1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 FILE_LICENCE ( GPL2_OR_LATER
);
31 #include "e1000_api.h"
33 static void e1000_reload_nvm_generic(struct e1000_hw
*hw
);
36 * e1000_init_nvm_ops_generic - Initialize NVM function pointers
37 * @hw: pointer to the HW structure
39 * Setups up the function pointers to no-op functions
41 void e1000_init_nvm_ops_generic(struct e1000_hw
*hw
)
43 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
44 DEBUGFUNC("e1000_init_nvm_ops_generic");
46 /* Initialize function pointers */
47 nvm
->ops
.init_params
= e1000_null_ops_generic
;
48 nvm
->ops
.acquire
= e1000_null_ops_generic
;
49 nvm
->ops
.read
= e1000_null_read_nvm
;
50 nvm
->ops
.release
= e1000_null_nvm_generic
;
51 nvm
->ops
.reload
= e1000_reload_nvm_generic
;
52 nvm
->ops
.update
= e1000_null_ops_generic
;
53 nvm
->ops
.valid_led_default
= e1000_null_led_default
;
54 nvm
->ops
.validate
= e1000_null_ops_generic
;
55 nvm
->ops
.write
= e1000_null_write_nvm
;
59 * e1000_null_nvm_read - No-op function, return 0
60 * @hw: pointer to the HW structure
62 s32
e1000_null_read_nvm(struct e1000_hw
*hw __unused
, u16 a __unused
,
63 u16 b __unused
, u16
*c __unused
)
65 DEBUGFUNC("e1000_null_read_nvm");
70 * e1000_null_nvm_generic - No-op function, return void
71 * @hw: pointer to the HW structure
73 void e1000_null_nvm_generic(struct e1000_hw
*hw __unused
)
75 DEBUGFUNC("e1000_null_nvm_generic");
80 * e1000_null_led_default - No-op function, return 0
81 * @hw: pointer to the HW structure
83 s32
e1000_null_led_default(struct e1000_hw
*hw __unused
,
86 DEBUGFUNC("e1000_null_led_default");
91 * e1000_null_write_nvm - No-op function, return 0
92 * @hw: pointer to the HW structure
94 s32
e1000_null_write_nvm(struct e1000_hw
*hw __unused
, u16 a __unused
,
95 u16 b __unused
, u16
*c __unused
)
97 DEBUGFUNC("e1000_null_write_nvm");
102 * e1000_raise_eec_clk - Raise EEPROM clock
103 * @hw: pointer to the HW structure
104 * @eecd: pointer to the EEPROM
106 * Enable/Raise the EEPROM clock bit.
108 static void e1000_raise_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
110 *eecd
= *eecd
| E1000_EECD_SK
;
111 E1000_WRITE_REG(hw
, E1000_EECD
, *eecd
);
112 E1000_WRITE_FLUSH(hw
);
113 usec_delay(hw
->nvm
.delay_usec
);
117 * e1000_lower_eec_clk - Lower EEPROM clock
118 * @hw: pointer to the HW structure
119 * @eecd: pointer to the EEPROM
121 * Clear/Lower the EEPROM clock bit.
123 static void e1000_lower_eec_clk(struct e1000_hw
*hw
, u32
*eecd
)
125 *eecd
= *eecd
& ~E1000_EECD_SK
;
126 E1000_WRITE_REG(hw
, E1000_EECD
, *eecd
);
127 E1000_WRITE_FLUSH(hw
);
128 usec_delay(hw
->nvm
.delay_usec
);
132 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
133 * @hw: pointer to the HW structure
134 * @data: data to send to the EEPROM
135 * @count: number of bits to shift out
137 * We need to shift 'count' bits out to the EEPROM. So, the value in the
138 * "data" parameter will be shifted out to the EEPROM one bit at a time.
139 * In order to do this, "data" must be broken down into bits.
141 static void e1000_shift_out_eec_bits(struct e1000_hw
*hw
, u16 data
, u16 count
)
143 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
144 u32 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
147 DEBUGFUNC("e1000_shift_out_eec_bits");
149 mask
= 0x01 << (count
- 1);
150 if (nvm
->type
== e1000_nvm_eeprom_microwire
)
151 eecd
&= ~E1000_EECD_DO
;
153 if (nvm
->type
== e1000_nvm_eeprom_spi
)
154 eecd
|= E1000_EECD_DO
;
157 eecd
&= ~E1000_EECD_DI
;
160 eecd
|= E1000_EECD_DI
;
162 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
163 E1000_WRITE_FLUSH(hw
);
165 usec_delay(nvm
->delay_usec
);
167 e1000_raise_eec_clk(hw
, &eecd
);
168 e1000_lower_eec_clk(hw
, &eecd
);
173 eecd
&= ~E1000_EECD_DI
;
174 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
178 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
179 * @hw: pointer to the HW structure
180 * @count: number of bits to shift in
182 * In order to read a register from the EEPROM, we need to shift 'count' bits
183 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
184 * the EEPROM (setting the SK bit), and then reading the value of the data out
185 * "DO" bit. During this "shifting in" process the data in "DI" bit should
188 static u16
e1000_shift_in_eec_bits(struct e1000_hw
*hw
, u16 count
)
194 DEBUGFUNC("e1000_shift_in_eec_bits");
196 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
198 eecd
&= ~(E1000_EECD_DO
| E1000_EECD_DI
);
201 for (i
= 0; i
< count
; i
++) {
203 e1000_raise_eec_clk(hw
, &eecd
);
205 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
207 eecd
&= ~E1000_EECD_DI
;
208 if (eecd
& E1000_EECD_DO
)
211 e1000_lower_eec_clk(hw
, &eecd
);
218 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
219 * @hw: pointer to the HW structure
220 * @ee_reg: EEPROM flag for polling
222 * Polls the EEPROM status bit for either read or write completion based
223 * upon the value of 'ee_reg'.
225 s32
e1000_poll_eerd_eewr_done(struct e1000_hw
*hw
, int ee_reg
)
227 u32 attempts
= 100000;
229 s32 ret_val
= -E1000_ERR_NVM
;
231 DEBUGFUNC("e1000_poll_eerd_eewr_done");
233 for (i
= 0; i
< attempts
; i
++) {
234 if (ee_reg
== E1000_NVM_POLL_READ
)
235 reg
= E1000_READ_REG(hw
, E1000_EERD
);
237 reg
= E1000_READ_REG(hw
, E1000_EEWR
);
239 if (reg
& E1000_NVM_RW_REG_DONE
) {
240 ret_val
= E1000_SUCCESS
;
251 * e1000_acquire_nvm_generic - Generic request for access to EEPROM
252 * @hw: pointer to the HW structure
254 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
255 * Return successful if access grant bit set, else clear the request for
256 * EEPROM access and return -E1000_ERR_NVM (-1).
258 s32
e1000_acquire_nvm_generic(struct e1000_hw
*hw
)
260 u32 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
261 s32 timeout
= E1000_NVM_GRANT_ATTEMPTS
;
262 s32 ret_val
= E1000_SUCCESS
;
264 DEBUGFUNC("e1000_acquire_nvm_generic");
266 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
| E1000_EECD_REQ
);
267 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
270 if (eecd
& E1000_EECD_GNT
)
273 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
278 eecd
&= ~E1000_EECD_REQ
;
279 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
280 DEBUGOUT("Could not acquire NVM grant\n");
281 ret_val
= -E1000_ERR_NVM
;
288 * e1000_standby_nvm - Return EEPROM to standby state
289 * @hw: pointer to the HW structure
291 * Return the EEPROM to a standby state.
293 static void e1000_standby_nvm(struct e1000_hw
*hw
)
295 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
296 u32 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
298 DEBUGFUNC("e1000_standby_nvm");
300 if (nvm
->type
== e1000_nvm_eeprom_microwire
) {
301 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
302 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
303 E1000_WRITE_FLUSH(hw
);
304 usec_delay(nvm
->delay_usec
);
306 e1000_raise_eec_clk(hw
, &eecd
);
309 eecd
|= E1000_EECD_CS
;
310 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
311 E1000_WRITE_FLUSH(hw
);
312 usec_delay(nvm
->delay_usec
);
314 e1000_lower_eec_clk(hw
, &eecd
);
316 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
317 /* Toggle CS to flush commands */
318 eecd
|= E1000_EECD_CS
;
319 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
320 E1000_WRITE_FLUSH(hw
);
321 usec_delay(nvm
->delay_usec
);
322 eecd
&= ~E1000_EECD_CS
;
323 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
324 E1000_WRITE_FLUSH(hw
);
325 usec_delay(nvm
->delay_usec
);
330 * e1000_stop_nvm - Terminate EEPROM command
331 * @hw: pointer to the HW structure
333 * Terminates the current command by inverting the EEPROM's chip select pin.
335 void e1000_stop_nvm(struct e1000_hw
*hw
)
339 DEBUGFUNC("e1000_stop_nvm");
341 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
342 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
344 eecd
|= E1000_EECD_CS
;
345 e1000_lower_eec_clk(hw
, &eecd
);
346 } else if (hw
->nvm
.type
== e1000_nvm_eeprom_microwire
) {
347 /* CS on Microwire is active-high */
348 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_DI
);
349 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
350 e1000_raise_eec_clk(hw
, &eecd
);
351 e1000_lower_eec_clk(hw
, &eecd
);
356 * e1000_release_nvm_generic - Release exclusive access to EEPROM
357 * @hw: pointer to the HW structure
359 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
361 void e1000_release_nvm_generic(struct e1000_hw
*hw
)
365 DEBUGFUNC("e1000_release_nvm_generic");
369 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
370 eecd
&= ~E1000_EECD_REQ
;
371 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
375 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
376 * @hw: pointer to the HW structure
378 * Setups the EEPROM for reading and writing.
380 static s32
e1000_ready_nvm_eeprom(struct e1000_hw
*hw
)
382 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
383 u32 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
384 s32 ret_val
= E1000_SUCCESS
;
388 DEBUGFUNC("e1000_ready_nvm_eeprom");
390 if (nvm
->type
== e1000_nvm_eeprom_microwire
) {
391 /* Clear SK and DI */
392 eecd
&= ~(E1000_EECD_DI
| E1000_EECD_SK
);
393 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
395 eecd
|= E1000_EECD_CS
;
396 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
398 if (nvm
->type
== e1000_nvm_eeprom_spi
) {
399 /* Clear SK and CS */
400 eecd
&= ~(E1000_EECD_CS
| E1000_EECD_SK
);
401 E1000_WRITE_REG(hw
, E1000_EECD
, eecd
);
403 timeout
= NVM_MAX_RETRY_SPI
;
406 * Read "Status Register" repeatedly until the LSB is cleared.
407 * The EEPROM will signal that the command has been completed
408 * by clearing bit 0 of the internal status register. If it's
409 * not cleared within 'timeout', then error out.
412 e1000_shift_out_eec_bits(hw
, NVM_RDSR_OPCODE_SPI
,
413 hw
->nvm
.opcode_bits
);
414 spi_stat_reg
= (u8
)e1000_shift_in_eec_bits(hw
, 8);
415 if (!(spi_stat_reg
& NVM_STATUS_RDY_SPI
))
419 e1000_standby_nvm(hw
);
424 DEBUGOUT("SPI NVM Status error\n");
425 ret_val
= -E1000_ERR_NVM
;
435 * e1000_read_nvm_spi - Read EEPROM's using SPI
436 * @hw: pointer to the HW structure
437 * @offset: offset of word in the EEPROM to read
438 * @words: number of words to read
439 * @data: word read from the EEPROM
441 * Reads a 16 bit word from the EEPROM.
443 s32
e1000_read_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
445 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
449 u8 read_opcode
= NVM_READ_OPCODE_SPI
;
451 DEBUGFUNC("e1000_read_nvm_spi");
454 * A check for invalid values: offset too large, too many words,
455 * and not enough words.
457 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
459 DEBUGOUT("nvm parameter(s) out of bounds\n");
460 ret_val
= -E1000_ERR_NVM
;
464 ret_val
= nvm
->ops
.acquire(hw
);
468 ret_val
= e1000_ready_nvm_eeprom(hw
);
472 e1000_standby_nvm(hw
);
474 if ((nvm
->address_bits
== 8) && (offset
>= 128))
475 read_opcode
|= NVM_A8_OPCODE_SPI
;
477 /* Send the READ command (opcode + addr) */
478 e1000_shift_out_eec_bits(hw
, read_opcode
, nvm
->opcode_bits
);
479 e1000_shift_out_eec_bits(hw
, (u16
)(offset
*2), nvm
->address_bits
);
482 * Read the data. SPI NVMs increment the address with each byte
483 * read and will roll over if reading beyond the end. This allows
484 * us to read the whole NVM from any offset
486 for (i
= 0; i
< words
; i
++) {
487 word_in
= e1000_shift_in_eec_bits(hw
, 16);
488 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
492 nvm
->ops
.release(hw
);
499 * e1000_read_nvm_microwire - Reads EEPROM's using microwire
500 * @hw: pointer to the HW structure
501 * @offset: offset of word in the EEPROM to read
502 * @words: number of words to read
503 * @data: word read from the EEPROM
505 * Reads a 16 bit word from the EEPROM.
507 s32
e1000_read_nvm_microwire(struct e1000_hw
*hw
, u16 offset
, u16 words
,
510 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
513 u8 read_opcode
= NVM_READ_OPCODE_MICROWIRE
;
515 DEBUGFUNC("e1000_read_nvm_microwire");
518 * A check for invalid values: offset too large, too many words,
519 * and not enough words.
521 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
523 DEBUGOUT("nvm parameter(s) out of bounds\n");
524 ret_val
= -E1000_ERR_NVM
;
528 ret_val
= nvm
->ops
.acquire(hw
);
532 ret_val
= e1000_ready_nvm_eeprom(hw
);
536 for (i
= 0; i
< words
; i
++) {
537 /* Send the READ command (opcode + addr) */
538 e1000_shift_out_eec_bits(hw
, read_opcode
, nvm
->opcode_bits
);
539 e1000_shift_out_eec_bits(hw
, (u16
)(offset
+ i
),
543 * Read the data. For microwire, each word requires the
544 * overhead of setup and tear-down.
546 data
[i
] = e1000_shift_in_eec_bits(hw
, 16);
547 e1000_standby_nvm(hw
);
551 nvm
->ops
.release(hw
);
558 * e1000_read_nvm_eerd - Reads EEPROM using EERD register
559 * @hw: pointer to the HW structure
560 * @offset: offset of word in the EEPROM to read
561 * @words: number of words to read
562 * @data: word read from the EEPROM
564 * Reads a 16 bit word from the EEPROM using the EERD register.
566 s32
e1000_read_nvm_eerd(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
568 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
570 s32 ret_val
= E1000_SUCCESS
;
572 DEBUGFUNC("e1000_read_nvm_eerd");
575 * A check for invalid values: offset too large, too many words,
576 * too many words for the offset, and not enough words.
578 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
580 DEBUGOUT("nvm parameter(s) out of bounds\n");
581 ret_val
= -E1000_ERR_NVM
;
585 for (i
= 0; i
< words
; i
++) {
586 eerd
= ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) +
587 E1000_NVM_RW_REG_START
;
589 E1000_WRITE_REG(hw
, E1000_EERD
, eerd
);
590 ret_val
= e1000_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_READ
);
594 data
[i
] = (E1000_READ_REG(hw
, E1000_EERD
) >>
595 E1000_NVM_RW_REG_DATA
);
603 * e1000_write_nvm_spi - Write to EEPROM using SPI
604 * @hw: pointer to the HW structure
605 * @offset: offset within the EEPROM to be written to
606 * @words: number of words to write
607 * @data: 16 bit word(s) to be written to the EEPROM
609 * Writes data to EEPROM at offset using SPI interface.
611 * If e1000_update_nvm_checksum is not called after this function , the
612 * EEPROM will most likely contain an invalid checksum.
614 s32
e1000_write_nvm_spi(struct e1000_hw
*hw
, u16 offset
, u16 words
, u16
*data
)
616 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
620 DEBUGFUNC("e1000_write_nvm_spi");
623 * A check for invalid values: offset too large, too many words,
624 * and not enough words.
626 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
628 DEBUGOUT("nvm parameter(s) out of bounds\n");
629 ret_val
= -E1000_ERR_NVM
;
633 ret_val
= nvm
->ops
.acquire(hw
);
637 while (widx
< words
) {
638 u8 write_opcode
= NVM_WRITE_OPCODE_SPI
;
640 ret_val
= e1000_ready_nvm_eeprom(hw
);
644 e1000_standby_nvm(hw
);
646 /* Send the WRITE ENABLE command (8 bit opcode) */
647 e1000_shift_out_eec_bits(hw
, NVM_WREN_OPCODE_SPI
,
650 e1000_standby_nvm(hw
);
653 * Some SPI eeproms use the 8th address bit embedded in the
656 if ((nvm
->address_bits
== 8) && (offset
>= 128))
657 write_opcode
|= NVM_A8_OPCODE_SPI
;
659 /* Send the Write command (8-bit opcode + addr) */
660 e1000_shift_out_eec_bits(hw
, write_opcode
, nvm
->opcode_bits
);
661 e1000_shift_out_eec_bits(hw
, (u16
)((offset
+ widx
) * 2),
664 /* Loop to allow for up to whole page write of eeprom */
665 while (widx
< words
) {
666 u16 word_out
= data
[widx
];
667 word_out
= (word_out
>> 8) | (word_out
<< 8);
668 e1000_shift_out_eec_bits(hw
, word_out
, 16);
671 if ((((offset
+ widx
) * 2) % nvm
->page_size
) == 0) {
672 e1000_standby_nvm(hw
);
680 nvm
->ops
.release(hw
);
687 * e1000_write_nvm_microwire - Writes EEPROM using microwire
688 * @hw: pointer to the HW structure
689 * @offset: offset within the EEPROM to be written to
690 * @words: number of words to write
691 * @data: 16 bit word(s) to be written to the EEPROM
693 * Writes data to EEPROM at offset using microwire interface.
695 * If e1000_update_nvm_checksum is not called after this function , the
696 * EEPROM will most likely contain an invalid checksum.
698 s32
e1000_write_nvm_microwire(struct e1000_hw
*hw
, u16 offset
, u16 words
,
701 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
704 u16 words_written
= 0;
707 DEBUGFUNC("e1000_write_nvm_microwire");
710 * A check for invalid values: offset too large, too many words,
711 * and not enough words.
713 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
715 DEBUGOUT("nvm parameter(s) out of bounds\n");
716 ret_val
= -E1000_ERR_NVM
;
720 ret_val
= nvm
->ops
.acquire(hw
);
724 ret_val
= e1000_ready_nvm_eeprom(hw
);
728 e1000_shift_out_eec_bits(hw
, NVM_EWEN_OPCODE_MICROWIRE
,
729 (u16
)(nvm
->opcode_bits
+ 2));
731 e1000_shift_out_eec_bits(hw
, 0, (u16
)(nvm
->address_bits
- 2));
733 e1000_standby_nvm(hw
);
735 while (words_written
< words
) {
736 e1000_shift_out_eec_bits(hw
, NVM_WRITE_OPCODE_MICROWIRE
,
739 e1000_shift_out_eec_bits(hw
, (u16
)(offset
+ words_written
),
742 e1000_shift_out_eec_bits(hw
, data
[words_written
], 16);
744 e1000_standby_nvm(hw
);
746 for (widx
= 0; widx
< 200; widx
++) {
747 eecd
= E1000_READ_REG(hw
, E1000_EECD
);
748 if (eecd
& E1000_EECD_DO
)
754 DEBUGOUT("NVM Write did not complete\n");
755 ret_val
= -E1000_ERR_NVM
;
759 e1000_standby_nvm(hw
);
764 e1000_shift_out_eec_bits(hw
, NVM_EWDS_OPCODE_MICROWIRE
,
765 (u16
)(nvm
->opcode_bits
+ 2));
767 e1000_shift_out_eec_bits(hw
, 0, (u16
)(nvm
->address_bits
- 2));
770 nvm
->ops
.release(hw
);
777 * e1000_read_pba_num_generic - Read device part number
778 * @hw: pointer to the HW structure
779 * @pba_num: pointer to device part number
781 * Reads the product board assembly (PBA) number from the EEPROM and stores
782 * the value in pba_num.
784 s32
e1000_read_pba_num_generic(struct e1000_hw
*hw
, u32
*pba_num
)
789 DEBUGFUNC("e1000_read_pba_num_generic");
791 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_PBA_OFFSET_0
, 1, &nvm_data
);
793 DEBUGOUT("NVM Read Error\n");
796 *pba_num
= (u32
)(nvm_data
<< 16);
798 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_PBA_OFFSET_1
, 1, &nvm_data
);
800 DEBUGOUT("NVM Read Error\n");
803 *pba_num
|= nvm_data
;
810 * e1000_read_mac_addr_generic - Read device MAC address
811 * @hw: pointer to the HW structure
813 * Reads the device MAC address from the EEPROM and stores the value.
814 * Since devices with two ports use the same EEPROM, we increment the
815 * last bit in the MAC address for the second port.
817 s32
e1000_read_mac_addr_generic(struct e1000_hw
*hw
)
823 rar_high
= E1000_READ_REG(hw
, E1000_RAH(0));
824 rar_low
= E1000_READ_REG(hw
, E1000_RAL(0));
826 for (i
= 0; i
< E1000_RAL_MAC_ADDR_LEN
; i
++)
827 hw
->mac
.perm_addr
[i
] = (u8
)(rar_low
>> (i
*8));
829 for (i
= 0; i
< E1000_RAH_MAC_ADDR_LEN
; i
++)
830 hw
->mac
.perm_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
832 for (i
= 0; i
< ETH_ADDR_LEN
; i
++)
833 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
];
835 return E1000_SUCCESS
;
839 * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
840 * @hw: pointer to the HW structure
842 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
843 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
845 s32
e1000_validate_nvm_checksum_generic(struct e1000_hw
*hw
)
847 s32 ret_val
= E1000_SUCCESS
;
851 DEBUGFUNC("e1000_validate_nvm_checksum_generic");
853 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
854 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
856 DEBUGOUT("NVM Read Error\n");
859 checksum
+= nvm_data
;
862 if (checksum
!= (u16
) NVM_SUM
) {
863 DEBUGOUT("NVM Checksum Invalid\n");
864 ret_val
= -E1000_ERR_NVM
;
873 * e1000_update_nvm_checksum_generic - Update EEPROM checksum
874 * @hw: pointer to the HW structure
876 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
877 * up to the checksum. Then calculates the EEPROM checksum and writes the
878 * value to the EEPROM.
880 s32
e1000_update_nvm_checksum_generic(struct e1000_hw
*hw
)
886 DEBUGFUNC("e1000_update_nvm_checksum");
888 for (i
= 0; i
< NVM_CHECKSUM_REG
; i
++) {
889 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
891 DEBUGOUT("NVM Read Error while updating checksum.\n");
894 checksum
+= nvm_data
;
896 checksum
= (u16
) NVM_SUM
- checksum
;
897 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_CHECKSUM_REG
, 1, &checksum
);
899 DEBUGOUT("NVM Write Error while updating checksum.\n");
906 * e1000_reload_nvm_generic - Reloads EEPROM
907 * @hw: pointer to the HW structure
909 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
910 * extended control register.
912 static void e1000_reload_nvm_generic(struct e1000_hw
*hw
)
916 DEBUGFUNC("e1000_reload_nvm_generic");
919 ctrl_ext
= E1000_READ_REG(hw
, E1000_CTRL_EXT
);
920 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
921 E1000_WRITE_REG(hw
, E1000_CTRL_EXT
, ctrl_ext
);
922 E1000_WRITE_FLUSH(hw
);