000_hw
*hw
)
294 struct e1000_bus_info
*bus
= &hw
->bus
;
298 e1000_read_pci_cfg(hw
, PCI_HEADER_TYPE_REGISTER
, &pci_header_type
);
299 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
) {
300 status
= E1000_READ_REG(hw
, E1000_STATUS
);
301 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
302 >> E1000_STATUS_FUNC_SHIFT
;
309 * e1000_set_lan_id_single_port - Set LAN id for a single port device
310 * @hw: pointer to the HW structure
312 * Sets the LAN function id to zero for a single port device.
314 void e1000_set_lan_id_single_port(struct e1000_hw
*hw
)
316 struct e1000_bus_info
*bus
= &hw
->bus
;
322 * e1000_clear_vfta_generic - Clear VLAN filter table
323 * @hw: pointer to the HW structure
325 * Clears the register array which contains the VLAN filter table by
326 * setting all the values to 0.
328 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
332 DEBUGFUNC("e1000_clear_vfta_generic");
334 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
335 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
336 E1000_WRITE_FLUSH(hw
);
341 * e1000_write_vfta_generic - Write value to VLAN filter table
342 * @hw: pointer to the HW structure
343 * @offset: register offset in VLAN filter table
344 * @value: register value written to VLAN filter table
346 * Writes value at the given offset in the register array which stores
347 * the VLAN filter table.
349 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
351 DEBUGFUNC("e1000_write_vfta_generic");
353 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
354 E1000_WRITE_FLUSH(hw
);
358 * e1000_init_rx_addrs_generic - Initialize receive address's
359 * @hw: pointer to the HW structure
360 * @rar_count: receive address registers
362 * Setups the receive address registers by setting the base receive address
363 * register to the devices MAC address and clearing all the other receive
364 * address registers to 0.
366 void e1000_init_rx_addrs_generic(struct e1000_hw
*hw
, u16 rar_count
)
369 u8 mac_addr
[ETH_ADDR_LEN
] = {0};
371 DEBUGFUNC("e1000_init_rx_addrs_generic");
373 /* Setup the receive address */
374 DEBUGOUT("Programming MAC Address into RAR[0]\n");
376 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
378 /* Zero out the other (rar_entry_count - 1) receive addresses */
379 DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count
-1);
380 for (i
= 1; i
< rar_count
; i
++)
381 hw
->mac
.ops
.rar_set(hw
, mac_addr
, i
);
385 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
386 * @hw: pointer to the HW structure
388 * Checks the nvm for an alternate MAC address. An alternate MAC address
389 * can be setup by pre-boot software and must be treated like a permanent
390 * address and must override the actual permanent MAC address. If an
391 * alternate MAC address is found it is programmed into RAR0, replacing
392 * the permanent address that was installed into RAR0 by the Si on reset.
393 * This function will return SUCCESS unless it encounters an error while
394 * reading the EEPROM.
396 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
399 s32 ret_val
= E1000_SUCCESS
;
400 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
401 u8 alt_mac_addr
[ETH_ADDR_LEN
];
403 DEBUGFUNC("e1000_check_alt_mac_addr_generic");
405 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
406 &nvm_alt_mac_addr_offset
);
408 DEBUGOUT("NVM Read Error\n");
412 if (nvm_alt_mac_addr_offset
== 0xFFFF) {
413 /* There is no Alternate MAC Address */
417 if (hw
->bus
.func
== E1000_FUNC_1
)
418 nvm_alt_mac_addr_offset
+= E1000_ALT_MAC_ADDRESS_OFFSET_LAN1
;
419 for (i
= 0; i
< ETH_ADDR_LEN
; i
+= 2) {
420 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
421 ret_val
= hw
->nvm
.ops
.read(hw
, offset
, 1, &nvm_data
);
423 DEBUGOUT("NVM Read Error\n");
427 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
428 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
431 /* if multicast bit is set, the alternate address will not be used */
432 if (alt_mac_addr
[0] & 0x01) {
433 DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
438 * We have a valid alternate MAC address, and we want to treat it the
439 * same as the normal permanent MAC address stored by the HW into the
440 * RAR. Do this by mapping this address into RAR0.
442 hw
->mac
.ops
.rar_set(hw
, alt_mac_addr
, 0);
449 * e1000_rar_set_generic - Set receive address register
450 * @hw: pointer to the HW structure
451 * @addr: pointer to the receive address
452 * @index: receive address array register
454 * Sets the receive address array register at index to the address passed
457 void e1000_rar_set_generic(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
459 u32 rar_low
, rar_high
;
461 DEBUGFUNC("e1000_rar_set_generic");
464 * HW expects these in little endian so we reverse the byte order
465 * from network order (big endian) to little endian
467 rar_low
= ((u32
) addr
[0] |
468 ((u32
) addr
[1] << 8) |
469 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
471 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
473 /* If MAC address zero, no need to set the AV bit */
474 if (rar_low
|| rar_high
)
475 rar_high
|= E1000_RAH_AV
;
478 * Some bridges will combine consecutive 32-bit writes into
479 * a single burst write, which will malfunction on some parts.
480 * The flushes avoid this.
482 E1000_WRITE_REG(hw
, E1000_RAL(index
), rar_low
);
483 E1000_WRITE_FLUSH(hw
);
484 E1000_WRITE_REG(hw
, E1000_RAH(index
), rar_high
);
485 E1000_WRITE_FLUSH(hw
);
489 * e1000_mta_set_generic - Set multicast filter table address
490 * @hw: pointer to the HW structure
491 * @hash_value: determines the MTA register and bit to set
493 * The multicast table address is a register array of 32-bit registers.
494 * The hash_value is used to determine what register the bit is in, the
495 * current value is read, the new bit is OR'd in and the new value is
496 * written back into the register.
498 void e1000_mta_set_generic(struct e1000_hw
*hw
, u32 hash_value
)
500 u32 hash_bit
, hash_reg
, mta
;
502 DEBUGFUNC("e1000_mta_set_generic");
504 * The MTA is a register array of 32-bit registers. It is
505 * treated like an array of (32*mta_reg_count) bits. We want to
506 * set bit BitArray[hash_value]. So we figure out what register
507 * the bit is in, read it, OR in the new bit, then write
508 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
509 * mask to bits 31:5 of the hash value which gives us the
510 * register we're modifying. The hash bit within that register
511 * is determined by the lower 5 bits of the hash value.
513 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
514 hash_bit
= hash_value
& 0x1F;
516 mta
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, hash_reg
);
518 mta
|= (1 << hash_bit
);
520 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, hash_reg
, mta
);
521 E1000_WRITE_FLUSH(hw
);
525 * e1000_update_mc_addr_list_generic - Update Multicast addresses
526 * @hw: pointer to the HW structure
527 * @mc_addr_list: array of multicast addresses to program
528 * @mc_addr_count: number of multicast addresses to program
530 * Updates entire Multicast Table Array.
531 * The caller must have a packed mc_addr_list of multicast addresses.
533 void e1000_update_mc_addr_list_generic(struct e1000_hw
*hw
,
534 u8
*mc_addr_list
, u32 mc_addr_count
)
536 u32 hash_value
, hash_bit
, hash_reg
;
539 DEBUGFUNC("e1000_update_mc_addr_list_generic");
541 /* clear mta_shadow */
542 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
544 /* update mta_shadow from mc_addr_list */
545 for (i
= 0; (u32
) i
< mc_addr_count
; i
++) {
546 hash_value
= e1000_hash_mc_addr_generic(hw
, mc_addr_list
);
548 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
549 hash_bit
= hash_value
& 0x1F;
551 hw
->mac
.mta_shadow
[hash_reg
] |= (1 << hash_bit
);
552 mc_addr_list
+= (ETH_ADDR_LEN
);
555 /* replace the entire MTA table */
556 for (i
= hw
->mac
.mta_reg_count
- 1; i
>= 0; i
--)
557 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, hw
->mac
.mta_shadow
[i
]);
558 E1000_WRITE_FLUSH(hw
);
562 * e1000_hash_mc_addr_generic - Generate a multicast hash value
563 * @hw: pointer to the HW structure
564 * @mc_addr: pointer to a multicast address
566 * Generates a multicast address hash value which is used to determine
567 * the multicast filter table array address and new table value. See
568 * e1000_mta_set_generic()
570 u32
e1000_hash_mc_addr_generic(struct e1000_hw
*hw
, u8
*mc_addr
)
572 u32 hash_value
, hash_mask
;
575 DEBUGFUNC("e1000_hash_mc_addr_generic");
577 /* Register count multiplied by bits per register */
578 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
581 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
582 * where 0xFF would still fall within the hash mask.
584 while (hash_mask
>> bit_shift
!= 0xFF)
588 * The portion of the address that is used for the hash table
589 * is determined by the mc_filter_type setting.
590 * The algorithm is such that there is a total of 8 bits of shifting.
591 * The bit_shift for a mc_filter_type of 0 represents the number of
592 * left-shifts where the MSB of mc_addr[5] would still fall within
593 * the hash_mask. Case 0 does this exactly. Since there are a total
594 * of 8 bits of shifting, then mc_addr[4] will shift right the
595 * remaining number of bits. Thus 8 - bit_shift. The rest of the
596 * cases are a variation of this algorithm...essentially raising the
597 * number of bits to shift mc_addr[5] left, while still keeping the
598 * 8-bit shifting total.
600 * For example, given the following Destination MAC Address and an
601 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
602 * we can see that the bit_shift for case 0 is 4. These are the hash
603 * values resulting from each mc_filter_type...
604 * [0] [1] [2] [3] [4] [5]
608 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
609 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
610 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
611 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
613 switch (hw
->mac
.mc_filter_type
) {
628 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
629 (((u16
) mc_addr
[5]) << bit_shift
)));
635 * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
636 * @hw: pointer to the HW structure
638 * In certain situations, a system BIOS may report that the PCIx maximum
639 * memory read byte count (MMRBC) value is higher than than the actual
640 * value. We check the PCIx command register with the current PCIx status
643 void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw
*hw
)
647 u16 pcix_stat_hi_word
;
650 DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
652 /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
653 if (hw
->bus
.type
!= e1000_bus_type_pcix
)
656 e1000_read_pci_cfg(hw
, PCIX_COMMAND_REGISTER
, &pcix_cmd
);
657 e1000_read_pci_cfg(hw
, PCIX_STATUS_REGISTER_HI
, &pcix_stat_hi_word
);
658 cmd_mmrbc
= (pcix_cmd
& PCIX_COMMAND_MMRBC_MASK
) >>
659 PCIX_COMMAND_MMRBC_SHIFT
;
660 stat_mmrbc
= (pcix_stat_hi_word
& PCIX_STATUS_HI_MMRBC_MASK
) >>
661 PCIX_STATUS_HI_MMRBC_SHIFT
;
662 if (stat_mmrbc
== PCIX_STATUS_HI_MMRBC_4K
)
663 stat_mmrbc
= PCIX_STATUS_HI_MMRBC_2K
;
664 if (cmd_mmrbc
> stat_mmrbc
) {
665 pcix_cmd
&= ~PCIX_COMMAND_MMRBC_MASK
;
666 pcix_cmd
|= stat_mmrbc
<< PCIX_COMMAND_MMRBC_SHIFT
;
667 e1000_write_pci_cfg(hw
, PCIX_COMMAND_REGISTER
, &pcix_cmd
);
672 * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
673 * @hw: pointer to the HW structure
675 * Clears the base hardware counters by reading the counter registers.
677 void e1000_clear_hw_cntrs_base_generic(struct e1000_hw
*hw __unused
)
679 DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
682 E1000_READ_REG(hw
, E1000_CRCERRS
);
683 E1000_READ_REG(hw
, E1000_SYMERRS
);
684 E1000_READ_REG(hw
, E1000_MPC
);
685 E1000_READ_REG(hw
, E1000_SCC
);
686 E1000_READ_REG(hw
, E1000_ECOL
);
687 E1000_READ_REG(hw
, E1000_MCC
);
688 E1000_READ_REG(hw
, E1000_LATECOL
);
689 E1000_READ_REG(hw
, E1000_COLC
);
690 E1000_READ_REG(hw
, E1000_DC
);
691 E1000_READ_REG(hw
, E1000_SEC
);
692 E1000_READ_REG(hw
, E1000_RLEC
);
693 E1000_READ_REG(hw
, E1000_XONRXC
);
694 E1000_READ_REG(hw
, E1000_XONTXC
);
695 E1000_READ_REG(hw
, E1000_XOFFRXC
);
696 E1000_READ_REG(hw
, E1000_XOFFTXC
);
697 E1000_READ_REG(hw
, E1000_FCRUC
);
698 E1000_READ_REG(hw
, E1000_GPRC
);
699 E1000_READ_REG(hw
, E1000_BPRC
);
700 E1000_READ_REG(hw
, E1000_MPRC
);
701 E1000_READ_REG(hw
, E1000_GPTC
);
702 E1000_READ_REG(hw
, E1000_GORCL
);
703 E1000_READ_REG(hw
, E1000_GORCH
);
704 E1000_READ_REG(hw
, E1000_GOTCL
);
705 E1000_READ_REG(hw
, E1000_GOTCH
);
706 E1000_READ_REG(hw
, E1000_RNBC
);
707 E1000_READ_REG(hw
, E1000_RUC
);
708 E1000_READ_REG(hw
, E1000_RFC
);
709 E1000_READ_REG(hw
, E1000_ROC
);
710 E1000_READ_REG(hw
, E1000_RJC
);
711 E1000_READ_REG(hw
, E1000_TORL
);
712 E1000_READ_REG(hw
, E1000_TORH
);
713 E1000_READ_REG(hw
, E1000_TOTL
);
714 E1000_READ_REG(hw
, E1000_TOTH
);
715 E1000_READ_REG(hw
, E1000_TPR
);
716 E1000_READ_REG(hw
, E1000_TPT
);
717 E1000_READ_REG(hw
, E1000_MPTC
);
718 E1000_READ_REG(hw
, E1000_BPTC
);
723 * e1000_check_for_copper_link_generic - Check for link (Copper)
724 * @hw: pointer to the HW structure
726 * Checks to see of the link status of the hardware has changed. If a
727 * change in link status has been detected, then we read the PHY registers
728 * to get the current speed/duplex if link exists.
730 s32
e1000_check_for_copper_link_generic(struct e1000_hw
*hw
)
732 struct e1000_mac_info
*mac
= &hw
->mac
;
736 DEBUGFUNC("e1000_check_for_copper_link");
739 * We only want to go out to the PHY registers to see if Auto-Neg
740 * has completed and/or if our link status has changed. The
741 * get_link_status flag is set upon receiving a Link Status
742 * Change or Rx Sequence Error interrupt.
744 if (!mac
->get_link_status
) {
745 ret_val
= E1000_SUCCESS
;
750 * First we want to see if the MII Status Register reports
751 * link. If so, then we want to get the current speed/duplex
754 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
759 goto out
; /* No link detected */
761 mac
->get_link_status
= false;
764 * Check if there was DownShift, must be checked
765 * immediately after link-up
767 e1000_check_downshift_generic(hw
);
770 * If we are forcing speed/duplex, then we simply return since
771 * we have already determined whether we have link or not.
774 ret_val
= -E1000_ERR_CONFIG
;
779 * Auto-Neg is enabled. Auto Speed Detection takes care
780 * of MAC speed/duplex configuration. So we only need to
781 * configure Collision Distance in the MAC.
783 e1000_config_collision_dist_generic(hw
);
786 * Configure Flow Control now that Auto-Neg has completed.
787 * First, we need to restore the desired flow control
788 * settings because we may have had to re-autoneg with a
789 * different link partner.
791 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
793 DEBUGOUT("Error configuring flow control\n");
800 * e1000_check_for_fiber_link_generic - Check for link (Fiber)
801 * @hw: pointer to the HW structure
803 * Checks for link up on the hardware. If link is not up and we have
804 * a signal, then we need to force link up.
806 s32
e1000_check_for_fiber_link_generic(struct e1000_hw
*hw
)
808 struct e1000_mac_info
*mac
= &hw
->mac
;
812 s32 ret_val
= E1000_SUCCESS
;
814 DEBUGFUNC("e1000_check_for_fiber_link_generic");
816 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
817 status
= E1000_READ_REG(hw
, E1000_STATUS
);
818 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
821 * If we don't have link (auto-negotiation failed or link partner
822 * cannot auto-negotiate), the cable is plugged in (we have signal),
823 * and our link partner is not trying to auto-negotiate with us (we
824 * are receiving idles or data), we need to force link up. We also
825 * need to give auto-negotiation time to complete, in case the cable
826 * was just plugged in. The autoneg_failed flag does this.
828 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
829 if ((ctrl
& E1000_CTRL_SWDPIN1
) && (!(status
& E1000_STATUS_LU
)) &&
830 (!(rxcw
& E1000_RXCW_C
))) {
831 if (mac
->autoneg_failed
== 0) {
832 mac
->autoneg_failed
= 1;
835 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
837 /* Disable auto-negotiation in the TXCW register */
838 E1000_WRITE_REG(hw
, E1000_TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
840 /* Force link-up and also force full-duplex. */
841 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
842 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
843 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
845 /* Configure Flow Control after forcing link up. */
846 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
848 DEBUGOUT("Error configuring flow control\n");
851 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
853 * If we are forcing link and we are receiving /C/ ordered
854 * sets, re-enable auto-negotiation in the TXCW register
855 * and disable forced link in the Device Control register
856 * in an attempt to auto-negotiate with our link partner.
858 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
859 E1000_WRITE_REG(hw
, E1000_TXCW
, mac
->txcw
);
860 E1000_WRITE_REG(hw
, E1000_CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
862 mac
->serdes_has_link
= true;
870 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
871 * @hw: pointer to the HW structure
873 * Checks for link up on the hardware. If link is not up and we have
874 * a signal, then we need to force link up.
876 s32
e1000_check_for_serdes_link_generic(struct e1000_hw
*hw
)
878 struct e1000_mac_info
*mac
= &hw
->mac
;
882 s32 ret_val
= E1000_SUCCESS
;
884 DEBUGFUNC("e1000_check_for_serdes_link_generic");
886 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
887 status
= E1000_READ_REG(hw
, E1000_STATUS
);
888 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
891 * If we don't have link (auto-negotiation failed or link partner
892 * cannot auto-negotiate), and our link partner is not trying to
893 * auto-negotiate with us (we are receiving idles or data),
894 * we need to force link up. We also need to give auto-negotiation
897 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
898 if ((!(status
& E1000_STATUS_LU
)) && (!(rxcw
& E1000_RXCW_C
))) {
899 if (mac
->autoneg_failed
== 0) {
900 mac
->autoneg_failed
= 1;
903 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
905 /* Disable auto-negotiation in the TXCW register */
906 E1000_WRITE_REG(hw
, E1000_TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
908 /* Force link-up and also force full-duplex. */
909 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
910 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
911 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
913 /* Configure Flow Control after forcing link up. */
914 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
916 DEBUGOUT("Error configuring flow control\n");
919 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
921 * If we are forcing link and we are receiving /C/ ordered
922 * sets, re-enable auto-negotiation in the TXCW register
923 * and disable forced link in the Device Control register
924 * in an attempt to auto-negotiate with our link partner.
926 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
927 E1000_WRITE_REG(hw
, E1000_TXCW
, mac
->txcw
);
928 E1000_WRITE_REG(hw
, E1000_CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
930 mac
->serdes_has_link
= true;
931 } else if (!(E1000_TXCW_ANE
& E1000_READ_REG(hw
, E1000_TXCW
))) {
933 * If we force link for non-auto-negotiation switch, check
934 * link status based on MAC synchronization for internal
937 /* SYNCH bit and IV bit are sticky. */
939 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
940 if (rxcw
& E1000_RXCW_SYNCH
) {
941 if (!(rxcw
& E1000_RXCW_IV
)) {
942 mac
->serdes_has_link
= true;
943 DEBUGOUT("SERDES: Link up - forced.\n");
946 mac
->serdes_has_link
= false;
947 DEBUGOUT("SERDES: Link down - force failed.\n");
951 if (E1000_TXCW_ANE
& E1000_READ_REG(hw
, E1000_TXCW
)) {
952 status
= E1000_READ_REG(hw
, E1000_STATUS
);
953 if (status
& E1000_STATUS_LU
) {
954 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
956 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
957 if (rxcw
& E1000_RXCW_SYNCH
) {
958 if (!(rxcw
& E1000_RXCW_IV
)) {
959 mac
->serdes_has_link
= true;
960 DEBUGOUT("SERDES: Link up - autoneg "
961 "completed sucessfully.\n");
963 mac
->serdes_has_link
= false;
964 DEBUGOUT("SERDES: Link down - invalid"
965 "codewords detected in autoneg.\n");
968 mac
->serdes_has_link
= false;
969 DEBUGOUT("SERDES: Link down - no sync.\n");
972 mac
->serdes_has_link
= false;
973 DEBUGOUT("SERDES: Link down - autoneg failed\n");
982 * e1000_setup_link_generic - Setup flow control and link settings
983 * @hw: pointer to the HW structure
985 * Determines which flow control settings to use, then configures flow
986 * control. Calls the appropriate media-specific link configuration
987 * function. Assuming the adapter has a valid link partner, a valid link
988 * should be established. Assumes the hardware has previously been reset
989 * and the transmitter and receiver are not enabled.
991 s32
e1000_setup_link_generic(struct e1000_hw
*hw
)
993 s32 ret_val
= E1000_SUCCESS
;
995 DEBUGFUNC("e1000_setup_link_generic");
998 * In the case of the phy reset being blocked, we already have a link.
999 * We do not need to set it up again.
1001 if (hw
->phy
.ops
.check_reset_block
)
1002 if (hw
->phy
.ops
.check_reset_block(hw
))
1006 * If requested flow control is set to default, set flow control
1007 * based on the EEPROM flow control settings.
1009 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
1010 ret_val
= e1000_set_default_fc_generic(hw
);
1016 * Save off the requested flow control mode for use later. Depending
1017 * on the link partner's capabilities, we may or may not use this mode.
1019 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1021 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
1022 hw
->fc
.current_mode
);
1024 /* Call the necessary media_type subroutine to configure the link. */
1025 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
1030 * Initialize the flow control address, type, and PAUSE timer
1031 * registers to their default values. This is done even if flow
1032 * control is disabled, because it does not hurt anything to
1033 * initialize these registers.
1035 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1036 E1000_WRITE_REG(hw
, E1000_FCT
, FLOW_CONTROL_TYPE
);
1037 E1000_WRITE_REG(hw
, E1000_FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
1038 E1000_WRITE_REG(hw
, E1000_FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
1040 E1000_WRITE_REG(hw
, E1000_FCTTV
, hw
->fc
.pause_time
);
1042 ret_val
= e1000_set_fc_watermarks_generic(hw
);
1049 * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1050 * @hw: pointer to the HW structure
1052 * Configures collision distance and flow control for fiber and serdes
1053 * links. Upon successful setup, poll for link.
1055 s32
e1000_setup_fiber_serdes_link_generic(struct e1000_hw
*hw
)
1058 s32 ret_val
= E1000_SUCCESS
;
1060 DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
1062 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1064 /* Take the link out of reset */
1065 ctrl
&= ~E1000_CTRL_LRST
;
1067 e1000_config_collision_dist_generic(hw
);
1069 ret_val
= e1000_commit_fc_settings_generic(hw
);
1074 * Since auto-negotiation is enabled, take the link out of reset (the
1075 * link will be in reset, because we previously reset the chip). This
1076 * will restart auto-negotiation. If auto-negotiation is successful
1077 * then the link-up status bit will be set and the flow control enable
1078 * bits (RFCE and TFCE) will be set according to their negotiated value.
1080 DEBUGOUT("Auto-negotiation enabled\n");
1082 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1083 E1000_WRITE_FLUSH(hw
);
1087 * For these adapters, the SW definable pin 1 is set when the optics
1088 * detect a signal. If we have a signal, then poll for a "Link-Up"
1091 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1092 (E1000_READ_REG(hw
, E1000_CTRL
) & E1000_CTRL_SWDPIN1
)) {
1093 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
1095 DEBUGOUT("No signal detected\n");
1103 * e1000_config_collision_dist_generic - Configure collision distance
1104 * @hw: pointer to the HW structure
1106 * Configures the collision distance to the default value and is used
1107 * during link setup. Currently no func pointer exists and all
1108 * implementations are handled in the generic version of this function.
1110 void e1000_config_collision_dist_generic(struct e1000_hw
*hw
)
1114 DEBUGFUNC("e1000_config_collision_dist_generic");
1116 tctl
= E1000_READ_REG(hw
, E1000_TCTL
);
1118 tctl
&= ~E1000_TCTL_COLD
;
1119 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
1121 E1000_WRITE_REG(hw
, E1000_TCTL
, tctl
);
1122 E1000_WRITE_FLUSH(hw
);
1126 * e1000_poll_fiber_serdes_link_generic - Poll for link up
1127 * @hw: pointer to the HW structure
1129 * Polls for link up by reading the status register, if link fails to come
1130 * up with auto-negotiation, then the link is forced if a signal is detected.
1132 s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
1134 struct e1000_mac_info
*mac
= &hw
->mac
;
1136 s32 ret_val
= E1000_SUCCESS
;
1138 DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1141 * If we have a signal (the cable is plugged in, or assumed true for
1142 * serdes media) then poll for a "Link-Up" indication in the Device
1143 * Status Register. Time-out if a link isn't seen in 500 milliseconds
1144 * seconds (Auto-negotiation should complete in less than 500
1145 * milliseconds even if the other end is doing it in SW).
1147 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
1149 status
= E1000_READ_REG(hw
, E1000_STATUS
);
1150 if (status
& E1000_STATUS_LU
)
1153 if (i
== FIBER_LINK_UP_LIMIT
) {
1154 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1155 mac
->autoneg_failed
= 1;
1157 * AutoNeg failed to achieve a link, so we'll call
1158 * mac->check_for_link. This routine will force the
1159 * link up if we detect a signal. This will allow us to
1160 * communicate with non-autonegotiating link partners.
1162 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1164 DEBUGOUT("Error while checking for link\n");
1167 mac
->autoneg_failed
= 0;
1169 mac
->autoneg_failed
= 0;
1170 DEBUGOUT("Valid Link Found\n");
1178 * e1000_commit_fc_settings_generic - Configure flow control
1179 * @hw: pointer to the HW structure
1181 * Write the flow control settings to the Transmit Config Word Register (TXCW)
1182 * base on the flow control settings in e1000_mac_info.
1184 s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
1186 struct e1000_mac_info
*mac
= &hw
->mac
;
1188 s32 ret_val
= E1000_SUCCESS
;
1190 DEBUGFUNC("e1000_commit_fc_settings_generic");
1193 * Check for a software override of the flow control settings, and
1194 * setup the device accordingly. If auto-negotiation is enabled, then
1195 * software will have to set the "PAUSE" bits to the correct value in
1196 * the Transmit Config Word Register (TXCW) and re-start auto-
1197 * negotiation. However, if auto-negotiation is disabled, then
1198 * software will have to manually configure the two flow control enable
1199 * bits in the CTRL register.
1201 * The possible values of the "fc" parameter are:
1202 * 0: Flow control is completely disabled
1203 * 1: Rx flow control is enabled (we can receive pause frames,
1204 * but not send pause frames).
1205 * 2: Tx flow control is enabled (we can send pause frames but we
1206 * do not support receiving pause frames).
1207 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1209 switch (hw
->fc
.current_mode
) {
1211 /* Flow control completely disabled by a software over-ride. */
1212 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
1214 case e1000_fc_rx_pause
:
1216 * Rx Flow control is enabled and Tx Flow control is disabled
1217 * by a software over-ride. Since there really isn't a way to
1218 * advertise that we are capable of Rx Pause ONLY, we will
1219 * advertise that we support both symmetric and asymmetric RX
1220 * PAUSE. Later, we will disable the adapter's ability to send
1223 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
1225 case e1000_fc_tx_pause
:
1227 * Tx Flow control is enabled, and Rx Flow control is disabled,
1228 * by a software over-ride.
1230 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
1234 * Flow control (both Rx and Tx) is enabled by a software
1237 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
1240 DEBUGOUT("Flow control param set incorrectly\n");
1241 ret_val
= -E1000_ERR_CONFIG
;
1246 E1000_WRITE_REG(hw
, E1000_TXCW
, txcw
);
1254 * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1255 * @hw: pointer to the HW structure
1257 * Sets the flow control high/low threshold (watermark) registers. If
1258 * flow control XON frame transmission is enabled, then set XON frame
1259 * transmission as well.
1261 s32
e1000_set_fc_watermarks_generic(struct e1000_hw
*hw
)
1263 s32 ret_val
= E1000_SUCCESS
;
1264 u32 fcrtl
= 0, fcrth
= 0;
1266 DEBUGFUNC("e1000_set_fc_watermarks_generic");
1269 * Set the flow control receive threshold registers. Normally,
1270 * these registers will be set to a default threshold that may be
1271 * adjusted later by the driver's runtime code. However, if the
1272 * ability to transmit pause frames is not enabled, then these
1273 * registers will be set to 0.
1275 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
1277 * We need to set up the Receive Threshold high and low water
1278 * marks as well as (optionally) enabling the transmission of
1281 fcrtl
= hw
->fc
.low_water
;
1282 if (hw
->fc
.send_xon
)
1283 fcrtl
|= E1000_FCRTL_XONE
;
1285 fcrth
= hw
->fc
.high_water
;
1287 E1000_WRITE_REG(hw
, E1000_FCRTL
, fcrtl
);
1288 E1000_WRITE_REG(hw
, E1000_FCRTH
, fcrth
);
1294 * e1000_set_default_fc_generic - Set flow control default values
1295 * @hw: pointer to the HW structure
1297 * Read the EEPROM for the default values for flow control and store the
1300 s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
1302 s32 ret_val
= E1000_SUCCESS
;
1305 DEBUGFUNC("e1000_set_default_fc_generic");
1308 * Read and store word 0x0F of the EEPROM. This word contains bits
1309 * that determine the hardware's default PAUSE (flow control) mode,
1310 * a bit that determines whether the HW defaults to enabling or
1311 * disabling auto-negotiation, and the direction of the
1312 * SW defined pins. If there is no SW over-ride of the flow
1313 * control setting, then the variable hw->fc will
1314 * be initialized based on a value in the EEPROM.
1316 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
1319 DEBUGOUT("NVM Read Error\n");
1323 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
1324 hw
->fc
.requested_mode
= e1000_fc_none
;
1325 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
1327 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
1329 hw
->fc
.requested_mode
= e1000_fc_full
;
1336 * e1000_force_mac_fc_generic - Force the MAC's flow control settings
1337 * @hw: pointer to the HW structure
1339 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1340 * device control register to reflect the adapter settings. TFCE and RFCE
1341 * need to be explicitly set by software when a copper PHY is used because
1342 * autonegotiation is managed by the PHY rather than the MAC. Software must
1343 * also configure these bits when link is forced on a fiber connection.
1345 s32
e1000_force_mac_fc_generic(struct e1000_hw
*hw
)
1348 s32 ret_val
= E1000_SUCCESS
;
1350 DEBUGFUNC("e1000_force_mac_fc_generic");
1352 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1355 * Because we didn't get link via the internal auto-negotiation
1356 * mechanism (we either forced link or we got link via PHY
1357 * auto-neg), we have to manually enable/disable transmit an
1358 * receive flow control.
1360 * The "Case" statement below enables/disable flow control
1361 * according to the "hw->fc.current_mode" parameter.
1363 * The possible values of the "fc" parameter are:
1364 * 0: Flow control is completely disabled
1365 * 1: Rx flow control is enabled (we can receive pause
1366 * frames but not send pause frames).
1367 * 2: Tx flow control is enabled (we can send pause frames
1368 * frames but we do not receive pause frames).
1369 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1370 * other: No other values should be possible at this point.
1372 DEBUGOUT1("hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
1374 switch (hw
->fc
.current_mode
) {
1376 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
1378 case e1000_fc_rx_pause
:
1379 ctrl
&= (~E1000_CTRL_TFCE
);
1380 ctrl
|= E1000_CTRL_RFCE
;
1382 case e1000_fc_tx_pause
:
1383 ctrl
&= (~E1000_CTRL_RFCE
);
1384 ctrl
|= E1000_CTRL_TFCE
;
1387 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
1390 DEBUGOUT("Flow control param set incorrectly\n");
1391 ret_val
= -E1000_ERR_CONFIG
;
1395 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1402 * e1000_config_fc_after_link_up_generic - Configures flow control after link
1403 * @hw: pointer to the HW structure
1405 * Checks the status of auto-negotiation after link up to ensure that the
1406 * speed and duplex were not forced. If the link needed to be forced, then
1407 * flow control needs to be forced also. If auto-negotiation is enabled
1408 * and did not fail, then we configure flow control based on our link
1411 s32
e1000_config_fc_after_link_up_generic(struct e1000_hw
*hw
)
1413 struct e1000_mac_info
*mac
= &hw
->mac
;
1414 s32 ret_val
= E1000_SUCCESS
;
1415 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1418 DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1421 * Check for the case where we have fiber media and auto-neg failed
1422 * so we had to force link. In this case, we need to force the
1423 * configuration of the MAC to match the "fc" parameter.
1425 if (mac
->autoneg_failed
) {
1426 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1427 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1428 ret_val
= e1000_force_mac_fc_generic(hw
);
1430 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1431 ret_val
= e1000_force_mac_fc_generic(hw
);
1435 DEBUGOUT("Error forcing flow control settings\n");
1440 * Check for the case where we have copper media and auto-neg is
1441 * enabled. In this case, we need to check and see if Auto-Neg
1442 * has completed, and if so, how the PHY and link partner has
1443 * flow control configured.
1445 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1447 * Read the MII Status Register and check to see if AutoNeg
1448 * has completed. We read this twice because this reg has
1449 * some "sticky" (latched) bits.
1451 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &mii_status_reg
);
1454 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &mii_status_reg
);
1458 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1459 DEBUGOUT("Copper PHY and Auto Neg "
1460 "has not completed.\n");
1465 * The AutoNeg process has completed, so we now need to
1466 * read both the Auto Negotiation Advertisement
1467 * Register (Address 4) and the Auto_Negotiation Base
1468 * Page Ability Register (Address 5) to determine how
1469 * flow control was negotiated.
1471 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_AUTONEG_ADV
,
1475 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_LP_ABILITY
,
1476 &mii_nway_lp_ability_reg
);
1481 * Two bits in the Auto Negotiation Advertisement Register
1482 * (Address 4) and two bits in the Auto Negotiation Base
1483 * Page Ability Register (Address 5) determine flow control
1484 * for both the PHY and the link partner. The following
1485 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1486 * 1999, describes these PAUSE resolution bits and how flow
1487 * control is determined based upon these settings.
1488 * NOTE: DC = Don't Care
1490 * LOCAL DEVICE | LINK PARTNER
1491 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1492 *-------|---------|-------|---------|--------------------
1493 * 0 | 0 | DC | DC | e1000_fc_none
1494 * 0 | 1 | 0 | DC | e1000_fc_none
1495 * 0 | 1 | 1 | 0 | e1000_fc_none
1496 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1497 * 1 | 0 | 0 | DC | e1000_fc_none
1498 * 1 | DC | 1 | DC | e1000_fc_full
1499 * 1 | 1 | 0 | 0 | e1000_fc_none
1500 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1502 * Are both PAUSE bits set to 1? If so, this implies
1503 * Symmetric Flow Control is enabled at both ends. The
1504 * ASM_DIR bits are irrelevant per the spec.
1506 * For Symmetric Flow Control:
1508 * LOCAL DEVICE | LINK PARTNER
1509 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1510 *-------|---------|-------|---------|--------------------
1511 * 1 | DC | 1 | DC | E1000_fc_full
1514 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1515 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1517 * Now we need to check if the user selected Rx ONLY
1518 * of pause frames. In this case, we had to advertise
1519 * FULL flow control because we could not advertise RX
1520 * ONLY. Hence, we must now check to see if we need to
1521 * turn OFF the TRANSMISSION of PAUSE frames.
1523 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1524 hw
->fc
.current_mode
= e1000_fc_full
;
1525 DEBUGOUT("Flow Control = FULL.\r\n");
1527 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1528 DEBUGOUT("Flow Control = "
1529 "RX PAUSE frames only.\r\n");
1533 * For receiving PAUSE frames ONLY.
1535 * LOCAL DEVICE | LINK PARTNER
1536 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1537 *-------|---------|-------|---------|--------------------
1538 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1540 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1541 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1542 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1543 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1544 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1545 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1548 * For transmitting PAUSE frames ONLY.
1550 * LOCAL DEVICE | LINK PARTNER
1551 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1552 *-------|---------|-------|---------|--------------------
1553 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1555 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1556 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1557 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1558 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1559 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1560 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1563 * Per the IEEE spec, at this point flow control
1564 * should be disabled.
1566 hw
->fc
.current_mode
= e1000_fc_none
;
1567 DEBUGOUT("Flow Control = NONE.\r\n");
1571 * Now we need to do one last check... If we auto-
1572 * negotiated to HALF DUPLEX, flow control should not be
1573 * enabled per IEEE 802.3 spec.
1575 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1577 DEBUGOUT("Error getting link speed and duplex\n");
1581 if (duplex
== HALF_DUPLEX
)
1582 hw
->fc
.current_mode
= e1000_fc_none
;
1585 * Now we call a subroutine to actually force the MAC
1586 * controller to use the correct flow control settings.
1588 ret_val
= e1000_force_mac_fc_generic(hw
);
1590 DEBUGOUT("Error forcing flow control settings\n");
1600 * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1601 * @hw: pointer to the HW structure
1602 * @speed: stores the current speed
1603 * @duplex: stores the current duplex
1605 * Read the status register for the current speed/duplex and store the current
1606 * speed and duplex for copper connections.
1608 s32
e1000_get_speed_and_duplex_copper_generic(struct e1000_hw
*hw
, u16
*speed
,
1613 DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1615 status
= E1000_READ_REG(hw
, E1000_STATUS
);
1616 if (status
& E1000_STATUS_SPEED_1000
) {
1617 *speed
= SPEED_1000
;
1618 DEBUGOUT("1000 Mbs, ");
1619 } else if (status
& E1000_STATUS_SPEED_100
) {
1621 DEBUGOUT("100 Mbs, ");
1624 DEBUGOUT("10 Mbs, ");
1627 if (status
& E1000_STATUS_FD
) {
1628 *duplex
= FULL_DUPLEX
;
1629 DEBUGOUT("Full Duplex\n");
1631 *duplex
= HALF_DUPLEX
;
1632 DEBUGOUT("Half Duplex\n");
1635 return E1000_SUCCESS
;
1639 * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1640 * @hw: pointer to the HW structure
1641 * @speed: stores the current speed
1642 * @duplex: stores the current duplex
1644 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1645 * for fiber/serdes links.
1647 s32
e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw
*hw __unused
,
1648 u16
*speed
, u16
*duplex
)
1650 DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1652 *speed
= SPEED_1000
;
1653 *duplex
= FULL_DUPLEX
;
1655 return E1000_SUCCESS
;
1659 * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1660 * @hw: pointer to the HW structure
1662 * Acquire the HW semaphore to access the PHY or NVM
1664 s32
e1000_get_hw_semaphore_generic(struct e1000_hw
*hw __unused
)
1668 s32 ret_val
= E1000_SUCCESS
;
1669 s32 timeout
= hw
->nvm
.word_size
+ 1;
1672 DEBUGFUNC("e1000_get_hw_semaphore_generic");
1674 /* Get the SW semaphore */
1675 while (i
< timeout
) {
1676 swsm
= E1000_READ_REG(hw
, E1000_SWSM
);
1677 if (!(swsm
& E1000_SWSM_SMBI
))
1685 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1686 ret_val
= -E1000_ERR_NVM
;
1690 /* Get the FW semaphore. */
1691 for (i
= 0; i
< timeout
; i
++) {
1692 swsm
= E1000_READ_REG(hw
, E1000_SWSM
);
1693 E1000_WRITE_REG(hw
, E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1695 /* Semaphore acquired if bit latched */
1696 if (E1000_READ_REG(hw
, E1000_SWSM
) & E1000_SWSM_SWESMBI
)
1703 /* Release semaphores */
1704 e1000_put_hw_semaphore_generic(hw
);
1705 DEBUGOUT("Driver can't access the NVM\n");
1706 ret_val
= -E1000_ERR_NVM
;
1717 * e1000_put_hw_semaphore_generic - Release hardware semaphore
1718 * @hw: pointer to the HW structure
1720 * Release hardware semaphore used to access the PHY or NVM
1722 void e1000_put_hw_semaphore_generic(struct e1000_hw
*hw __unused
)
1727 DEBUGFUNC("e1000_put_hw_semaphore_generic");
1729 swsm
= E1000_READ_REG(hw
, E1000_SWSM
);
1731 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1733 E1000_WRITE_REG(hw
, E1000_SWSM
, swsm
);
1738 * e1000_get_auto_rd_done_generic - Check for auto read completion
1739 * @hw: pointer to the HW structure
1741 * Check EEPROM for Auto Read done bit.
1743 s32
e1000_get_auto_rd_done_generic(struct e1000_hw
*hw
)
1746 s32 ret_val
= E1000_SUCCESS
;
1748 DEBUGFUNC("e1000_get_auto_rd_done_generic");
1750 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1751 if (E1000_READ_REG(hw
, E1000_EECD
) & E1000_EECD_AUTO_RD
)
1757 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1758 DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1759 ret_val
= -E1000_ERR_RESET
;
1768 * e1000_valid_led_default_generic - Verify a valid default LED config
1769 * @hw: pointer to the HW structure
1770 * @data: pointer to the NVM (EEPROM)
1772 * Read the EEPROM for the current default LED configuration. If the
1773 * LED configuration is not valid, set to a valid LED configuration.
1775 s32
e1000_valid_led_default_generic(struct e1000_hw
*hw
, u16
*data
)
1779 DEBUGFUNC("e1000_valid_led_default_generic");
1781 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1783 DEBUGOUT("NVM Read Error\n");
1787 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1788 *data
= ID_LED_DEFAULT
;
1795 * e1000_id_led_init_generic -
1796 * @hw: pointer to the HW structure
1799 s32
e1000_id_led_init_generic(struct e1000_hw
*hw __unused
)
1802 struct e1000_mac_info
*mac
= &hw
->mac
;
1804 const u32 ledctl_mask
= 0x000000FF;
1805 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1806 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1808 const u16 led_mask
= 0x0F;
1810 DEBUGFUNC("e1000_id_led_init_generic");
1812 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1816 mac
->ledctl_default
= E1000_READ_REG(hw
, E1000_LEDCTL
);
1817 mac
->ledctl_mode1
= mac
->ledctl_default
;
1818 mac
->ledctl_mode2
= mac
->ledctl_default
;
1820 for (i
= 0; i
< 4; i
++) {
1821 temp
= (data
>> (i
<< 2)) & led_mask
;
1823 case ID_LED_ON1_DEF2
:
1824 case ID_LED_ON1_ON2
:
1825 case ID_LED_ON1_OFF2
:
1826 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1827 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1829 case ID_LED_OFF1_DEF2
:
1830 case ID_LED_OFF1_ON2
:
1831 case ID_LED_OFF1_OFF2
:
1832 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1833 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1840 case ID_LED_DEF1_ON2
:
1841 case ID_LED_ON1_ON2
:
1842 case ID_LED_OFF1_ON2
:
1843 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1844 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1846 case ID_LED_DEF1_OFF2
:
1847 case ID_LED_ON1_OFF2
:
1848 case ID_LED_OFF1_OFF2
:
1849 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1850 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1865 * e1000_setup_led_generic - Configures SW controllable LED
1866 * @hw: pointer to the HW structure
1868 * This prepares the SW controllable LED for use and saves the current state
1869 * of the LED so it can be later restored.
1871 s32
e1000_setup_led_generic(struct e1000_hw
*hw __unused
)
1875 s32 ret_val
= E1000_SUCCESS
;
1877 DEBUGFUNC("e1000_setup_led_generic");
1879 if (hw
->mac
.ops
.setup_led
!= e1000_setup_led_generic
) {
1880 ret_val
= -E1000_ERR_CONFIG
;
1884 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1885 ledctl
= E1000_READ_REG(hw
, E1000_LEDCTL
);
1886 hw
->mac
.ledctl_default
= ledctl
;
1888 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
|
1889 E1000_LEDCTL_LED0_BLINK
|
1890 E1000_LEDCTL_LED0_MODE_MASK
);
1891 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1892 E1000_LEDCTL_LED0_MODE_SHIFT
);
1893 E1000_WRITE_REG(hw
, E1000_LEDCTL
, ledctl
);
1894 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1895 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
1905 * e1000_cleanup_led_generic - Set LED config to default operation
1906 * @hw: pointer to the HW structure
1908 * Remove the current LED configuration and set the LED configuration
1909 * to the default value, saved from the EEPROM.
1911 s32
e1000_cleanup_led_generic(struct e1000_hw
*hw __unused
)
1914 s32 ret_val
= E1000_SUCCESS
;
1916 DEBUGFUNC("e1000_cleanup_led_generic");
1918 if (hw
->mac
.ops
.cleanup_led
!= e1000_cleanup_led_generic
) {
1919 ret_val
= -E1000_ERR_CONFIG
;
1923 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_default
);
1932 * e1000_blink_led_generic - Blink LED
1933 * @hw: pointer to the HW structure
1935 * Blink the LEDs which are set to be on.
1937 s32
e1000_blink_led_generic(struct e1000_hw
*hw __unused
)
1940 u32 ledctl_blink
= 0;
1943 DEBUGFUNC("e1000_blink_led_generic");
1945 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1946 /* always blink LED0 for PCI-E fiber */
1947 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1948 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1951 * set the blink bit for each LED that's "on" (0x0E)
1954 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1955 for (i
= 0; i
< 4; i
++)
1956 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1957 E1000_LEDCTL_MODE_LED_ON
)
1958 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1962 E1000_WRITE_REG(hw
, E1000_LEDCTL
, ledctl_blink
);
1964 return E1000_SUCCESS
;
1970 * e1000_led_on_generic - Turn LED on
1971 * @hw: pointer to the HW structure
1975 s32
e1000_led_on_generic(struct e1000_hw
*hw __unused
)
1980 DEBUGFUNC("e1000_led_on_generic");
1982 switch (hw
->phy
.media_type
) {
1983 case e1000_media_type_fiber
:
1984 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1985 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1986 ctrl
|= E1000_CTRL_SWDPIO0
;
1987 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1989 case e1000_media_type_copper
:
1990 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_mode2
);
1996 return E1000_SUCCESS
;
2002 * e1000_led_off_generic - Turn LED off
2003 * @hw: pointer to the HW structure
2007 s32
e1000_led_off_generic(struct e1000_hw
*hw __unused
)
2012 DEBUGFUNC("e1000_led_off_generic");
2014 switch (hw
->phy
.media_type
) {
2015 case e1000_media_type_fiber
:
2016 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
2017 ctrl
|= E1000_CTRL_SWDPIN0
;
2018 ctrl
|= E1000_CTRL_SWDPIO0
;
2019 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
2021 case e1000_media_type_copper
:
2022 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
2028 return E1000_SUCCESS
;
2034 * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
2035 * @hw: pointer to the HW structure
2036 * @no_snoop: bitmap of snoop events
2038 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
2040 void e1000_set_pcie_no_snoop_generic(struct e1000_hw
*hw
, u32 no_snoop
)
2044 DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
2046 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
2050 gcr
= E1000_READ_REG(hw
, E1000_GCR
);
2051 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
2053 E1000_WRITE_REG(hw
, E1000_GCR
, gcr
);
2060 * e1000_disable_pcie_master_generic - Disables PCI-express master access
2061 * @hw: pointer to the HW structure
2063 * Returns 0 (E1000_SUCCESS) if successful, else returns -10
2064 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
2065 * the master requests to be disabled.
2067 * Disables PCI-Express master access and verifies there are no pending
2070 s32
e1000_disable_pcie_master_generic(struct e1000_hw
*hw
)
2073 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
2074 s32 ret_val
= E1000_SUCCESS
;
2076 DEBUGFUNC("e1000_disable_pcie_master_generic");
2078 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
2081 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
2082 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
2083 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
2086 if (!(E1000_READ_REG(hw
, E1000_STATUS
) &
2087 E1000_STATUS_GIO_MASTER_ENABLE
))
2094 DEBUGOUT("Master requests are pending.\n");
2095 ret_val
= -E1000_ERR_MASTER_REQUESTS_PENDING
;
2104 * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2105 * @hw: pointer to the HW structure
2107 * Reset the Adaptive Interframe Spacing throttle to default values.
2109 void e1000_reset_adaptive_generic(struct e1000_hw
*hw
)
2111 struct e1000_mac_info
*mac
= &hw
->mac
;
2113 DEBUGFUNC("e1000_reset_adaptive_generic");
2115 if (!mac
->adaptive_ifs
) {
2116 DEBUGOUT("Not in Adaptive IFS mode!\n");
2120 mac
->current_ifs_val
= 0;
2121 mac
->ifs_min_val
= IFS_MIN
;
2122 mac
->ifs_max_val
= IFS_MAX
;
2123 mac
->ifs_step_size
= IFS_STEP
;
2124 mac
->ifs_ratio
= IFS_RATIO
;
2126 mac
->in_ifs_mode
= false;
2127 E1000_WRITE_REG(hw
, E1000_AIT
, 0);
2133 * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2134 * @hw: pointer to the HW structure
2136 * Update the Adaptive Interframe Spacing Throttle value based on the
2137 * time between transmitted packets and time between collisions.
2139 void e1000_update_adaptive_generic(struct e1000_hw
*hw
)
2141 struct e1000_mac_info
*mac
= &hw
->mac
;
2143 DEBUGFUNC("e1000_update_adaptive_generic");
2145 if (!mac
->adaptive_ifs
) {
2146 DEBUGOUT("Not in Adaptive IFS mode!\n");
2150 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
2151 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
2152 mac
->in_ifs_mode
= true;
2153 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
2154 if (!mac
->current_ifs_val
)
2155 mac
->current_ifs_val
= mac
->ifs_min_val
;
2157 mac
->current_ifs_val
+=
2159 E1000_WRITE_REG(hw
, E1000_AIT
, mac
->current_ifs_val
);
2163 if (mac
->in_ifs_mode
&&
2164 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
2165 mac
->current_ifs_val
= 0;
2166 mac
->in_ifs_mode
= false;
2167 E1000_WRITE_REG(hw
, E1000_AIT
, 0);
2175 * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2176 * @hw: pointer to the HW structure
2178 * Verify that when not using auto-negotiation that MDI/MDIx is correctly
2179 * set, which is forced to MDI mode only.
2181 static s32
e1000_validate_mdi_setting_generic(struct e1000_hw
*hw
)
2183 s32 ret_val
= E1000_SUCCESS
;
2185 DEBUGFUNC("e1000_validate_mdi_setting_generic");
2187 if (!hw
->mac
.autoneg
&& (hw
->phy
.mdix
== 0 || hw
->phy
.mdix
== 3)) {
2188 DEBUGOUT("Invalid MDI setting detected\n");
2190 ret_val
= -E1000_ERR_CONFIG
;