Make gpxe build.
[gpxe/hramrach.git] / src / drivers / net / e1000e / e1000e_ich8lan.c
blob7b9a49b98f1ed9585308730efbd67994efd19968
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 FILE_LICENCE ( GPL2_OR_LATER );
32 * 82562G 10/100 Network Connection
33 * 82562G-2 10/100 Network Connection
34 * 82562GT 10/100 Network Connection
35 * 82562GT-2 10/100 Network Connection
36 * 82562V 10/100 Network Connection
37 * 82562V-2 10/100 Network Connection
38 * 82566DC-2 Gigabit Network Connection
39 * 82566DC Gigabit Network Connection
40 * 82566DM-2 Gigabit Network Connection
41 * 82566DM Gigabit Network Connection
42 * 82566MC Gigabit Network Connection
43 * 82566MM Gigabit Network Connection
44 * 82567LM Gigabit Network Connection
45 * 82567LF Gigabit Network Connection
46 * 82567V Gigabit Network Connection
47 * 82567LM-2 Gigabit Network Connection
48 * 82567LF-2 Gigabit Network Connection
49 * 82567V-2 Gigabit Network Connection
50 * 82567LF-3 Gigabit Network Connection
51 * 82567LM-3 Gigabit Network Connection
52 * 82567LM-4 Gigabit Network Connection
53 * 82577LM Gigabit Network Connection
54 * 82577LC Gigabit Network Connection
55 * 82578DM Gigabit Network Connection
56 * 82578DC Gigabit Network Connection
59 #include "e1000e.h"
61 static s32 e1000e_init_phy_params_ich8lan(struct e1000_hw *hw);
62 static s32 e1000e_init_phy_params_pchlan(struct e1000_hw *hw);
63 static s32 e1000e_init_nvm_params_ich8lan(struct e1000_hw *hw);
64 static s32 e1000e_init_mac_params_ich8lan(struct e1000_hw *hw);
65 static s32 e1000e_acquire_swflag_ich8lan(struct e1000_hw *hw);
66 static void e1000e_release_swflag_ich8lan(struct e1000_hw *hw);
67 static s32 e1000e_acquire_nvm_ich8lan(struct e1000_hw *hw);
68 static void e1000e_release_nvm_ich8lan(struct e1000_hw *hw);
69 static bool e1000e_check_mng_mode_ich8lan(struct e1000_hw *hw);
70 static s32 e1000e_check_reset_block_ich8lan(struct e1000_hw *hw);
71 static s32 e1000e_phy_hw_reset_ich8lan(struct e1000_hw *hw);
72 static s32 e1000e_get_phy_info_ich8lan(struct e1000_hw *hw);
73 static s32 e1000e_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
74 static s32 e1000e_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
75 bool active);
76 static s32 e1000e_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
77 bool active);
78 static s32 e1000e_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
79 u16 words, u16 *data);
80 static s32 e1000e_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
81 u16 words, u16 *data);
82 static s32 e1000e_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
83 static s32 e1000e_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
84 static s32 e1000e_valid_led_default_ich8lan(struct e1000_hw *hw,
85 u16 *data);
86 static s32 e1000e_id_led_init_pchlan(struct e1000_hw *hw);
87 static s32 e1000e_get_bus_info_ich8lan(struct e1000_hw *hw);
88 static s32 e1000e_reset_hw_ich8lan(struct e1000_hw *hw);
89 static s32 e1000e_init_hw_ich8lan(struct e1000_hw *hw);
90 static s32 e1000e_setup_link_ich8lan(struct e1000_hw *hw);
91 static s32 e1000e_setup_copper_link_ich8lan(struct e1000_hw *hw);
92 static s32 e1000e_get_link_up_info_ich8lan(struct e1000_hw *hw,
93 u16 *speed, u16 *duplex);
94 static s32 e1000e_cleanup_led_ich8lan(struct e1000_hw *hw);
95 static s32 e1000e_led_on_ich8lan(struct e1000_hw *hw);
96 static s32 e1000e_led_off_ich8lan(struct e1000_hw *hw);
97 static s32 e1000e_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
98 static s32 e1000e_setup_led_pchlan(struct e1000_hw *hw);
99 static s32 e1000e_cleanup_led_pchlan(struct e1000_hw *hw);
100 static s32 e1000e_led_on_pchlan(struct e1000_hw *hw);
101 static s32 e1000e_led_off_pchlan(struct e1000_hw *hw);
102 static void e1000e_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
103 static s32 e1000e_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
104 static s32 e1000e_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout);
105 static s32 e1000e_flash_cycle_init_ich8lan(struct e1000_hw *hw);
106 static s32 e1000e_get_phy_info_ife_ich8lan(struct e1000_hw *hw);
107 static void e1000e_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
108 static s32 e1000e_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
109 static s32 e1000e_read_flash_byte_ich8lan(struct e1000_hw *hw,
110 u32 offset, u8 *data);
111 static s32 e1000e_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
112 u8 size, u16 *data);
113 static s32 e1000e_read_flash_word_ich8lan(struct e1000_hw *hw,
114 u32 offset, u16 *data);
115 static s32 e1000e_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
116 u32 offset, u8 byte);
117 static s32 e1000e_write_flash_byte_ich8lan(struct e1000_hw *hw,
118 u32 offset, u8 data);
119 static s32 e1000e_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
120 u8 size, u16 data);
121 static s32 e1000e_get_cfg_done_ich8lan(struct e1000_hw *hw);
122 static void e1000e_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
123 static s32 e1000e_check_for_copper_link_ich8lan(struct e1000_hw *hw);
124 static void e1000e_lan_init_done_ich8lan(struct e1000_hw *hw);
125 static s32 e1000e_sw_lcd_config_ich8lan(struct e1000_hw *hw);
127 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
128 /* Offset 04h HSFSTS */
129 union ich8_hws_flash_status {
130 struct ich8_hsfsts {
131 u16 flcdone :1; /* bit 0 Flash Cycle Done */
132 u16 flcerr :1; /* bit 1 Flash Cycle Error */
133 u16 dael :1; /* bit 2 Direct Access error Log */
134 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
135 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
136 u16 reserved1 :2; /* bit 13:6 Reserved */
137 u16 reserved2 :6; /* bit 13:6 Reserved */
138 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
139 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
140 } hsf_status;
141 u16 regval;
144 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
145 /* Offset 06h FLCTL */
146 union ich8_hws_flash_ctrl {
147 struct ich8_hsflctl {
148 u16 flcgo :1; /* 0 Flash Cycle Go */
149 u16 flcycle :2; /* 2:1 Flash Cycle */
150 u16 reserved :5; /* 7:3 Reserved */
151 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
152 u16 flockdn :6; /* 15:10 Reserved */
153 } hsf_ctrl;
154 u16 regval;
157 /* ICH Flash Region Access Permissions */
158 union ich8_hws_flash_regacc {
159 struct ich8_flracc {
160 u32 grra :8; /* 0:7 GbE region Read Access */
161 u32 grwa :8; /* 8:15 GbE region Write Access */
162 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
163 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
164 } hsf_flregacc;
165 u16 regval;
169 * e1000e_init_phy_params_pchlan - Initialize PHY function pointers
170 * @hw: pointer to the HW structure
172 * Initialize family-specific PHY parameters and function pointers.
174 static s32 e1000e_init_phy_params_pchlan(struct e1000_hw *hw)
176 struct e1000_phy_info *phy = &hw->phy;
177 s32 ret_val = E1000_SUCCESS;
179 phy->addr = 1;
180 phy->reset_delay_us = 100;
182 phy->ops.acquire = e1000e_acquire_swflag_ich8lan;
183 phy->ops.check_polarity = e1000e_check_polarity_ife;
184 phy->ops.check_reset_block = e1000e_check_reset_block_ich8lan;
185 #if 0
186 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_ife;
187 #endif
188 #if 0
189 phy->ops.get_cable_length = e1000e_get_cable_length_igp_2;
190 #endif
191 phy->ops.get_cfg_done = e1000e_get_cfg_done_ich8lan;
192 phy->ops.get_info = e1000e_get_phy_info_ich8lan;
193 phy->ops.read_reg = e1000e_read_phy_reg_hv;
194 phy->ops.read_reg_locked = e1000e_read_phy_reg_hv_locked;
195 phy->ops.release = e1000e_release_swflag_ich8lan;
196 phy->ops.reset = e1000e_phy_hw_reset_ich8lan;
197 phy->ops.set_d0_lplu_state = e1000e_set_lplu_state_pchlan;
198 phy->ops.set_d3_lplu_state = e1000e_set_lplu_state_pchlan;
199 phy->ops.write_reg = e1000e_write_phy_reg_hv;
200 phy->ops.write_reg_locked = e1000e_write_phy_reg_hv_locked;
201 phy->ops.power_up = e1000e_power_up_phy_copper;
202 phy->ops.power_down = e1000e_power_down_phy_copper_ich8lan;
203 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
205 phy->id = e1000_phy_unknown;
206 e1000e_get_phy_id(hw);
207 phy->type = e1000e_get_phy_type_from_id(phy->id);
209 if (phy->type == e1000_phy_82577) {
210 phy->ops.check_polarity = e1000e_check_polarity_82577;
211 #if 0
212 phy->ops.force_speed_duplex =
213 e1000e_phy_force_speed_duplex_82577;
214 #endif
215 #if 0
216 phy->ops.get_cable_length = e1000e_get_cable_length_82577;
217 #endif
218 phy->ops.get_info = e1000e_get_phy_info_82577;
219 phy->ops.commit = e1000e_phy_sw_reset;
222 return ret_val;
226 * e1000e_init_phy_params_ich8lan - Initialize PHY function pointers
227 * @hw: pointer to the HW structure
229 * Initialize family-specific PHY parameters and function pointers.
231 static s32 e1000e_init_phy_params_ich8lan(struct e1000_hw *hw)
233 struct e1000_phy_info *phy = &hw->phy;
234 s32 ret_val = E1000_SUCCESS;
235 u16 i = 0;
237 phy->addr = 1;
238 phy->reset_delay_us = 100;
240 phy->ops.acquire = e1000e_acquire_swflag_ich8lan;
241 phy->ops.check_polarity = e1000e_check_polarity_ife;
242 phy->ops.check_reset_block = e1000e_check_reset_block_ich8lan;
243 #if 0
244 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_ife;
245 #endif
246 #if 0
247 phy->ops.get_cable_length = e1000e_get_cable_length_igp_2;
248 #endif
249 phy->ops.get_cfg_done = e1000e_get_cfg_done_ich8lan;
250 phy->ops.get_info = e1000e_get_phy_info_ich8lan;
251 phy->ops.read_reg = e1000e_read_phy_reg_igp;
252 phy->ops.release = e1000e_release_swflag_ich8lan;
253 phy->ops.reset = e1000e_phy_hw_reset_ich8lan;
254 phy->ops.set_d0_lplu_state = e1000e_set_d0_lplu_state_ich8lan;
255 phy->ops.set_d3_lplu_state = e1000e_set_d3_lplu_state_ich8lan;
256 phy->ops.write_reg = e1000e_write_phy_reg_igp;
257 phy->ops.power_up = e1000e_power_up_phy_copper;
258 phy->ops.power_down = e1000e_power_down_phy_copper_ich8lan;
261 * We may need to do this twice - once for IGP and if that fails,
262 * we'll set BM func pointers and try again
264 ret_val = e1000e_determine_phy_address(hw);
265 if (ret_val) {
266 phy->ops.write_reg = e1000e_write_phy_reg_bm;
267 phy->ops.read_reg = e1000e_read_phy_reg_bm;
268 ret_val = e1000e_determine_phy_address(hw);
269 if (ret_val) {
270 DBG("Cannot determine PHY addr. Erroring out\n");
271 goto out;
275 phy->id = 0;
276 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
277 (i++ < 100)) {
278 msleep(1);
279 ret_val = e1000e_get_phy_id(hw);
280 if (ret_val)
281 goto out;
284 /* Verify phy id */
285 switch (phy->id) {
286 case IGP03E1000_E_PHY_ID:
287 phy->type = e1000_phy_igp_3;
288 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
289 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
290 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
291 break;
292 case IFE_E_PHY_ID:
293 case IFE_PLUS_E_PHY_ID:
294 case IFE_C_E_PHY_ID:
295 phy->type = e1000_phy_ife;
296 phy->autoneg_mask = E1000_ALL_NOT_GIG;
297 break;
298 case BME1000_E_PHY_ID:
299 phy->type = e1000_phy_bm;
300 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
301 phy->ops.read_reg = e1000e_read_phy_reg_bm;
302 phy->ops.write_reg = e1000e_write_phy_reg_bm;
303 phy->ops.commit = e1000e_phy_sw_reset;
304 break;
305 default:
306 ret_val = -E1000_ERR_PHY;
307 goto out;
310 out:
311 return ret_val;
315 * e1000e_init_nvm_params_ich8lan - Initialize NVM function pointers
316 * @hw: pointer to the HW structure
318 * Initialize family-specific NVM parameters and function
319 * pointers.
321 static s32 e1000e_init_nvm_params_ich8lan(struct e1000_hw *hw)
323 struct e1000_nvm_info *nvm = &hw->nvm;
324 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
325 u32 gfpreg, sector_base_addr, sector_end_addr;
326 s32 ret_val = E1000_SUCCESS;
327 u16 i;
329 /* Can't read flash registers if the register set isn't mapped. */
330 if (!hw->flash_address) {
331 e_dbg("ERROR: Flash registers not mapped\n");
332 ret_val = -E1000_ERR_CONFIG;
333 goto out;
336 nvm->type = e1000_nvm_flash_sw;
338 gfpreg = er32flash(ICH_FLASH_GFPREG);
341 * sector_X_addr is a "sector"-aligned address (4096 bytes)
342 * Add 1 to sector_end_addr since this sector is included in
343 * the overall size.
345 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
346 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
348 /* flash_base_addr is byte-aligned */
349 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
352 * find total size of the NVM, then cut in half since the total
353 * size represents two separate NVM banks.
355 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
356 << FLASH_SECTOR_ADDR_SHIFT;
357 nvm->flash_bank_size /= 2;
358 /* Adjust to word count */
359 nvm->flash_bank_size /= sizeof(u16);
361 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
363 /* Clear shadow ram */
364 for (i = 0; i < nvm->word_size; i++) {
365 dev_spec->shadow_ram[i].modified = false;
366 dev_spec->shadow_ram[i].value = 0xFFFF;
369 /* Function Pointers */
370 nvm->ops.acquire = e1000e_acquire_nvm_ich8lan;
371 nvm->ops.release = e1000e_release_nvm_ich8lan;
372 nvm->ops.read = e1000e_read_nvm_ich8lan;
373 nvm->ops.update = e1000e_update_nvm_checksum_ich8lan;
374 nvm->ops.valid_led_default = e1000e_valid_led_default_ich8lan;
375 nvm->ops.validate = e1000e_validate_nvm_checksum_ich8lan;
376 nvm->ops.write = e1000e_write_nvm_ich8lan;
378 out:
379 return ret_val;
383 * e1000e_init_mac_params_ich8lan - Initialize MAC function pointers
384 * @hw: pointer to the HW structure
386 * Initialize family-specific MAC parameters and function
387 * pointers.
389 static s32 e1000e_init_mac_params_ich8lan(struct e1000_hw *hw)
391 struct e1000_mac_info *mac = &hw->mac;
393 /* Set media type function pointer */
394 hw->phy.media_type = e1000_media_type_copper;
396 /* Set mta register count */
397 mac->mta_reg_count = 32;
398 /* Set rar entry count */
399 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
400 if (mac->type == e1000_ich8lan)
401 mac->rar_entry_count--;
402 /* Set if part includes ASF firmware */
403 mac->asf_firmware_present = true;
404 /* Set if manageability features are enabled. */
405 mac->arc_subsystem_valid = true;
407 /* Function pointers */
409 /* bus type/speed/width */
410 mac->ops.get_bus_info = e1000e_get_bus_info_ich8lan;
411 /* function id */
412 mac->ops.set_lan_id = e1000e_set_lan_id_single_port;
413 /* reset */
414 mac->ops.reset_hw = e1000e_reset_hw_ich8lan;
415 /* hw initialization */
416 mac->ops.init_hw = e1000e_init_hw_ich8lan;
417 /* link setup */
418 mac->ops.setup_link = e1000e_setup_link_ich8lan;
419 /* physical interface setup */
420 mac->ops.setup_physical_interface = e1000e_setup_copper_link_ich8lan;
421 /* check for link */
422 mac->ops.check_for_link = e1000e_check_for_copper_link_ich8lan;
423 /* check management mode */
424 mac->ops.check_mng_mode = e1000e_check_mng_mode_ich8lan;
425 /* link info */
426 mac->ops.get_link_up_info = e1000e_get_link_up_info_ich8lan;
427 /* multicast address update */
428 mac->ops.update_mc_addr_list = e1000e_update_mc_addr_list_generic;
429 /* setting MTA */
430 mac->ops.mta_set = e1000e_mta_set_generic;
431 /* clear hardware counters */
432 mac->ops.clear_hw_cntrs = e1000e_clear_hw_cntrs_ich8lan;
434 /* LED operations */
435 switch (mac->type) {
436 case e1000_ich8lan:
437 case e1000_ich9lan:
438 case e1000_ich10lan:
439 /* ID LED init */
440 mac->ops.id_led_init = e1000e_id_led_init;
441 /* blink LED */
442 mac->ops.blink_led = e1000e_blink_led;
443 /* setup LED */
444 mac->ops.setup_led = e1000e_setup_led_generic;
445 /* cleanup LED */
446 mac->ops.cleanup_led = e1000e_cleanup_led_ich8lan;
447 /* turn on/off LED */
448 mac->ops.led_on = e1000e_led_on_ich8lan;
449 mac->ops.led_off = e1000e_led_off_ich8lan;
450 break;
451 case e1000_pchlan:
452 /* ID LED init */
453 mac->ops.id_led_init = e1000e_id_led_init_pchlan;
454 /* setup LED */
455 mac->ops.setup_led = e1000e_setup_led_pchlan;
456 /* cleanup LED */
457 mac->ops.cleanup_led = e1000e_cleanup_led_pchlan;
458 /* turn on/off LED */
459 mac->ops.led_on = e1000e_led_on_pchlan;
460 mac->ops.led_off = e1000e_led_off_pchlan;
461 break;
462 default:
463 break;
466 /* Enable PCS Lock-loss workaround for ICH8 */
467 if (mac->type == e1000_ich8lan)
468 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
471 return E1000_SUCCESS;
475 * e1000e_check_for_copper_link_ich8lan - Check for link (Copper)
476 * @hw: pointer to the HW structure
478 * Checks to see of the link status of the hardware has changed. If a
479 * change in link status has been detected, then we read the PHY registers
480 * to get the current speed/duplex if link exists.
482 static s32 e1000e_check_for_copper_link_ich8lan(struct e1000_hw *hw)
484 struct e1000_mac_info *mac = &hw->mac;
485 s32 ret_val;
486 bool link;
489 * We only want to go out to the PHY registers to see if Auto-Neg
490 * has completed and/or if our link status has changed. The
491 * get_link_status flag is set upon receiving a Link Status
492 * Change or Rx Sequence Error interrupt.
494 if (!mac->get_link_status) {
495 ret_val = E1000_SUCCESS;
496 goto out;
500 * First we want to see if the MII Status Register reports
501 * link. If so, then we want to get the current speed/duplex
502 * of the PHY.
504 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
505 if (ret_val)
506 goto out;
508 if (hw->mac.type == e1000_pchlan) {
509 ret_val = e1000e_k1_gig_workaround_hv(hw, link);
510 if (ret_val)
511 goto out;
514 if (!link)
515 goto out; /* No link detected */
517 mac->get_link_status = false;
519 if (hw->phy.type == e1000_phy_82578) {
520 ret_val = e1000e_link_stall_workaround_hv(hw);
521 if (ret_val)
522 goto out;
526 * Check if there was DownShift, must be checked
527 * immediately after link-up
529 e1000e_check_downshift(hw);
532 * If we are forcing speed/duplex, then we simply return since
533 * we have already determined whether we have link or not.
535 if (!mac->autoneg) {
536 ret_val = -E1000_ERR_CONFIG;
537 goto out;
541 * Auto-Neg is enabled. Auto Speed Detection takes care
542 * of MAC speed/duplex configuration. So we only need to
543 * configure Collision Distance in the MAC.
545 e1000e_config_collision_dist(hw);
548 * Configure Flow Control now that Auto-Neg has completed.
549 * First, we need to restore the desired flow control
550 * settings because we may have had to re-autoneg with a
551 * different link partner.
553 ret_val = e1000e_config_fc_after_link_up(hw);
554 if (ret_val)
555 e_dbg("Error configuring flow control\n");
557 out:
558 return ret_val;
562 * e1000e_init_function_pointers_ich8lan - Initialize ICH8 function pointers
563 * @hw: pointer to the HW structure
565 * Initialize family-specific function pointers for PHY, MAC, and NVM.
567 void e1000e_init_function_pointers_ich8lan(struct e1000_hw *hw)
569 e1000e_init_mac_ops_generic(hw);
570 e1000e_init_nvm_ops_generic(hw);
571 hw->mac.ops.init_params = e1000e_init_mac_params_ich8lan;
572 hw->nvm.ops.init_params = e1000e_init_nvm_params_ich8lan;
573 switch (hw->mac.type) {
574 case e1000_ich8lan:
575 case e1000_ich9lan:
576 case e1000_ich10lan:
577 hw->phy.ops.init_params = e1000e_init_phy_params_ich8lan;
578 break;
579 case e1000_pchlan:
580 hw->phy.ops.init_params = e1000e_init_phy_params_pchlan;
581 break;
582 default:
583 break;
587 #if 0
588 static DEFINE_MUTEX(nvm_mutex);
589 #endif
592 * e1000e_acquire_nvm_ich8lan - Acquire NVM mutex
593 * @hw: pointer to the HW structure
595 * Acquires the mutex for performing NVM operations.
597 static s32 e1000e_acquire_nvm_ich8lan(struct e1000_hw *hw __unused)
599 #if 0
600 mutex_lock(&nvm_mutex);
601 #endif
602 return E1000_SUCCESS;
606 * e1000e_release_nvm_ich8lan - Release NVM mutex
607 * @hw: pointer to the HW structure
609 * Releases the mutex used while performing NVM operations.
611 static void e1000e_release_nvm_ich8lan(struct e1000_hw *hw __unused)
613 #if 0
614 mutex_unlock(&nvm_mutex);
615 #endif
616 return;
619 #if 0
620 static DEFINE_MUTEX(swflag_mutex);
621 #endif
624 * e1000e_acquire_swflag_ich8lan - Acquire software control flag
625 * @hw: pointer to the HW structure
627 * Acquires the software control flag for performing PHY and select
628 * MAC CSR accesses.
630 static s32 e1000e_acquire_swflag_ich8lan(struct e1000_hw *hw)
632 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
633 s32 ret_val = E1000_SUCCESS;
635 #if 0
636 mutex_lock(&swflag_mutex);
637 #endif
639 while (timeout) {
640 extcnf_ctrl = er32(EXTCNF_CTRL);
641 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
642 break;
644 mdelay(1);
645 timeout--;
648 if (!timeout) {
649 e_dbg("SW/FW/HW has locked the resource for too long.\n");
650 ret_val = -E1000_ERR_CONFIG;
651 goto out;
654 timeout = SW_FLAG_TIMEOUT;
656 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
657 ew32(EXTCNF_CTRL, extcnf_ctrl);
659 while (timeout) {
660 extcnf_ctrl = er32(EXTCNF_CTRL);
661 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
662 break;
664 mdelay(1);
665 timeout--;
668 if (!timeout) {
669 e_dbg("Failed to acquire the semaphore.\n");
670 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
671 ew32(EXTCNF_CTRL, extcnf_ctrl);
672 ret_val = -E1000_ERR_CONFIG;
673 goto out;
676 out:
677 #if 0
678 if (ret_val)
679 mutex_unlock(&swflag_mutex);
680 #endif
681 return ret_val;
685 * e1000e_release_swflag_ich8lan - Release software control flag
686 * @hw: pointer to the HW structure
688 * Releases the software control flag for performing PHY and select
689 * MAC CSR accesses.
691 static void e1000e_release_swflag_ich8lan(struct e1000_hw *hw)
693 u32 extcnf_ctrl;
695 extcnf_ctrl = er32(EXTCNF_CTRL);
696 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
697 ew32(EXTCNF_CTRL, extcnf_ctrl);
699 #if 0
700 mutex_unlock(&swflag_mutex);
701 #endif
702 return;
706 * e1000e_check_mng_mode_ich8lan - Checks management mode
707 * @hw: pointer to the HW structure
709 * This checks if the adapter has manageability enabled.
710 * This is a function pointer entry point only called by read/write
711 * routines for the PHY and NVM parts.
713 static bool e1000e_check_mng_mode_ich8lan(struct e1000_hw *hw)
715 u32 fwsm;
717 fwsm = er32(FWSM);
718 return (fwsm & E1000_FWSM_MODE_MASK) ==
719 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
722 * e1000e_check_reset_block_ich8lan - Check if PHY reset is blocked
723 * @hw: pointer to the HW structure
725 * Checks if firmware is blocking the reset of the PHY.
726 * This is a function pointer entry point only called by
727 * reset routines.
729 static s32 e1000e_check_reset_block_ich8lan(struct e1000_hw *hw)
731 u32 fwsm;
733 fwsm = er32(FWSM);
734 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS
735 : E1000_BLK_PHY_RESET;
739 * e1000e_sw_lcd_config_ich8lan - SW-based LCD Configuration
740 * @hw: pointer to the HW structure
742 * SW should configure the LCD from the NVM extended configuration region
743 * as a workaround for certain parts.
745 static s32 e1000e_sw_lcd_config_ich8lan(struct e1000_hw *hw)
747 struct e1000_phy_info *phy = &hw->phy;
748 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
749 s32 ret_val;
750 u16 word_addr, reg_data, reg_addr, phy_page = 0;
752 ret_val = hw->phy.ops.acquire(hw);
753 if (ret_val)
754 return ret_val;
757 * Initialize the PHY from the NVM on ICH platforms. This
758 * is needed due to an issue where the NVM configuration is
759 * not properly autoloaded after power transitions.
760 * Therefore, after each PHY reset, we will load the
761 * configuration data out of the NVM manually.
763 if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
764 (hw->mac.type == e1000_pchlan)) {
765 /* Check if SW needs to configure the PHY */
766 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
767 (hw->device_id == E1000_DEV_ID_ICH8_IGP_M) ||
768 (hw->mac.type == e1000_pchlan))
769 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
770 else
771 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
773 data = er32(FEXTNVM);
774 if (!(data & sw_cfg_mask))
775 goto out;
777 /* Wait for basic configuration completes before proceeding */
778 e1000e_lan_init_done_ich8lan(hw);
781 * Make sure HW does not configure LCD from PHY
782 * extended configuration before SW configuration
784 data = er32(EXTCNF_CTRL);
785 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
786 goto out;
788 cnf_size = er32(EXTCNF_SIZE);
789 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
790 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
791 if (!cnf_size)
792 goto out;
794 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
795 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
797 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
798 (hw->mac.type == e1000_pchlan)) {
800 * HW configures the SMBus address and LEDs when the
801 * OEM and LCD Write Enable bits are set in the NVM.
802 * When both NVM bits are cleared, SW will configure
803 * them instead.
805 data = er32(STRAP);
806 data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
807 reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
808 reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
809 ret_val = e1000e_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
810 reg_data);
811 if (ret_val)
812 goto out;
814 data = er32(LEDCTL);
815 ret_val = e1000e_write_phy_reg_hv_locked(hw,
816 HV_LED_CONFIG,
817 (u16)data);
818 if (ret_val)
819 goto out;
822 /* Configure LCD from extended configuration region. */
824 /* cnf_base_addr is in DWORD */
825 word_addr = (u16)(cnf_base_addr << 1);
827 for (i = 0; i < cnf_size; i++) {
828 ret_val = e1000e_read_nvm(hw, (word_addr + i * 2), 1,
829 &reg_data);
830 if (ret_val)
831 goto out;
833 ret_val = e1000e_read_nvm(hw, (word_addr + i * 2 + 1),
834 1, &reg_addr);
835 if (ret_val)
836 goto out;
838 /* Save off the PHY page for future writes. */
839 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
840 phy_page = reg_data;
841 continue;
844 reg_addr &= PHY_REG_MASK;
845 reg_addr |= phy_page;
847 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
848 reg_data);
849 if (ret_val)
850 goto out;
854 out:
855 hw->phy.ops.release(hw);
856 return ret_val;
860 * e1000e_k1_gig_workaround_hv - K1 Si workaround
861 * @hw: pointer to the HW structure
862 * @link: link up bool flag
864 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
865 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
866 * If link is down, the function will restore the default K1 setting located
867 * in the NVM.
869 static s32 e1000e_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
871 s32 ret_val = E1000_SUCCESS;
872 u16 status_reg = 0;
873 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
875 if (hw->mac.type != e1000_pchlan)
876 goto out;
878 /* Wrap the whole flow with the sw flag */
879 ret_val = hw->phy.ops.acquire(hw);
880 if (ret_val)
881 goto out;
883 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
884 if (link) {
885 if (hw->phy.type == e1000_phy_82578) {
886 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
887 &status_reg);
888 if (ret_val)
889 goto release;
891 status_reg &= BM_CS_STATUS_LINK_UP |
892 BM_CS_STATUS_RESOLVED |
893 BM_CS_STATUS_SPEED_MASK;
895 if (status_reg == (BM_CS_STATUS_LINK_UP |
896 BM_CS_STATUS_RESOLVED |
897 BM_CS_STATUS_SPEED_1000))
898 k1_enable = false;
901 if (hw->phy.type == e1000_phy_82577) {
902 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
903 &status_reg);
904 if (ret_val)
905 goto release;
907 status_reg &= HV_M_STATUS_LINK_UP |
908 HV_M_STATUS_AUTONEG_COMPLETE |
909 HV_M_STATUS_SPEED_MASK;
911 if (status_reg == (HV_M_STATUS_LINK_UP |
912 HV_M_STATUS_AUTONEG_COMPLETE |
913 HV_M_STATUS_SPEED_1000))
914 k1_enable = false;
917 /* Link stall fix for link up */
918 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
919 0x0100);
920 if (ret_val)
921 goto release;
923 } else {
924 /* Link stall fix for link down */
925 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
926 0x4100);
927 if (ret_val)
928 goto release;
931 ret_val = e1000e_configure_k1_ich8lan(hw, k1_enable);
933 release:
934 hw->phy.ops.release(hw);
935 out:
936 return ret_val;
940 * e1000e_configure_k1_ich8lan - Configure K1 power state
941 * @hw: pointer to the HW structure
942 * @enable: K1 state to configure
944 * Configure the K1 power state based on the provided parameter.
945 * Assumes semaphore already acquired.
947 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
949 s32 e1000e_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
951 s32 ret_val = E1000_SUCCESS;
952 u32 ctrl_reg = 0;
953 u32 ctrl_ext = 0;
954 u32 reg = 0;
955 u16 kmrn_reg = 0;
957 ret_val = e1000e_read_kmrn_reg_locked(hw,
958 E1000_KMRNCTRLSTA_K1_CONFIG,
959 &kmrn_reg);
960 if (ret_val)
961 goto out;
963 if (k1_enable)
964 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
965 else
966 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
968 ret_val = e1000e_write_kmrn_reg_locked(hw,
969 E1000_KMRNCTRLSTA_K1_CONFIG,
970 kmrn_reg);
971 if (ret_val)
972 goto out;
974 udelay(20);
975 ctrl_ext = er32(CTRL_EXT);
976 ctrl_reg = er32(CTRL);
978 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
979 reg |= E1000_CTRL_FRCSPD;
980 ew32(CTRL, reg);
982 E1000_WRITE_REG(hw,
983 E1000_CTRL_EXT,
984 ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
985 udelay(20);
986 ew32(CTRL, ctrl_reg);
987 ew32(CTRL_EXT, ctrl_ext);
988 udelay(20);
990 out:
991 return ret_val;
995 * e1000e_oem_bits_config_ich8lan - SW-based LCD Configuration
996 * @hw: pointer to the HW structure
997 * @d0_state: boolean if entering d0 or d3 device state
999 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1000 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1001 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1003 s32 e1000e_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1005 s32 ret_val = 0;
1006 u32 mac_reg;
1007 u16 oem_reg;
1009 if (hw->mac.type != e1000_pchlan)
1010 return ret_val;
1012 ret_val = hw->phy.ops.acquire(hw);
1013 if (ret_val)
1014 return ret_val;
1016 mac_reg = er32(EXTCNF_CTRL);
1017 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1018 goto out;
1020 mac_reg = er32(FEXTNVM);
1021 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1022 goto out;
1024 mac_reg = er32(PHY_CTRL);
1026 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1027 if (ret_val)
1028 goto out;
1030 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1032 if (d0_state) {
1033 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1034 oem_reg |= HV_OEM_BITS_GBE_DIS;
1036 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1037 oem_reg |= HV_OEM_BITS_LPLU;
1038 } else {
1039 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1040 oem_reg |= HV_OEM_BITS_GBE_DIS;
1042 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1043 oem_reg |= HV_OEM_BITS_LPLU;
1045 /* Restart auto-neg to activate the bits */
1046 if (!e1000e_check_reset_block(hw))
1047 oem_reg |= HV_OEM_BITS_RESTART_AN;
1048 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1050 out:
1051 hw->phy.ops.release(hw);
1053 return ret_val;
1057 * e1000e_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1058 * done after every PHY reset.
1060 static s32 e1000e_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1062 s32 ret_val = E1000_SUCCESS;
1064 if (hw->mac.type != e1000_pchlan)
1065 goto out;
1067 if (((hw->phy.type == e1000_phy_82577) &&
1068 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1069 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1070 /* Disable generation of early preamble */
1071 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1072 if (ret_val)
1073 goto out;
1075 /* Preamble tuning for SSC */
1076 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1077 if (ret_val)
1078 goto out;
1081 if (hw->phy.type == e1000_phy_82578) {
1083 * Return registers to default by doing a soft reset then
1084 * writing 0x3140 to the control register.
1086 if (hw->phy.revision < 2) {
1087 e1000e_phy_sw_reset(hw);
1088 ret_val = e1e_wphy(hw, PHY_CONTROL,
1089 0x3140);
1093 /* Select page 0 */
1094 ret_val = hw->phy.ops.acquire(hw);
1095 if (ret_val)
1096 goto out;
1098 hw->phy.addr = 1;
1099 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1100 if (ret_val)
1101 goto out;
1102 hw->phy.ops.release(hw);
1105 * Configure the K1 Si workaround during phy reset assuming there is
1106 * link so that it disables K1 if link is in 1Gbps.
1108 ret_val = e1000e_k1_gig_workaround_hv(hw, true);
1110 out:
1111 return ret_val;
1115 * e1000e_lan_init_done_ich8lan - Check for PHY config completion
1116 * @hw: pointer to the HW structure
1118 * Check the appropriate indication the MAC has finished configuring the
1119 * PHY after a software reset.
1121 static void e1000e_lan_init_done_ich8lan(struct e1000_hw *hw)
1123 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1125 /* Wait for basic configuration completes before proceeding */
1126 do {
1127 data = er32(STATUS);
1128 data &= E1000_STATUS_LAN_INIT_DONE;
1129 udelay(100);
1130 } while ((!data) && --loop);
1133 * If basic configuration is incomplete before the above loop
1134 * count reaches 0, loading the configuration from NVM will
1135 * leave the PHY in a bad state possibly resulting in no link.
1137 if (loop == 0)
1138 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1140 /* Clear the Init Done bit for the next init event */
1141 data = er32(STATUS);
1142 data &= ~E1000_STATUS_LAN_INIT_DONE;
1143 ew32(STATUS, data);
1147 * e1000e_phy_hw_reset_ich8lan - Performs a PHY reset
1148 * @hw: pointer to the HW structure
1150 * Resets the PHY
1151 * This is a function pointer entry point called by drivers
1152 * or other shared routines.
1154 static s32 e1000e_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1156 s32 ret_val = E1000_SUCCESS;
1157 u16 reg;
1159 ret_val = e1000e_phy_hw_reset_generic(hw);
1160 if (ret_val)
1161 goto out;
1163 /* Allow time for h/w to get to a quiescent state after reset */
1164 msleep(10);
1166 if (hw->mac.type == e1000_pchlan) {
1167 ret_val = e1000e_hv_phy_workarounds_ich8lan(hw);
1168 if (ret_val)
1169 goto out;
1172 /* Dummy read to clear the phy wakeup bit after lcd reset */
1173 if (hw->mac.type == e1000_pchlan)
1174 e1e_rphy(hw, BM_WUC, &reg);
1176 /* Configure the LCD with the extended configuration region in NVM */
1177 ret_val = e1000e_sw_lcd_config_ich8lan(hw);
1178 if (ret_val)
1179 goto out;
1181 /* Configure the LCD with the OEM bits in NVM */
1182 if (hw->mac.type == e1000_pchlan)
1183 ret_val = e1000e_oem_bits_config_ich8lan(hw, true);
1185 out:
1186 return ret_val;
1190 * e1000e_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1191 * @hw: pointer to the HW structure
1193 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
1195 static s32 e1000e_get_phy_info_ich8lan(struct e1000_hw *hw)
1197 s32 ret_val = -E1000_ERR_PHY_TYPE;
1199 switch (hw->phy.type) {
1200 case e1000_phy_ife:
1201 ret_val = e1000e_get_phy_info_ife_ich8lan(hw);
1202 break;
1203 case e1000_phy_igp_3:
1204 case e1000_phy_bm:
1205 case e1000_phy_82578:
1206 case e1000_phy_82577:
1207 ret_val = e1000e_get_phy_info_igp(hw);
1208 break;
1209 default:
1210 break;
1213 return ret_val;
1217 * e1000e_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1218 * @hw: pointer to the HW structure
1220 * Populates "phy" structure with various feature states.
1221 * This function is only called by other family-specific
1222 * routines.
1224 static s32 e1000e_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1226 struct e1000_phy_info *phy = &hw->phy;
1227 s32 ret_val;
1228 u16 data;
1229 bool link;
1231 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1232 if (ret_val)
1233 goto out;
1235 if (!link) {
1236 e_dbg("Phy info is only valid if link is up\n");
1237 ret_val = -E1000_ERR_CONFIG;
1238 goto out;
1241 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1242 if (ret_val)
1243 goto out;
1244 phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
1245 ? false : true;
1247 if (phy->polarity_correction) {
1248 ret_val = e1000e_check_polarity_ife(hw);
1249 if (ret_val)
1250 goto out;
1251 } else {
1252 /* Polarity is forced */
1253 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1254 ? e1000_rev_polarity_reversed
1255 : e1000_rev_polarity_normal;
1258 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1259 if (ret_val)
1260 goto out;
1262 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
1264 /* The following parameters are undefined for 10/100 operation. */
1265 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1266 phy->local_rx = e1000_1000t_rx_status_undefined;
1267 phy->remote_rx = e1000_1000t_rx_status_undefined;
1269 out:
1270 return ret_val;
1274 * e1000e_set_lplu_state_pchlan - Set Low Power Link Up state
1275 * @hw: pointer to the HW structure
1276 * @active: true to enable LPLU, false to disable
1278 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1279 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1280 * the phy speed. This function will manually set the LPLU bit and restart
1281 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1282 * since it configures the same bit.
1284 static s32 e1000e_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1286 s32 ret_val = E1000_SUCCESS;
1287 u16 oem_reg;
1289 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1290 if (ret_val)
1291 goto out;
1293 if (active)
1294 oem_reg |= HV_OEM_BITS_LPLU;
1295 else
1296 oem_reg &= ~HV_OEM_BITS_LPLU;
1298 oem_reg |= HV_OEM_BITS_RESTART_AN;
1299 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1301 out:
1302 return ret_val;
1306 * e1000e_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1307 * @hw: pointer to the HW structure
1308 * @active: true to enable LPLU, false to disable
1310 * Sets the LPLU D0 state according to the active flag. When
1311 * activating LPLU this function also disables smart speed
1312 * and vice versa. LPLU will not be activated unless the
1313 * device autonegotiation advertisement meets standards of
1314 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1315 * This is a function pointer entry point only called by
1316 * PHY setup routines.
1318 static s32 e1000e_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1320 struct e1000_phy_info *phy = &hw->phy;
1321 u32 phy_ctrl;
1322 s32 ret_val = E1000_SUCCESS;
1323 u16 data;
1325 if (phy->type == e1000_phy_ife)
1326 goto out;
1328 phy_ctrl = er32(PHY_CTRL);
1330 if (active) {
1331 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1332 ew32(PHY_CTRL, phy_ctrl);
1334 if (phy->type != e1000_phy_igp_3)
1335 goto out;
1338 * Call gig speed drop workaround on LPLU before accessing
1339 * any PHY registers
1341 if (hw->mac.type == e1000_ich8lan)
1342 e1000e_gig_downshift_workaround_ich8lan(hw);
1344 /* When LPLU is enabled, we should disable SmartSpeed */
1345 ret_val = e1e_rphy(hw,
1346 IGP01E1000_PHY_PORT_CONFIG,
1347 &data);
1348 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1349 ret_val = e1e_wphy(hw,
1350 IGP01E1000_PHY_PORT_CONFIG,
1351 data);
1352 if (ret_val)
1353 goto out;
1354 } else {
1355 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1356 ew32(PHY_CTRL, phy_ctrl);
1358 if (phy->type != e1000_phy_igp_3)
1359 goto out;
1362 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1363 * during Dx states where the power conservation is most
1364 * important. During driver activity we should enable
1365 * SmartSpeed, so performance is maintained.
1367 if (phy->smart_speed == e1000_smart_speed_on) {
1368 ret_val = e1e_rphy(hw,
1369 IGP01E1000_PHY_PORT_CONFIG,
1370 &data);
1371 if (ret_val)
1372 goto out;
1374 data |= IGP01E1000_PSCFR_SMART_SPEED;
1375 ret_val = e1e_wphy(hw,
1376 IGP01E1000_PHY_PORT_CONFIG,
1377 data);
1378 if (ret_val)
1379 goto out;
1380 } else if (phy->smart_speed == e1000_smart_speed_off) {
1381 ret_val = e1e_rphy(hw,
1382 IGP01E1000_PHY_PORT_CONFIG,
1383 &data);
1384 if (ret_val)
1385 goto out;
1387 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1388 ret_val = e1e_wphy(hw,
1389 IGP01E1000_PHY_PORT_CONFIG,
1390 data);
1391 if (ret_val)
1392 goto out;
1396 out:
1397 return ret_val;
1401 * e1000e_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1402 * @hw: pointer to the HW structure
1403 * @active: true to enable LPLU, false to disable
1405 * Sets the LPLU D3 state according to the active flag. When
1406 * activating LPLU this function also disables smart speed
1407 * and vice versa. LPLU will not be activated unless the
1408 * device autonegotiation advertisement meets standards of
1409 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1410 * This is a function pointer entry point only called by
1411 * PHY setup routines.
1413 static s32 e1000e_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1415 struct e1000_phy_info *phy = &hw->phy;
1416 u32 phy_ctrl;
1417 s32 ret_val = E1000_SUCCESS;
1418 u16 data;
1420 phy_ctrl = er32(PHY_CTRL);
1422 if (!active) {
1423 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1424 ew32(PHY_CTRL, phy_ctrl);
1426 if (phy->type != e1000_phy_igp_3)
1427 goto out;
1430 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1431 * during Dx states where the power conservation is most
1432 * important. During driver activity we should enable
1433 * SmartSpeed, so performance is maintained.
1435 if (phy->smart_speed == e1000_smart_speed_on) {
1436 ret_val = e1e_rphy(hw,
1437 IGP01E1000_PHY_PORT_CONFIG,
1438 &data);
1439 if (ret_val)
1440 goto out;
1442 data |= IGP01E1000_PSCFR_SMART_SPEED;
1443 ret_val = e1e_wphy(hw,
1444 IGP01E1000_PHY_PORT_CONFIG,
1445 data);
1446 if (ret_val)
1447 goto out;
1448 } else if (phy->smart_speed == e1000_smart_speed_off) {
1449 ret_val = e1e_rphy(hw,
1450 IGP01E1000_PHY_PORT_CONFIG,
1451 &data);
1452 if (ret_val)
1453 goto out;
1455 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1456 ret_val = e1e_wphy(hw,
1457 IGP01E1000_PHY_PORT_CONFIG,
1458 data);
1459 if (ret_val)
1460 goto out;
1462 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1463 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1464 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1465 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1466 ew32(PHY_CTRL, phy_ctrl);
1468 if (phy->type != e1000_phy_igp_3)
1469 goto out;
1472 * Call gig speed drop workaround on LPLU before accessing
1473 * any PHY registers
1475 if (hw->mac.type == e1000_ich8lan)
1476 e1000e_gig_downshift_workaround_ich8lan(hw);
1478 /* When LPLU is enabled, we should disable SmartSpeed */
1479 ret_val = e1e_rphy(hw,
1480 IGP01E1000_PHY_PORT_CONFIG,
1481 &data);
1482 if (ret_val)
1483 goto out;
1485 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1486 ret_val = e1e_wphy(hw,
1487 IGP01E1000_PHY_PORT_CONFIG,
1488 data);
1491 out:
1492 return ret_val;
1496 * e1000e_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1497 * @hw: pointer to the HW structure
1498 * @bank: pointer to the variable that returns the active bank
1500 * Reads signature byte from the NVM using the flash access registers.
1501 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1503 static s32 e1000e_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1505 u32 eecd;
1506 struct e1000_nvm_info *nvm = &hw->nvm;
1507 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1508 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1509 u8 sig_byte = 0;
1510 s32 ret_val = E1000_SUCCESS;
1512 switch (hw->mac.type) {
1513 case e1000_ich8lan:
1514 case e1000_ich9lan:
1515 eecd = er32(EECD);
1516 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1517 E1000_EECD_SEC1VAL_VALID_MASK) {
1518 if (eecd & E1000_EECD_SEC1VAL)
1519 *bank = 1;
1520 else
1521 *bank = 0;
1523 goto out;
1525 e_dbg("Unable to determine valid NVM bank via EEC - "
1526 "reading flash signature\n");
1527 /* fall-thru */
1528 default:
1529 /* set bank to 0 in case flash read fails */
1530 *bank = 0;
1532 /* Check bank 0 */
1533 ret_val = e1000e_read_flash_byte_ich8lan(hw, act_offset,
1534 &sig_byte);
1535 if (ret_val)
1536 goto out;
1537 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1538 E1000_ICH_NVM_SIG_VALUE) {
1539 *bank = 0;
1540 goto out;
1543 /* Check bank 1 */
1544 ret_val = e1000e_read_flash_byte_ich8lan(hw, act_offset +
1545 bank1_offset,
1546 &sig_byte);
1547 if (ret_val)
1548 goto out;
1549 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1550 E1000_ICH_NVM_SIG_VALUE) {
1551 *bank = 1;
1552 goto out;
1555 e_dbg("ERROR: No valid NVM bank present\n");
1556 ret_val = -E1000_ERR_NVM;
1557 break;
1559 out:
1560 return ret_val;
1564 * e1000e_read_nvm_ich8lan - Read word(s) from the NVM
1565 * @hw: pointer to the HW structure
1566 * @offset: The offset (in bytes) of the word(s) to read.
1567 * @words: Size of data to read in words
1568 * @data: Pointer to the word(s) to read at offset.
1570 * Reads a word(s) from the NVM using the flash access registers.
1572 static s32 e1000e_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1573 u16 *data)
1575 struct e1000_nvm_info *nvm = &hw->nvm;
1576 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1577 u32 act_offset;
1578 s32 ret_val = E1000_SUCCESS;
1579 u32 bank = 0;
1580 u16 i, word;
1582 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1583 (words == 0)) {
1584 e_dbg("nvm parameter(s) out of bounds\n");
1585 ret_val = -E1000_ERR_NVM;
1586 goto out;
1589 nvm->ops.acquire(hw);
1591 ret_val = e1000e_valid_nvm_bank_detect_ich8lan(hw, &bank);
1592 if (ret_val != E1000_SUCCESS) {
1593 e_dbg("Could not detect valid bank, assuming bank 0\n");
1594 bank = 0;
1597 act_offset = (bank) ? nvm->flash_bank_size : 0;
1598 act_offset += offset;
1600 ret_val = E1000_SUCCESS;
1601 for (i = 0; i < words; i++) {
1602 if ((dev_spec->shadow_ram) &&
1603 (dev_spec->shadow_ram[offset+i].modified)) {
1604 data[i] = dev_spec->shadow_ram[offset+i].value;
1605 } else {
1606 ret_val = e1000e_read_flash_word_ich8lan(hw,
1607 act_offset + i,
1608 &word);
1609 if (ret_val)
1610 break;
1611 data[i] = word;
1615 nvm->ops.release(hw);
1617 out:
1618 if (ret_val)
1619 e_dbg("NVM read error: %d\n", ret_val);
1621 return ret_val;
1625 * e1000e_flash_cycle_init_ich8lan - Initialize flash
1626 * @hw: pointer to the HW structure
1628 * This function does initial flash setup so that a new read/write/erase cycle
1629 * can be started.
1631 static s32 e1000e_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1633 union ich8_hws_flash_status hsfsts;
1634 s32 ret_val = -E1000_ERR_NVM;
1635 s32 i = 0;
1637 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1639 /* Check if the flash descriptor is valid */
1640 if (hsfsts.hsf_status.fldesvalid == 0) {
1641 e_dbg("Flash descriptor invalid. "
1642 "SW Sequencing must be used.");
1643 goto out;
1646 /* Clear FCERR and DAEL in hw status by writing 1 */
1647 hsfsts.hsf_status.flcerr = 1;
1648 hsfsts.hsf_status.dael = 1;
1650 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1653 * Either we should have a hardware SPI cycle in progress
1654 * bit to check against, in order to start a new cycle or
1655 * FDONE bit should be changed in the hardware so that it
1656 * is 1 after hardware reset, which can then be used as an
1657 * indication whether a cycle is in progress or has been
1658 * completed.
1661 if (hsfsts.hsf_status.flcinprog == 0) {
1663 * There is no cycle running at present,
1664 * so we can start a cycle.
1665 * Begin by setting Flash Cycle Done.
1667 hsfsts.hsf_status.flcdone = 1;
1668 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1669 ret_val = E1000_SUCCESS;
1670 } else {
1672 * Otherwise poll for sometime so the current
1673 * cycle has a chance to end before giving up.
1675 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1676 hsfsts.regval = er16flash(
1677 ICH_FLASH_HSFSTS);
1678 if (hsfsts.hsf_status.flcinprog == 0) {
1679 ret_val = E1000_SUCCESS;
1680 break;
1682 udelay(1);
1684 if (ret_val == E1000_SUCCESS) {
1686 * Successful in waiting for previous cycle to timeout,
1687 * now set the Flash Cycle Done.
1689 hsfsts.hsf_status.flcdone = 1;
1690 ew16flash(ICH_FLASH_HSFSTS,
1691 hsfsts.regval);
1692 } else {
1693 e_dbg("Flash controller busy, cannot get access");
1697 out:
1698 return ret_val;
1702 * e1000e_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1703 * @hw: pointer to the HW structure
1704 * @timeout: maximum time to wait for completion
1706 * This function starts a flash cycle and waits for its completion.
1708 static s32 e1000e_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1710 union ich8_hws_flash_ctrl hsflctl;
1711 union ich8_hws_flash_status hsfsts;
1712 s32 ret_val = -E1000_ERR_NVM;
1713 u32 i = 0;
1715 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1716 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1717 hsflctl.hsf_ctrl.flcgo = 1;
1718 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1720 /* wait till FDONE bit is set to 1 */
1721 do {
1722 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1723 if (hsfsts.hsf_status.flcdone == 1)
1724 break;
1725 udelay(1);
1726 } while (i++ < timeout);
1728 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1729 ret_val = E1000_SUCCESS;
1731 return ret_val;
1735 * e1000e_read_flash_word_ich8lan - Read word from flash
1736 * @hw: pointer to the HW structure
1737 * @offset: offset to data location
1738 * @data: pointer to the location for storing the data
1740 * Reads the flash word at offset into data. Offset is converted
1741 * to bytes before read.
1743 static s32 e1000e_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1744 u16 *data)
1746 s32 ret_val;
1748 if (!data) {
1749 ret_val = -E1000_ERR_NVM;
1750 goto out;
1753 /* Must convert offset into bytes. */
1754 offset <<= 1;
1756 ret_val = e1000e_read_flash_data_ich8lan(hw, offset, 2, data);
1758 out:
1759 return ret_val;
1763 * e1000e_read_flash_byte_ich8lan - Read byte from flash
1764 * @hw: pointer to the HW structure
1765 * @offset: The offset of the byte to read.
1766 * @data: Pointer to a byte to store the value read.
1768 * Reads a single byte from the NVM using the flash access registers.
1770 static s32 e1000e_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1771 u8 *data)
1773 s32 ret_val = E1000_SUCCESS;
1774 u16 word = 0;
1776 ret_val = e1000e_read_flash_data_ich8lan(hw, offset, 1, &word);
1777 if (ret_val)
1778 goto out;
1780 *data = (u8)word;
1782 out:
1783 return ret_val;
1787 * e1000e_read_flash_data_ich8lan - Read byte or word from NVM
1788 * @hw: pointer to the HW structure
1789 * @offset: The offset (in bytes) of the byte or word to read.
1790 * @size: Size of data to read, 1=byte 2=word
1791 * @data: Pointer to the word to store the value read.
1793 * Reads a byte or word from the NVM using the flash access registers.
1795 static s32 e1000e_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1796 u8 size, u16 *data)
1798 union ich8_hws_flash_status hsfsts;
1799 union ich8_hws_flash_ctrl hsflctl;
1800 u32 flash_linear_addr;
1801 u32 flash_data = 0;
1802 s32 ret_val = -E1000_ERR_NVM;
1803 u8 count = 0;
1805 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1806 goto out;
1807 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1808 hw->nvm.flash_base_addr;
1810 do {
1811 udelay(1);
1812 /* Steps */
1813 ret_val = e1000e_flash_cycle_init_ich8lan(hw);
1814 if (ret_val != E1000_SUCCESS)
1815 break;
1817 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1818 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1819 hsflctl.hsf_ctrl.fldbcount = size - 1;
1820 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1821 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1823 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1825 ret_val = e1000e_flash_cycle_ich8lan(hw,
1826 ICH_FLASH_READ_COMMAND_TIMEOUT);
1829 * Check if FCERR is set to 1, if set to 1, clear it
1830 * and try the whole sequence a few more times, else
1831 * read in (shift in) the Flash Data0, the order is
1832 * least significant byte first msb to lsb
1834 if (ret_val == E1000_SUCCESS) {
1835 flash_data = er32flash(ICH_FLASH_FDATA0);
1836 if (size == 1)
1837 *data = (u8)(flash_data & 0x000000FF);
1838 else if (size == 2)
1839 *data = (u16)(flash_data & 0x0000FFFF);
1840 break;
1841 } else {
1843 * If we've gotten here, then things are probably
1844 * completely hosed, but if the error condition is
1845 * detected, it won't hurt to give it another try...
1846 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1848 hsfsts.regval = er16flash(
1849 ICH_FLASH_HSFSTS);
1850 if (hsfsts.hsf_status.flcerr == 1) {
1851 /* Repeat for some time before giving up. */
1852 continue;
1853 } else if (hsfsts.hsf_status.flcdone == 0) {
1854 e_dbg("Timeout error - flash cycle "
1855 "did not complete.");
1856 break;
1859 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1861 out:
1862 return ret_val;
1866 * e1000e_write_nvm_ich8lan - Write word(s) to the NVM
1867 * @hw: pointer to the HW structure
1868 * @offset: The offset (in bytes) of the word(s) to write.
1869 * @words: Size of data to write in words
1870 * @data: Pointer to the word(s) to write at offset.
1872 * Writes a byte or word to the NVM using the flash access registers.
1874 static s32 e1000e_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1875 u16 *data)
1877 struct e1000_nvm_info *nvm = &hw->nvm;
1878 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1879 s32 ret_val = E1000_SUCCESS;
1880 u16 i;
1882 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1883 (words == 0)) {
1884 e_dbg("nvm parameter(s) out of bounds\n");
1885 ret_val = -E1000_ERR_NVM;
1886 goto out;
1889 nvm->ops.acquire(hw);
1891 for (i = 0; i < words; i++) {
1892 dev_spec->shadow_ram[offset+i].modified = true;
1893 dev_spec->shadow_ram[offset+i].value = data[i];
1896 nvm->ops.release(hw);
1898 out:
1899 return ret_val;
1903 * e1000e_update_nvm_checksum_ich8lan - Update the checksum for NVM
1904 * @hw: pointer to the HW structure
1906 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1907 * which writes the checksum to the shadow ram. The changes in the shadow
1908 * ram are then committed to the EEPROM by processing each bank at a time
1909 * checking for the modified bit and writing only the pending changes.
1910 * After a successful commit, the shadow ram is cleared and is ready for
1911 * future writes.
1913 static s32 e1000e_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1915 struct e1000_nvm_info *nvm = &hw->nvm;
1916 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1917 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1918 s32 ret_val;
1919 u16 data;
1921 ret_val = e1000e_update_nvm_checksum_generic(hw);
1922 if (ret_val)
1923 goto out;
1925 if (nvm->type != e1000_nvm_flash_sw)
1926 goto out;
1928 nvm->ops.acquire(hw);
1931 * We're writing to the opposite bank so if we're on bank 1,
1932 * write to bank 0 etc. We also need to erase the segment that
1933 * is going to be written
1935 ret_val = e1000e_valid_nvm_bank_detect_ich8lan(hw, &bank);
1936 if (ret_val != E1000_SUCCESS) {
1937 e_dbg("Could not detect valid bank, assuming bank 0\n");
1938 bank = 0;
1941 if (bank == 0) {
1942 new_bank_offset = nvm->flash_bank_size;
1943 old_bank_offset = 0;
1944 ret_val = e1000e_erase_flash_bank_ich8lan(hw, 1);
1945 if (ret_val) {
1946 nvm->ops.release(hw);
1947 goto out;
1949 } else {
1950 old_bank_offset = nvm->flash_bank_size;
1951 new_bank_offset = 0;
1952 ret_val = e1000e_erase_flash_bank_ich8lan(hw, 0);
1953 if (ret_val) {
1954 nvm->ops.release(hw);
1955 goto out;
1959 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1961 * Determine whether to write the value stored
1962 * in the other NVM bank or a modified value stored
1963 * in the shadow RAM
1965 if (dev_spec->shadow_ram[i].modified) {
1966 data = dev_spec->shadow_ram[i].value;
1967 } else {
1968 ret_val = e1000e_read_flash_word_ich8lan(hw, i +
1969 old_bank_offset,
1970 &data);
1971 if (ret_val)
1972 break;
1976 * If the word is 0x13, then make sure the signature bits
1977 * (15:14) are 11b until the commit has completed.
1978 * This will allow us to write 10b which indicates the
1979 * signature is valid. We want to do this after the write
1980 * has completed so that we don't mark the segment valid
1981 * while the write is still in progress
1983 if (i == E1000_ICH_NVM_SIG_WORD)
1984 data |= E1000_ICH_NVM_SIG_MASK;
1986 /* Convert offset to bytes. */
1987 act_offset = (i + new_bank_offset) << 1;
1989 udelay(100);
1990 /* Write the bytes to the new bank. */
1991 ret_val = e1000e_retry_write_flash_byte_ich8lan(hw,
1992 act_offset,
1993 (u8)data);
1994 if (ret_val)
1995 break;
1997 udelay(100);
1998 ret_val = e1000e_retry_write_flash_byte_ich8lan(hw,
1999 act_offset + 1,
2000 (u8)(data >> 8));
2001 if (ret_val)
2002 break;
2006 * Don't bother writing the segment valid bits if sector
2007 * programming failed.
2009 if (ret_val) {
2010 e_dbg("Flash commit failed.\n");
2011 nvm->ops.release(hw);
2012 goto out;
2016 * Finally validate the new segment by setting bit 15:14
2017 * to 10b in word 0x13 , this can be done without an
2018 * erase as well since these bits are 11 to start with
2019 * and we need to change bit 14 to 0b
2021 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2022 ret_val = e1000e_read_flash_word_ich8lan(hw, act_offset, &data);
2023 if (ret_val) {
2024 nvm->ops.release(hw);
2025 goto out;
2028 data &= 0xBFFF;
2029 ret_val = e1000e_retry_write_flash_byte_ich8lan(hw,
2030 act_offset * 2 + 1,
2031 (u8)(data >> 8));
2032 if (ret_val) {
2033 nvm->ops.release(hw);
2034 goto out;
2038 * And invalidate the previously valid segment by setting
2039 * its signature word (0x13) high_byte to 0b. This can be
2040 * done without an erase because flash erase sets all bits
2041 * to 1's. We can write 1's to 0's without an erase
2043 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2044 ret_val = e1000e_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2045 if (ret_val) {
2046 nvm->ops.release(hw);
2047 goto out;
2050 /* Great! Everything worked, we can now clear the cached entries. */
2051 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2052 dev_spec->shadow_ram[i].modified = false;
2053 dev_spec->shadow_ram[i].value = 0xFFFF;
2056 nvm->ops.release(hw);
2059 * Reload the EEPROM, or else modifications will not appear
2060 * until after the next adapter reset.
2062 nvm->ops.reload(hw);
2063 msleep(10);
2065 out:
2066 if (ret_val)
2067 e_dbg("NVM update error: %d\n", ret_val);
2069 return ret_val;
2073 * e1000e_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2074 * @hw: pointer to the HW structure
2076 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2077 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2078 * calculated, in which case we need to calculate the checksum and set bit 6.
2080 static s32 e1000e_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2082 s32 ret_val = E1000_SUCCESS;
2083 u16 data;
2086 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2087 * needs to be fixed. This bit is an indication that the NVM
2088 * was prepared by OEM software and did not calculate the
2089 * checksum...a likely scenario.
2091 ret_val = e1000e_read_nvm(hw, 0x19, 1, &data);
2092 if (ret_val)
2093 goto out;
2095 if ((data & 0x40) == 0) {
2096 data |= 0x40;
2097 ret_val = e1000e_write_nvm(hw, 0x19, 1, &data);
2098 if (ret_val)
2099 goto out;
2100 ret_val = e1000e_update_nvm_checksum(hw);
2101 if (ret_val)
2102 goto out;
2105 ret_val = e1000e_validate_nvm_checksum_generic(hw);
2107 out:
2108 return ret_val;
2112 * e1000e_write_flash_data_ich8lan - Writes bytes to the NVM
2113 * @hw: pointer to the HW structure
2114 * @offset: The offset (in bytes) of the byte/word to read.
2115 * @size: Size of data to read, 1=byte 2=word
2116 * @data: The byte(s) to write to the NVM.
2118 * Writes one/two bytes to the NVM using the flash access registers.
2120 static s32 e1000e_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2121 u8 size, u16 data)
2123 union ich8_hws_flash_status hsfsts;
2124 union ich8_hws_flash_ctrl hsflctl;
2125 u32 flash_linear_addr;
2126 u32 flash_data = 0;
2127 s32 ret_val = -E1000_ERR_NVM;
2128 u8 count = 0;
2130 if (size < 1 || size > 2 || data > size * 0xff ||
2131 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2132 goto out;
2134 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2135 hw->nvm.flash_base_addr;
2137 do {
2138 udelay(1);
2139 /* Steps */
2140 ret_val = e1000e_flash_cycle_init_ich8lan(hw);
2141 if (ret_val != E1000_SUCCESS)
2142 break;
2144 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2145 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2146 hsflctl.hsf_ctrl.fldbcount = size - 1;
2147 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2148 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2150 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2152 if (size == 1)
2153 flash_data = (u32)data & 0x00FF;
2154 else
2155 flash_data = (u32)data;
2157 ew32flash(ICH_FLASH_FDATA0, flash_data);
2160 * check if FCERR is set to 1 , if set to 1, clear it
2161 * and try the whole sequence a few more times else done
2163 ret_val = e1000e_flash_cycle_ich8lan(hw,
2164 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2165 if (ret_val == E1000_SUCCESS)
2166 break;
2169 * If we're here, then things are most likely
2170 * completely hosed, but if the error condition
2171 * is detected, it won't hurt to give it another
2172 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2174 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2175 if (hsfsts.hsf_status.flcerr == 1) {
2176 /* Repeat for some time before giving up. */
2177 continue;
2178 } else if (hsfsts.hsf_status.flcdone == 0) {
2179 e_dbg("Timeout error - flash cycle "
2180 "did not complete.");
2181 break;
2183 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2185 out:
2186 return ret_val;
2190 * e1000e_write_flash_byte_ich8lan - Write a single byte to NVM
2191 * @hw: pointer to the HW structure
2192 * @offset: The index of the byte to read.
2193 * @data: The byte to write to the NVM.
2195 * Writes a single byte to the NVM using the flash access registers.
2197 static s32 e1000e_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2198 u8 data)
2200 u16 word = (u16)data;
2202 return e1000e_write_flash_data_ich8lan(hw, offset, 1, word);
2206 * e1000e_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2207 * @hw: pointer to the HW structure
2208 * @offset: The offset of the byte to write.
2209 * @byte: The byte to write to the NVM.
2211 * Writes a single byte to the NVM using the flash access registers.
2212 * Goes through a retry algorithm before giving up.
2214 static s32 e1000e_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2215 u32 offset, u8 byte)
2217 s32 ret_val;
2218 u16 program_retries;
2220 ret_val = e1000e_write_flash_byte_ich8lan(hw, offset, byte);
2221 if (ret_val == E1000_SUCCESS)
2222 goto out;
2224 for (program_retries = 0; program_retries < 100; program_retries++) {
2225 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2226 udelay(100);
2227 ret_val = e1000e_write_flash_byte_ich8lan(hw, offset, byte);
2228 if (ret_val == E1000_SUCCESS)
2229 break;
2231 if (program_retries == 100) {
2232 ret_val = -E1000_ERR_NVM;
2233 goto out;
2236 out:
2237 return ret_val;
2241 * e1000e_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2242 * @hw: pointer to the HW structure
2243 * @bank: 0 for first bank, 1 for second bank, etc.
2245 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2246 * bank N is 4096 * N + flash_reg_addr.
2248 static s32 e1000e_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2250 struct e1000_nvm_info *nvm = &hw->nvm;
2251 union ich8_hws_flash_status hsfsts;
2252 union ich8_hws_flash_ctrl hsflctl;
2253 u32 flash_linear_addr;
2254 /* bank size is in 16bit words - adjust to bytes */
2255 u32 flash_bank_size = nvm->flash_bank_size * 2;
2256 s32 ret_val = E1000_SUCCESS;
2257 s32 count = 0;
2258 s32 j, iteration, sector_size;
2260 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2263 * Determine HW Sector size: Read BERASE bits of hw flash status
2264 * register
2265 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2266 * consecutive sectors. The start index for the nth Hw sector
2267 * can be calculated as = bank * 4096 + n * 256
2268 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2269 * The start index for the nth Hw sector can be calculated
2270 * as = bank * 4096
2271 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2272 * (ich9 only, otherwise error condition)
2273 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2275 switch (hsfsts.hsf_status.berasesz) {
2276 case 0:
2277 /* Hw sector size 256 */
2278 sector_size = ICH_FLASH_SEG_SIZE_256;
2279 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2280 break;
2281 case 1:
2282 sector_size = ICH_FLASH_SEG_SIZE_4K;
2283 iteration = 1;
2284 break;
2285 case 2:
2286 sector_size = ICH_FLASH_SEG_SIZE_8K;
2287 iteration = 1;
2288 break;
2289 case 3:
2290 sector_size = ICH_FLASH_SEG_SIZE_64K;
2291 iteration = 1;
2292 break;
2293 default:
2294 ret_val = -E1000_ERR_NVM;
2295 goto out;
2298 /* Start with the base address, then add the sector offset. */
2299 flash_linear_addr = hw->nvm.flash_base_addr;
2300 flash_linear_addr += (bank) ? flash_bank_size : 0;
2302 for (j = 0; j < iteration ; j++) {
2303 do {
2304 /* Steps */
2305 ret_val = e1000e_flash_cycle_init_ich8lan(hw);
2306 if (ret_val)
2307 goto out;
2310 * Write a value 11 (block Erase) in Flash
2311 * Cycle field in hw flash control
2313 hsflctl.regval = er16flash(
2314 ICH_FLASH_HSFCTL);
2315 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2316 ew16flash(ICH_FLASH_HSFCTL,
2317 hsflctl.regval);
2320 * Write the last 24 bits of an index within the
2321 * block into Flash Linear address field in Flash
2322 * Address.
2324 flash_linear_addr += (j * sector_size);
2325 ew32flash(ICH_FLASH_FADDR,
2326 flash_linear_addr);
2328 ret_val = e1000e_flash_cycle_ich8lan(hw,
2329 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2330 if (ret_val == E1000_SUCCESS)
2331 break;
2334 * Check if FCERR is set to 1. If 1,
2335 * clear it and try the whole sequence
2336 * a few more times else Done
2338 hsfsts.regval = er16flash(
2339 ICH_FLASH_HSFSTS);
2340 if (hsfsts.hsf_status.flcerr == 1)
2341 /* repeat for some time before giving up */
2342 continue;
2343 else if (hsfsts.hsf_status.flcdone == 0)
2344 goto out;
2345 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2348 out:
2349 return ret_val;
2353 * e1000e_valid_led_default_ich8lan - Set the default LED settings
2354 * @hw: pointer to the HW structure
2355 * @data: Pointer to the LED settings
2357 * Reads the LED default settings from the NVM to data. If the NVM LED
2358 * settings is all 0's or F's, set the LED default to a valid LED default
2359 * setting.
2361 static s32 e1000e_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2363 s32 ret_val;
2365 ret_val = e1000e_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2366 if (ret_val) {
2367 e_dbg("NVM Read Error\n");
2368 goto out;
2371 if (*data == ID_LED_RESERVED_0000 ||
2372 *data == ID_LED_RESERVED_FFFF)
2373 *data = ID_LED_DEFAULT_ICH8LAN;
2375 out:
2376 return ret_val;
2380 * e1000e_id_led_init_pchlan - store LED configurations
2381 * @hw: pointer to the HW structure
2383 * PCH does not control LEDs via the LEDCTL register, rather it uses
2384 * the PHY LED configuration register.
2386 * PCH also does not have an "always on" or "always off" mode which
2387 * complicates the ID feature. Instead of using the "on" mode to indicate
2388 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2389 * use "link_up" mode. The LEDs will still ID on request if there is no
2390 * link based on logic in e1000e_led_[on|off]_pchlan().
2392 static s32 e1000e_id_led_init_pchlan(struct e1000_hw *hw)
2394 struct e1000_mac_info *mac = &hw->mac;
2395 s32 ret_val;
2396 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2397 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2398 u16 data, i, temp, shift;
2400 /* Get default ID LED modes */
2401 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2402 if (ret_val)
2403 goto out;
2405 mac->ledctl_default = er32(LEDCTL);
2406 mac->ledctl_mode1 = mac->ledctl_default;
2407 mac->ledctl_mode2 = mac->ledctl_default;
2409 for (i = 0; i < 4; i++) {
2410 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2411 shift = (i * 5);
2412 switch (temp) {
2413 case ID_LED_ON1_DEF2:
2414 case ID_LED_ON1_ON2:
2415 case ID_LED_ON1_OFF2:
2416 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2417 mac->ledctl_mode1 |= (ledctl_on << shift);
2418 break;
2419 case ID_LED_OFF1_DEF2:
2420 case ID_LED_OFF1_ON2:
2421 case ID_LED_OFF1_OFF2:
2422 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2423 mac->ledctl_mode1 |= (ledctl_off << shift);
2424 break;
2425 default:
2426 /* Do nothing */
2427 break;
2429 switch (temp) {
2430 case ID_LED_DEF1_ON2:
2431 case ID_LED_ON1_ON2:
2432 case ID_LED_OFF1_ON2:
2433 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2434 mac->ledctl_mode2 |= (ledctl_on << shift);
2435 break;
2436 case ID_LED_DEF1_OFF2:
2437 case ID_LED_ON1_OFF2:
2438 case ID_LED_OFF1_OFF2:
2439 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2440 mac->ledctl_mode2 |= (ledctl_off << shift);
2441 break;
2442 default:
2443 /* Do nothing */
2444 break;
2448 out:
2449 return ret_val;
2453 * e1000e_get_bus_info_ich8lan - Get/Set the bus type and width
2454 * @hw: pointer to the HW structure
2456 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2457 * register, so the the bus width is hard coded.
2459 static s32 e1000e_get_bus_info_ich8lan(struct e1000_hw *hw)
2461 struct e1000_bus_info *bus = &hw->bus;
2462 s32 ret_val;
2464 ret_val = e1000e_get_bus_info_pcie(hw);
2467 * ICH devices are "PCI Express"-ish. They have
2468 * a configuration space, but do not contain
2469 * PCI Express Capability registers, so bus width
2470 * must be hardcoded.
2472 if (bus->width == e1000_bus_width_unknown)
2473 bus->width = e1000_bus_width_pcie_x1;
2475 return ret_val;
2479 * e1000e_reset_hw_ich8lan - Reset the hardware
2480 * @hw: pointer to the HW structure
2482 * Does a full reset of the hardware which includes a reset of the PHY and
2483 * MAC.
2485 static s32 e1000e_reset_hw_ich8lan(struct e1000_hw *hw)
2487 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2488 u16 reg;
2489 u32 ctrl, kab;
2490 s32 ret_val;
2493 * Prevent the PCI-E bus from sticking if there is no TLP connection
2494 * on the last TLP read/write transaction when MAC is reset.
2496 ret_val = e1000e_disable_pcie_master(hw);
2497 if (ret_val)
2498 e_dbg("PCI-E Master disable polling has failed.\n");
2500 e_dbg("Masking off all interrupts\n");
2501 ew32(IMC, 0xffffffff);
2504 * Disable the Transmit and Receive units. Then delay to allow
2505 * any pending transactions to complete before we hit the MAC
2506 * with the global reset.
2508 ew32(RCTL, 0);
2509 ew32(TCTL, E1000_TCTL_PSP);
2510 e1e_flush();
2512 msleep(10);
2514 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2515 if (hw->mac.type == e1000_ich8lan) {
2516 /* Set Tx and Rx buffer allocation to 8k apiece. */
2517 ew32(PBA, E1000_PBA_8K);
2518 /* Set Packet Buffer Size to 16k. */
2519 ew32(PBS, E1000_PBS_16K);
2522 if (hw->mac.type == e1000_pchlan) {
2523 /* Save the NVM K1 bit setting*/
2524 ret_val = e1000e_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2525 if (ret_val)
2526 return ret_val;
2528 if (reg & E1000_NVM_K1_ENABLE)
2529 dev_spec->nvm_k1_enabled = true;
2530 else
2531 dev_spec->nvm_k1_enabled = false;
2534 ctrl = er32(CTRL);
2536 if (!e1000e_check_reset_block(hw) && !hw->phy.reset_disable) {
2537 /* Clear PHY Reset Asserted bit */
2538 if (hw->mac.type >= e1000_pchlan) {
2539 u32 status = er32(STATUS);
2540 ew32(STATUS, status &
2541 ~E1000_STATUS_PHYRA);
2545 * PHY HW reset requires MAC CORE reset at the same
2546 * time to make sure the interface between MAC and the
2547 * external PHY is reset.
2549 ctrl |= E1000_CTRL_PHY_RST;
2551 ret_val = e1000e_acquire_swflag_ich8lan(hw);
2552 e_dbg("Issuing a global reset to ich8lan\n");
2553 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2554 msleep(20);
2556 if (!ret_val)
2557 e1000e_release_swflag_ich8lan(hw);
2559 if (ctrl & E1000_CTRL_PHY_RST)
2560 ret_val = hw->phy.ops.get_cfg_done(hw);
2562 if (hw->mac.type >= e1000_ich10lan) {
2563 e1000e_lan_init_done_ich8lan(hw);
2564 } else {
2565 ret_val = e1000e_get_auto_rd_done(hw);
2566 if (ret_val) {
2568 * When auto config read does not complete, do not
2569 * return with an error. This can happen in situations
2570 * where there is no eeprom and prevents getting link.
2572 e_dbg("Auto Read Done did not complete\n");
2575 /* Dummy read to clear the phy wakeup bit after lcd reset */
2576 if (hw->mac.type == e1000_pchlan)
2577 e1e_rphy(hw, BM_WUC, &reg);
2579 ret_val = e1000e_sw_lcd_config_ich8lan(hw);
2580 if (ret_val)
2581 goto out;
2583 if (hw->mac.type == e1000_pchlan) {
2584 ret_val = e1000e_oem_bits_config_ich8lan(hw, true);
2585 if (ret_val)
2586 goto out;
2589 * For PCH, this write will make sure that any noise
2590 * will be detected as a CRC error and be dropped rather than show up
2591 * as a bad packet to the DMA engine.
2593 if (hw->mac.type == e1000_pchlan)
2594 ew32(CRC_OFFSET, 0x65656565);
2596 ew32(IMC, 0xffffffff);
2597 er32(ICR);
2599 kab = er32(KABGTXD);
2600 kab |= E1000_KABGTXD_BGSQLBIAS;
2601 ew32(KABGTXD, kab);
2603 if (hw->mac.type == e1000_pchlan)
2604 ret_val = e1000e_hv_phy_workarounds_ich8lan(hw);
2606 out:
2607 return ret_val;
2611 * e1000e_init_hw_ich8lan - Initialize the hardware
2612 * @hw: pointer to the HW structure
2614 * Prepares the hardware for transmit and receive by doing the following:
2615 * - initialize hardware bits
2616 * - initialize LED identification
2617 * - setup receive address registers
2618 * - setup flow control
2619 * - setup transmit descriptors
2620 * - clear statistics
2622 static s32 e1000e_init_hw_ich8lan(struct e1000_hw *hw)
2624 struct e1000_mac_info *mac = &hw->mac;
2625 u32 ctrl_ext, txdctl, snoop;
2626 s32 ret_val;
2627 u16 i;
2629 e1000e_initialize_hw_bits_ich8lan(hw);
2631 /* Initialize identification LED */
2632 ret_val = mac->ops.id_led_init(hw);
2633 if (ret_val)
2634 /* This is not fatal and we should not stop init due to this */
2635 e_dbg("Error initializing identification LED\n");
2637 /* Setup the receive address. */
2638 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2640 /* Zero out the Multicast HASH table */
2641 e_dbg("Zeroing the MTA\n");
2642 for (i = 0; i < mac->mta_reg_count; i++)
2643 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2646 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2647 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2648 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2650 if (hw->phy.type == e1000_phy_82578) {
2651 e1e_rphy(hw, BM_WUC, &i);
2652 ret_val = e1000e_phy_hw_reset_ich8lan(hw);
2653 if (ret_val)
2654 return ret_val;
2657 /* Setup link and flow control */
2658 ret_val = mac->ops.setup_link(hw);
2660 /* Set the transmit descriptor write-back policy for both queues */
2661 txdctl = er32(TXDCTL(0));
2662 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2663 E1000_TXDCTL_FULL_TX_DESC_WB;
2664 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2665 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2666 ew32(TXDCTL(0), txdctl);
2667 txdctl = er32(TXDCTL(1));
2668 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2669 E1000_TXDCTL_FULL_TX_DESC_WB;
2670 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2671 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2672 ew32(TXDCTL(1), txdctl);
2675 * ICH8 has opposite polarity of no_snoop bits.
2676 * By default, we should use snoop behavior.
2678 if (mac->type == e1000_ich8lan)
2679 snoop = PCIE_ICH8_SNOOP_ALL;
2680 else
2681 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
2682 e1000e_set_pcie_no_snoop(hw, snoop);
2684 ctrl_ext = er32(CTRL_EXT);
2685 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2686 ew32(CTRL_EXT, ctrl_ext);
2689 * Clear all of the statistics registers (clear on read). It is
2690 * important that we do this after we have tried to establish link
2691 * because the symbol error count will increment wildly if there
2692 * is no link.
2694 e1000e_clear_hw_cntrs_ich8lan(hw);
2696 return ret_val;
2699 * e1000e_initialize_hw_bits_ich8lan - Initialize required hardware bits
2700 * @hw: pointer to the HW structure
2702 * Sets/Clears required hardware bits necessary for correctly setting up the
2703 * hardware for transmit and receive.
2705 static void e1000e_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2707 u32 reg;
2709 /* Extended Device Control */
2710 reg = er32(CTRL_EXT);
2711 reg |= (1 << 22);
2712 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2713 if (hw->mac.type >= e1000_pchlan)
2714 reg |= E1000_CTRL_EXT_PHYPDEN;
2715 ew32(CTRL_EXT, reg);
2717 /* Transmit Descriptor Control 0 */
2718 reg = er32(TXDCTL(0));
2719 reg |= (1 << 22);
2720 ew32(TXDCTL(0), reg);
2722 /* Transmit Descriptor Control 1 */
2723 reg = er32(TXDCTL(1));
2724 reg |= (1 << 22);
2725 ew32(TXDCTL(1), reg);
2727 /* Transmit Arbitration Control 0 */
2728 reg = er32(TARC(0));
2729 if (hw->mac.type == e1000_ich8lan)
2730 reg |= (1 << 28) | (1 << 29);
2731 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2732 ew32(TARC(0), reg);
2734 /* Transmit Arbitration Control 1 */
2735 reg = er32(TARC(1));
2736 if (er32(TCTL) & E1000_TCTL_MULR)
2737 reg &= ~(1 << 28);
2738 else
2739 reg |= (1 << 28);
2740 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2741 ew32(TARC(1), reg);
2743 /* Device Status */
2744 if (hw->mac.type == e1000_ich8lan) {
2745 reg = er32(STATUS);
2746 reg &= ~(1 << 31);
2747 ew32(STATUS, reg);
2750 return;
2754 * e1000e_setup_link_ich8lan - Setup flow control and link settings
2755 * @hw: pointer to the HW structure
2757 * Determines which flow control settings to use, then configures flow
2758 * control. Calls the appropriate media-specific link configuration
2759 * function. Assuming the adapter has a valid link partner, a valid link
2760 * should be established. Assumes the hardware has previously been reset
2761 * and the transmitter and receiver are not enabled.
2763 static s32 e1000e_setup_link_ich8lan(struct e1000_hw *hw)
2765 s32 ret_val = E1000_SUCCESS;
2767 if (e1000e_check_reset_block(hw))
2768 goto out;
2771 * ICH parts do not have a word in the NVM to determine
2772 * the default flow control setting, so we explicitly
2773 * set it to full.
2775 if (hw->fc.requested_mode == e1000_fc_default)
2776 hw->fc.requested_mode = e1000_fc_full;
2779 * Save off the requested flow control mode for use later. Depending
2780 * on the link partner's capabilities, we may or may not use this mode.
2782 hw->fc.current_mode = hw->fc.requested_mode;
2784 e_dbg("After fix-ups FlowControl is now = %x\n",
2785 hw->fc.current_mode);
2787 /* Continue to configure the copper link. */
2788 ret_val = hw->mac.ops.setup_physical_interface(hw);
2789 if (ret_val)
2790 goto out;
2792 ew32(FCTTV, hw->fc.pause_time);
2793 if ((hw->phy.type == e1000_phy_82578) ||
2794 (hw->phy.type == e1000_phy_82577)) {
2795 ret_val = e1e_wphy(hw,
2796 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2797 hw->fc.pause_time);
2798 if (ret_val)
2799 goto out;
2802 ret_val = e1000e_set_fc_watermarks(hw);
2804 out:
2805 return ret_val;
2809 * e1000e_setup_copper_link_ich8lan - Configure MAC/PHY interface
2810 * @hw: pointer to the HW structure
2812 * Configures the kumeran interface to the PHY to wait the appropriate time
2813 * when polling the PHY, then call the generic setup_copper_link to finish
2814 * configuring the copper link.
2816 static s32 e1000e_setup_copper_link_ich8lan(struct e1000_hw *hw)
2818 u32 ctrl;
2819 s32 ret_val;
2820 u16 reg_data;
2822 ctrl = er32(CTRL);
2823 ctrl |= E1000_CTRL_SLU;
2824 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2825 ew32(CTRL, ctrl);
2828 * Set the mac to wait the maximum time between each iteration
2829 * and increase the max iterations when polling the phy;
2830 * this fixes erroneous timeouts at 10Mbps.
2832 ret_val = e1000e_write_kmrn_reg(hw,
2833 E1000_KMRNCTRLSTA_TIMEOUTS,
2834 0xFFFF);
2835 if (ret_val)
2836 goto out;
2837 ret_val = e1000e_read_kmrn_reg(hw,
2838 E1000_KMRNCTRLSTA_INBAND_PARAM,
2839 &reg_data);
2840 if (ret_val)
2841 goto out;
2842 reg_data |= 0x3F;
2843 ret_val = e1000e_write_kmrn_reg(hw,
2844 E1000_KMRNCTRLSTA_INBAND_PARAM,
2845 reg_data);
2846 if (ret_val)
2847 goto out;
2849 switch (hw->phy.type) {
2850 case e1000_phy_igp_3:
2851 ret_val = e1000e_copper_link_setup_igp(hw);
2852 if (ret_val)
2853 goto out;
2854 break;
2855 case e1000_phy_bm:
2856 case e1000_phy_82578:
2857 ret_val = e1000e_copper_link_setup_m88(hw);
2858 if (ret_val)
2859 goto out;
2860 break;
2861 case e1000_phy_82577:
2862 ret_val = e1000e_copper_link_setup_82577(hw);
2863 if (ret_val)
2864 goto out;
2865 break;
2866 case e1000_phy_ife:
2867 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL,
2868 &reg_data);
2869 if (ret_val)
2870 goto out;
2872 reg_data &= ~IFE_PMC_AUTO_MDIX;
2874 switch (hw->phy.mdix) {
2875 case 1:
2876 reg_data &= ~IFE_PMC_FORCE_MDIX;
2877 break;
2878 case 2:
2879 reg_data |= IFE_PMC_FORCE_MDIX;
2880 break;
2881 case 0:
2882 default:
2883 reg_data |= IFE_PMC_AUTO_MDIX;
2884 break;
2886 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL,
2887 reg_data);
2888 if (ret_val)
2889 goto out;
2890 break;
2891 default:
2892 break;
2894 ret_val = e1000e_setup_copper_link(hw);
2896 out:
2897 return ret_val;
2901 * e1000e_get_link_up_info_ich8lan - Get current link speed and duplex
2902 * @hw: pointer to the HW structure
2903 * @speed: pointer to store current link speed
2904 * @duplex: pointer to store the current link duplex
2906 * Calls the generic get_speed_and_duplex to retrieve the current link
2907 * information and then calls the Kumeran lock loss workaround for links at
2908 * gigabit speeds.
2910 static s32 e1000e_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2911 u16 *duplex)
2913 s32 ret_val;
2915 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2916 if (ret_val)
2917 goto out;
2919 if ((hw->mac.type == e1000_ich8lan) &&
2920 (hw->phy.type == e1000_phy_igp_3) &&
2921 (*speed == SPEED_1000)) {
2922 ret_val = e1000e_kmrn_lock_loss_workaround_ich8lan(hw);
2925 out:
2926 return ret_val;
2930 * e1000e_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2931 * @hw: pointer to the HW structure
2933 * Work-around for 82566 Kumeran PCS lock loss:
2934 * On link status change (i.e. PCI reset, speed change) and link is up and
2935 * speed is gigabit-
2936 * 0) if workaround is optionally disabled do nothing
2937 * 1) wait 1ms for Kumeran link to come up
2938 * 2) check Kumeran Diagnostic register PCS lock loss bit
2939 * 3) if not set the link is locked (all is good), otherwise...
2940 * 4) reset the PHY
2941 * 5) repeat up to 10 times
2942 * Note: this is only called for IGP3 copper when speed is 1gb.
2944 static s32 e1000e_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2946 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2947 u32 phy_ctrl;
2948 s32 ret_val = E1000_SUCCESS;
2949 u16 i, data;
2950 bool link;
2952 if (!(dev_spec->kmrn_lock_loss_workaround_enabled))
2953 goto out;
2956 * Make sure link is up before proceeding. If not just return.
2957 * Attempting this while link is negotiating fouled up link
2958 * stability
2960 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2961 if (!link) {
2962 ret_val = E1000_SUCCESS;
2963 goto out;
2966 for (i = 0; i < 10; i++) {
2967 /* read once to clear */
2968 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2969 if (ret_val)
2970 goto out;
2971 /* and again to get new status */
2972 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2973 if (ret_val)
2974 goto out;
2976 /* check for PCS lock */
2977 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) {
2978 ret_val = E1000_SUCCESS;
2979 goto out;
2982 /* Issue PHY reset */
2983 e1000e_phy_hw_reset(hw);
2984 mdelay(5);
2986 /* Disable GigE link negotiation */
2987 phy_ctrl = er32(PHY_CTRL);
2988 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2989 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2990 ew32(PHY_CTRL, phy_ctrl);
2993 * Call gig speed drop workaround on Gig disable before accessing
2994 * any PHY registers
2996 e1000e_gig_downshift_workaround_ich8lan(hw);
2998 /* unable to acquire PCS lock */
2999 ret_val = -E1000_ERR_PHY;
3001 out:
3002 return ret_val;
3006 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3007 * @hw: pointer to the HW structure
3008 * @state: boolean value used to set the current Kumeran workaround state
3010 * If ICH8, set the current Kumeran workaround state (enabled - true
3011 * /disabled - false).
3013 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3014 bool state)
3016 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3018 if (hw->mac.type != e1000_ich8lan) {
3019 e_dbg("Workaround applies to ICH8 only.\n");
3020 return;
3023 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3025 return;
3029 * e1000e_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3030 * @hw: pointer to the HW structure
3032 * Workaround for 82566 power-down on D3 entry:
3033 * 1) disable gigabit link
3034 * 2) write VR power-down enable
3035 * 3) read it back
3036 * Continue if successful, else issue LCD reset and repeat
3038 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3040 u32 reg;
3041 u16 data;
3042 u8 retry = 0;
3044 if (hw->phy.type != e1000_phy_igp_3)
3045 goto out;
3047 /* Try the workaround twice (if needed) */
3048 do {
3049 /* Disable link */
3050 reg = er32(PHY_CTRL);
3051 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3052 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3053 ew32(PHY_CTRL, reg);
3056 * Call gig speed drop workaround on Gig disable before
3057 * accessing any PHY registers
3059 if (hw->mac.type == e1000_ich8lan)
3060 e1000e_gig_downshift_workaround_ich8lan(hw);
3062 /* Write VR power-down enable */
3063 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3064 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3065 e1e_wphy(hw, IGP3_VR_CTRL,
3066 data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3068 /* Read it back and test */
3069 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3070 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3071 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3072 break;
3074 /* Issue PHY reset and repeat at most one more time */
3075 reg = er32(CTRL);
3076 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3077 retry++;
3078 } while (retry);
3080 out:
3081 return;
3085 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3086 * @hw: pointer to the HW structure
3088 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3089 * LPLU, Gig disable, MDIC PHY reset):
3090 * 1) Set Kumeran Near-end loopback
3091 * 2) Clear Kumeran Near-end loopback
3092 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3094 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3096 s32 ret_val = E1000_SUCCESS;
3097 u16 reg_data;
3099 if ((hw->mac.type != e1000_ich8lan) ||
3100 (hw->phy.type != e1000_phy_igp_3))
3101 goto out;
3103 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3104 &reg_data);
3105 if (ret_val)
3106 goto out;
3107 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3108 ret_val = e1000e_write_kmrn_reg(hw,
3109 E1000_KMRNCTRLSTA_DIAG_OFFSET,
3110 reg_data);
3111 if (ret_val)
3112 goto out;
3113 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3114 ret_val = e1000e_write_kmrn_reg(hw,
3115 E1000_KMRNCTRLSTA_DIAG_OFFSET,
3116 reg_data);
3117 out:
3118 return;
3122 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3123 * @hw: pointer to the HW structure
3125 * During S0 to Sx transition, it is possible the link remains at gig
3126 * instead of negotiating to a lower speed. Before going to Sx, set
3127 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3128 * to a lower speed.
3130 * Should only be called for applicable parts.
3132 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3134 u32 phy_ctrl;
3136 switch (hw->mac.type) {
3137 case e1000_ich8lan:
3138 case e1000_ich9lan:
3139 case e1000_ich10lan:
3140 case e1000_pchlan:
3141 phy_ctrl = er32(PHY_CTRL);
3142 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3143 E1000_PHY_CTRL_GBE_DISABLE;
3144 ew32(PHY_CTRL, phy_ctrl);
3146 if (hw->mac.type == e1000_pchlan)
3147 e1000e_phy_hw_reset_ich8lan(hw);
3148 default:
3149 break;
3152 return;
3156 * e1000e_cleanup_led_ich8lan - Restore the default LED operation
3157 * @hw: pointer to the HW structure
3159 * Return the LED back to the default configuration.
3161 static s32 e1000e_cleanup_led_ich8lan(struct e1000_hw *hw)
3163 s32 ret_val = E1000_SUCCESS;
3165 if (hw->phy.type == e1000_phy_ife)
3166 ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3168 else
3169 ew32(LEDCTL, hw->mac.ledctl_default);
3171 return ret_val;
3175 * e1000e_led_on_ich8lan - Turn LEDs on
3176 * @hw: pointer to the HW structure
3178 * Turn on the LEDs.
3180 static s32 e1000e_led_on_ich8lan(struct e1000_hw *hw)
3182 s32 ret_val = E1000_SUCCESS;
3184 if (hw->phy.type == e1000_phy_ife)
3185 ret_val = e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3186 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3187 else
3188 ew32(LEDCTL, hw->mac.ledctl_mode2);
3190 return ret_val;
3194 * e1000e_led_off_ich8lan - Turn LEDs off
3195 * @hw: pointer to the HW structure
3197 * Turn off the LEDs.
3199 static s32 e1000e_led_off_ich8lan(struct e1000_hw *hw)
3201 s32 ret_val = E1000_SUCCESS;
3203 if (hw->phy.type == e1000_phy_ife)
3204 ret_val = e1e_wphy(hw,
3205 IFE_PHY_SPECIAL_CONTROL_LED,
3206 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3207 else
3208 ew32(LEDCTL, hw->mac.ledctl_mode1);
3210 return ret_val;
3214 * e1000e_setup_led_pchlan - Configures SW controllable LED
3215 * @hw: pointer to the HW structure
3217 * This prepares the SW controllable LED for use.
3219 static s32 e1000e_setup_led_pchlan(struct e1000_hw *hw)
3221 return e1e_wphy(hw, HV_LED_CONFIG,
3222 (u16)hw->mac.ledctl_mode1);
3226 * e1000e_cleanup_led_pchlan - Restore the default LED operation
3227 * @hw: pointer to the HW structure
3229 * Return the LED back to the default configuration.
3231 static s32 e1000e_cleanup_led_pchlan(struct e1000_hw *hw)
3233 return e1e_wphy(hw, HV_LED_CONFIG,
3234 (u16)hw->mac.ledctl_default);
3238 * e1000e_led_on_pchlan - Turn LEDs on
3239 * @hw: pointer to the HW structure
3241 * Turn on the LEDs.
3243 static s32 e1000e_led_on_pchlan(struct e1000_hw *hw)
3245 u16 data = (u16)hw->mac.ledctl_mode2;
3246 u32 i, led;
3249 * If no link, then turn LED on by setting the invert bit
3250 * for each LED that's mode is "link_up" in ledctl_mode2.
3252 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3253 for (i = 0; i < 3; i++) {
3254 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3255 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3256 E1000_LEDCTL_MODE_LINK_UP)
3257 continue;
3258 if (led & E1000_PHY_LED0_IVRT)
3259 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3260 else
3261 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3265 return e1e_wphy(hw, HV_LED_CONFIG, data);
3269 * e1000e_led_off_pchlan - Turn LEDs off
3270 * @hw: pointer to the HW structure
3272 * Turn off the LEDs.
3274 static s32 e1000e_led_off_pchlan(struct e1000_hw *hw)
3276 u16 data = (u16)hw->mac.ledctl_mode1;
3277 u32 i, led;
3280 * If no link, then turn LED off by clearing the invert bit
3281 * for each LED that's mode is "link_up" in ledctl_mode1.
3283 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3284 for (i = 0; i < 3; i++) {
3285 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3286 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3287 E1000_LEDCTL_MODE_LINK_UP)
3288 continue;
3289 if (led & E1000_PHY_LED0_IVRT)
3290 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3291 else
3292 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3296 return e1e_wphy(hw, HV_LED_CONFIG, data);
3300 * e1000e_get_cfg_done_ich8lan - Read config done bit
3301 * @hw: pointer to the HW structure
3303 * Read the management control register for the config done bit for
3304 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3305 * to read the config done bit, so an error is *ONLY* logged and returns
3306 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
3307 * would not be able to be reset or change link.
3309 static s32 e1000e_get_cfg_done_ich8lan(struct e1000_hw *hw)
3311 s32 ret_val = E1000_SUCCESS;
3312 u32 bank = 0;
3314 if (hw->mac.type >= e1000_pchlan) {
3315 u32 status = er32(STATUS);
3317 if (status & E1000_STATUS_PHYRA) {
3318 ew32(STATUS, status &
3319 ~E1000_STATUS_PHYRA);
3320 } else
3321 e_dbg("PHY Reset Asserted not set - needs delay\n");
3324 e1000e_get_cfg_done(hw);
3326 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3327 if ((hw->mac.type != e1000_ich10lan) &&
3328 (hw->mac.type != e1000_pchlan)) {
3329 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3330 (hw->phy.type == e1000_phy_igp_3)) {
3331 e1000e_phy_init_script_igp3(hw);
3333 } else {
3334 if (e1000e_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3335 /* Maybe we should do a basic PHY config */
3336 e_dbg("EEPROM not present\n");
3337 ret_val = -E1000_ERR_CONFIG;
3341 return ret_val;
3345 * e1000e_power_down_phy_copper_ich8lan - Remove link during PHY power down
3346 * @hw: pointer to the HW structure
3348 * In the case of a PHY power down to save power, or to turn off link during a
3349 * driver unload, or wake on lan is not enabled, remove the link.
3351 static void e1000e_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3353 /* If the management interface is not enabled, then power down */
3354 if (!(hw->mac.ops.check_mng_mode(hw) ||
3355 e1000e_check_reset_block(hw)))
3356 e1000e_power_down_phy_copper(hw);
3358 return;
3362 * e1000e_clear_hw_cntrs_ich8lan - Clear statistical counters
3363 * @hw: pointer to the HW structure
3365 * Clears hardware counters specific to the silicon family and calls
3366 * clear_hw_cntrs_generic to clear all general purpose counters.
3368 static void e1000e_clear_hw_cntrs_ich8lan(struct e1000_hw *hw __unused)
3370 #if 0
3371 u16 phy_data;
3373 e1000e_clear_hw_cntrs_base(hw);
3375 er32(ALGNERRC);
3376 er32(RXERRC);
3377 er32(TNCRS);
3378 er32(CEXTERR);
3379 er32(TSCTC);
3380 er32(TSCTFC);
3382 er32(MGTPRC);
3383 er32(MGTPDC);
3384 er32(MGTPTC);
3386 er32(IAC);
3387 er32(ICRXOC);
3389 /* Clear PHY statistics registers */
3390 if ((hw->phy.type == e1000_phy_82578) ||
3391 (hw->phy.type == e1000_phy_82577)) {
3392 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3393 e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3394 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3395 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3396 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3397 e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3398 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3399 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3400 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3401 e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3402 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3403 e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3404 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3405 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3407 #endif
3410 static struct pci_device_id e1000e_ich8lan_nics[] = {
3411 PCI_ROM(0x8086, 0x104C, "E1000_DEV_ID_ICH8_IFE", "E1000_DEV_ID_ICH8_IFE", board_ich8lan),
3412 PCI_ROM(0x8086, 0x10C5, "E1000_DEV_ID_ICH8_IFE_G", "E1000_DEV_ID_ICH8_IFE_G", board_ich8lan),
3413 PCI_ROM(0x8086, 0x10C4, "E1000_DEV_ID_ICH8_IFE_GT", "E1000_DEV_ID_ICH8_IFE_GT", board_ich8lan),
3414 PCI_ROM(0x8086, 0x104A, "E1000_DEV_ID_ICH8_IGP_AMT", "E1000_DEV_ID_ICH8_IGP_AMT", board_ich8lan),
3415 PCI_ROM(0x8086, 0x104B, "E1000_DEV_ID_ICH8_IGP_C", "E1000_DEV_ID_ICH8_IGP_C", board_ich8lan),
3416 PCI_ROM(0x8086, 0x104D, "E1000_DEV_ID_ICH8_IGP_M", "E1000_DEV_ID_ICH8_IGP_M", board_ich8lan),
3417 PCI_ROM(0x8086, 0x1049, "E1000_DEV_ID_ICH8_IGP_M_AMT", "E1000_DEV_ID_ICH8_IGP_M_AMT", board_ich8lan),
3418 PCI_ROM(0x8086, 0x1501, "E1000_DEV_ID_ICH8_82567V_3", "E1000_DEV_ID_ICH8_82567V_3", board_ich8lan),
3419 PCI_ROM(0x8086, 0x10C0, "E1000_DEV_ID_ICH9_IFE", "E1000_DEV_ID_ICH9_IFE", board_ich9lan),
3420 PCI_ROM(0x8086, 0x10C2, "E1000_DEV_ID_ICH9_IFE_G", "E1000_DEV_ID_ICH9_IFE_G", board_ich9lan),
3421 PCI_ROM(0x8086, 0x10C3, "E1000_DEV_ID_ICH9_IFE_GT", "E1000_DEV_ID_ICH9_IFE_GT", board_ich9lan),
3422 PCI_ROM(0x8086, 0x10BD, "E1000_DEV_ID_ICH9_IGP_AMT", "E1000_DEV_ID_ICH9_IGP_AMT", board_ich9lan),
3423 PCI_ROM(0x8086, 0x294C, "E1000_DEV_ID_ICH9_IGP_C", "E1000_DEV_ID_ICH9_IGP_C", board_ich9lan),
3424 PCI_ROM(0x8086, 0x10E5, "E1000_DEV_ID_ICH9_BM", "E1000_DEV_ID_ICH9_BM", board_ich9lan),
3425 PCI_ROM(0x8086, 0x10BF, "E1000_DEV_ID_ICH9_IGP_M", "E1000_DEV_ID_ICH9_IGP_M", board_ich9lan),
3426 PCI_ROM(0x8086, 0x10F5, "E1000_DEV_ID_ICH9_IGP_M_AMT", "E1000_DEV_ID_ICH9_IGP_M_AMT", board_ich9lan),
3427 PCI_ROM(0x8086, 0x10CB, "E1000_DEV_ID_ICH9_IGP_M_V", "E1000_DEV_ID_ICH9_IGP_M_V", board_ich9lan),
3428 PCI_ROM(0x8086, 0x10CC, "E1000_DEV_ID_ICH10_R_BM_LM", "E1000_DEV_ID_ICH10_R_BM_LM", board_ich9lan),
3429 PCI_ROM(0x8086, 0x10CD, "E1000_DEV_ID_ICH10_R_BM_LF", "E1000_DEV_ID_ICH10_R_BM_LF", board_ich9lan),
3430 PCI_ROM(0x8086, 0x10CE, "E1000_DEV_ID_ICH10_R_BM_V", "E1000_DEV_ID_ICH10_R_BM_V", board_ich9lan),
3431 PCI_ROM(0x8086, 0x10DE, "E1000_DEV_ID_ICH10_D_BM_LM", "E1000_DEV_ID_ICH10_D_BM_LM", board_ich10lan),
3432 PCI_ROM(0x8086, 0x10DF, "E1000_DEV_ID_ICH10_D_BM_LF", "E1000_DEV_ID_ICH10_D_BM_LF", board_ich10lan),
3433 PCI_ROM(0x8086, 0x10EA, "E1000_DEV_ID_PCH_M_HV_LM", "E1000_DEV_ID_PCH_M_HV_LM", board_pchlan),
3434 PCI_ROM(0x8086, 0x10EB, "E1000_DEV_ID_PCH_M_HV_LC", "E1000_DEV_ID_PCH_M_HV_LC", board_pchlan),
3435 PCI_ROM(0x8086, 0x10EF, "E1000_DEV_ID_PCH_D_HV_DM", "E1000_DEV_ID_PCH_D_HV_DM", board_pchlan),
3436 PCI_ROM(0x8086, 0x10F0, "E1000_DEV_ID_PCH_D_HV_DC", "E1000_DEV_ID_PCH_D_HV_DC", board_pchlan),
3439 struct pci_driver e1000e_ich8lan_driver __pci_driver = {
3440 .ids = e1000e_ich8lan_nics,
3441 .id_count = (sizeof (e1000e_ich8lan_nics) / sizeof (e1000e_ich8lan_nics[0])),
3442 .probe = e1000e_probe,
3443 .remove = e1000e_remove,