2 * This file is part of the GROMACS molecular simulation package.
4 * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5 * Copyright (c) 2001-2004, The GROMACS development team.
6 * Copyright (c) 2013-2019,2020, by the GROMACS development team, led by
7 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8 * and including many others, as listed in the AUTHORS file in the
9 * top-level source directory and at http://www.gromacs.org.
11 * GROMACS is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public License
13 * as published by the Free Software Foundation; either version 2.1
14 * of the License, or (at your option) any later version.
16 * GROMACS is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with GROMACS; if not, see
23 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
26 * If you want to redistribute modifications to GROMACS, please
27 * consider that scientific software is very special. Version
28 * control is crucial - bugs must be traceable. We will be happy to
29 * consider code for inclusion in the official distribution, but
30 * derived work must not be called official GROMACS. Details are found
31 * in the README & COPYING files - if they are missing, get the
32 * official version at http://www.gromacs.org.
34 * To help us fund GROMACS development, we humbly ask that you cite
35 * the research papers on the package. Check out http://www.gromacs.org.
49 #include "gromacs/applied_forces/awh/awh.h"
50 #include "gromacs/domdec/dlbtiming.h"
51 #include "gromacs/domdec/domdec.h"
52 #include "gromacs/domdec/domdec_struct.h"
53 #include "gromacs/domdec/gpuhaloexchange.h"
54 #include "gromacs/domdec/partition.h"
55 #include "gromacs/essentialdynamics/edsam.h"
56 #include "gromacs/ewald/pme.h"
57 #include "gromacs/ewald/pme_pp.h"
58 #include "gromacs/ewald/pme_pp_comm_gpu.h"
59 #include "gromacs/gmxlib/network.h"
60 #include "gromacs/gmxlib/nonbonded/nb_free_energy.h"
61 #include "gromacs/gmxlib/nonbonded/nb_kernel.h"
62 #include "gromacs/gmxlib/nonbonded/nonbonded.h"
63 #include "gromacs/gpu_utils/gpu_utils.h"
64 #include "gromacs/imd/imd.h"
65 #include "gromacs/listed_forces/disre.h"
66 #include "gromacs/listed_forces/gpubonded.h"
67 #include "gromacs/listed_forces/listed_forces.h"
68 #include "gromacs/listed_forces/orires.h"
69 #include "gromacs/math/arrayrefwithpadding.h"
70 #include "gromacs/math/functions.h"
71 #include "gromacs/math/units.h"
72 #include "gromacs/math/vec.h"
73 #include "gromacs/math/vecdump.h"
74 #include "gromacs/mdlib/calcmu.h"
75 #include "gromacs/mdlib/calcvir.h"
76 #include "gromacs/mdlib/constr.h"
77 #include "gromacs/mdlib/dispersioncorrection.h"
78 #include "gromacs/mdlib/enerdata_utils.h"
79 #include "gromacs/mdlib/force.h"
80 #include "gromacs/mdlib/force_flags.h"
81 #include "gromacs/mdlib/forcerec.h"
82 #include "gromacs/mdlib/gmx_omp_nthreads.h"
83 #include "gromacs/mdlib/update.h"
84 #include "gromacs/mdlib/vsite.h"
85 #include "gromacs/mdlib/wall.h"
86 #include "gromacs/mdlib/wholemoleculetransform.h"
87 #include "gromacs/mdtypes/commrec.h"
88 #include "gromacs/mdtypes/enerdata.h"
89 #include "gromacs/mdtypes/forcebuffers.h"
90 #include "gromacs/mdtypes/forceoutput.h"
91 #include "gromacs/mdtypes/forcerec.h"
92 #include "gromacs/mdtypes/iforceprovider.h"
93 #include "gromacs/mdtypes/inputrec.h"
94 #include "gromacs/mdtypes/md_enums.h"
95 #include "gromacs/mdtypes/mdatom.h"
96 #include "gromacs/mdtypes/multipletimestepping.h"
97 #include "gromacs/mdtypes/simulation_workload.h"
98 #include "gromacs/mdtypes/state.h"
99 #include "gromacs/mdtypes/state_propagator_data_gpu.h"
100 #include "gromacs/nbnxm/gpu_data_mgmt.h"
101 #include "gromacs/nbnxm/nbnxm.h"
102 #include "gromacs/nbnxm/nbnxm_gpu.h"
103 #include "gromacs/pbcutil/ishift.h"
104 #include "gromacs/pbcutil/pbc.h"
105 #include "gromacs/pulling/pull.h"
106 #include "gromacs/pulling/pull_rotation.h"
107 #include "gromacs/timing/cyclecounter.h"
108 #include "gromacs/timing/gpu_timing.h"
109 #include "gromacs/timing/wallcycle.h"
110 #include "gromacs/timing/wallcyclereporting.h"
111 #include "gromacs/timing/walltime_accounting.h"
112 #include "gromacs/topology/topology.h"
113 #include "gromacs/utility/arrayref.h"
114 #include "gromacs/utility/basedefinitions.h"
115 #include "gromacs/utility/cstringutil.h"
116 #include "gromacs/utility/exceptions.h"
117 #include "gromacs/utility/fatalerror.h"
118 #include "gromacs/utility/fixedcapacityvector.h"
119 #include "gromacs/utility/gmxassert.h"
120 #include "gromacs/utility/gmxmpi.h"
121 #include "gromacs/utility/logger.h"
122 #include "gromacs/utility/smalloc.h"
123 #include "gromacs/utility/strconvert.h"
124 #include "gromacs/utility/sysinfo.h"
126 #include "gpuforcereduction.h"
129 using gmx::AtomLocality
;
130 using gmx::DomainLifetimeWorkload
;
131 using gmx::ForceOutputs
;
132 using gmx::ForceWithShiftForces
;
133 using gmx::InteractionLocality
;
135 using gmx::SimulationWorkload
;
136 using gmx::StepWorkload
;
138 // TODO: this environment variable allows us to verify before release
139 // that on less common architectures the total cost of polling is not larger than
140 // a blocking wait (so polling does not introduce overhead when the static
141 // PME-first ordering would suffice).
142 static const bool c_disableAlternatingWait
= (getenv("GMX_DISABLE_ALTERNATING_GPU_WAIT") != nullptr);
144 static void sum_forces(ArrayRef
<RVec
> f
, ArrayRef
<const RVec
> forceToAdd
)
146 GMX_ASSERT(f
.size() >= forceToAdd
.size(), "Accumulation buffer should be sufficiently large");
147 const int end
= forceToAdd
.size();
149 int gmx_unused nt
= gmx_omp_nthreads_get(emntDefault
);
150 #pragma omp parallel for num_threads(nt) schedule(static)
151 for (int i
= 0; i
< end
; i
++)
153 rvec_inc(f
[i
], forceToAdd
[i
]);
157 static void calc_virial(int start
,
160 const gmx::ForceWithShiftForces
& forceWithShiftForces
,
164 const t_forcerec
* fr
,
167 /* The short-range virial from surrounding boxes */
168 const rvec
* fshift
= as_rvec_array(forceWithShiftForces
.shiftForces().data());
169 calc_vir(SHIFTS
, fr
->shift_vec
, fshift
, vir_part
, pbcType
== PbcType::Screw
, box
);
170 inc_nrnb(nrnb
, eNR_VIRIAL
, SHIFTS
);
172 /* Calculate partial virial, for local atoms only, based on short range.
173 * Total virial is computed in global_stat, called from do_md
175 const rvec
* f
= as_rvec_array(forceWithShiftForces
.force().data());
176 f_calc_vir(start
, start
+ homenr
, x
, f
, vir_part
, box
);
177 inc_nrnb(nrnb
, eNR_VIRIAL
, homenr
);
181 pr_rvecs(debug
, 0, "vir_part", vir_part
, DIM
);
185 static void pull_potential_wrapper(const t_commrec
* cr
,
186 const t_inputrec
* ir
,
188 gmx::ArrayRef
<const gmx::RVec
> x
,
189 gmx::ForceWithVirial
* force
,
190 const t_mdatoms
* mdatoms
,
191 gmx_enerdata_t
* enerd
,
195 gmx_wallcycle_t wcycle
)
200 /* Calculate the center of mass forces, this requires communication,
201 * which is why pull_potential is called close to other communication.
203 wallcycle_start(wcycle
, ewcPULLPOT
);
204 set_pbc(&pbc
, ir
->pbcType
, box
);
206 enerd
->term
[F_COM_PULL
] +=
207 pull_potential(pull_work
, mdatoms
->massT
, &pbc
, cr
, t
, lambda
[efptRESTRAINT
],
208 as_rvec_array(x
.data()), force
, &dvdl
);
209 enerd
->dvdl_lin
[efptRESTRAINT
] += dvdl
;
210 wallcycle_stop(wcycle
, ewcPULLPOT
);
213 static void pme_receive_force_ener(t_forcerec
* fr
,
215 gmx::ForceWithVirial
* forceWithVirial
,
216 gmx_enerdata_t
* enerd
,
217 bool useGpuPmePpComms
,
218 bool receivePmeForceToGpu
,
219 gmx_wallcycle_t wcycle
)
221 real e_q
, e_lj
, dvdl_q
, dvdl_lj
;
222 float cycles_ppdpme
, cycles_seppme
;
224 cycles_ppdpme
= wallcycle_stop(wcycle
, ewcPPDURINGPME
);
225 dd_cycles_add(cr
->dd
, cycles_ppdpme
, ddCyclPPduringPME
);
227 /* In case of node-splitting, the PP nodes receive the long-range
228 * forces, virial and energy from the PME nodes here.
230 wallcycle_start(wcycle
, ewcPP_PMEWAITRECVF
);
233 gmx_pme_receive_f(fr
->pmePpCommGpu
.get(), cr
, forceWithVirial
, &e_q
, &e_lj
, &dvdl_q
, &dvdl_lj
,
234 useGpuPmePpComms
, receivePmeForceToGpu
, &cycles_seppme
);
235 enerd
->term
[F_COUL_RECIP
] += e_q
;
236 enerd
->term
[F_LJ_RECIP
] += e_lj
;
237 enerd
->dvdl_lin
[efptCOUL
] += dvdl_q
;
238 enerd
->dvdl_lin
[efptVDW
] += dvdl_lj
;
242 dd_cycles_add(cr
->dd
, cycles_seppme
, ddCyclPME
);
244 wallcycle_stop(wcycle
, ewcPP_PMEWAITRECVF
);
247 static void print_large_forces(FILE* fp
,
252 ArrayRef
<const RVec
> x
,
253 ArrayRef
<const RVec
> f
)
255 real force2Tolerance
= gmx::square(forceTolerance
);
256 gmx::index numNonFinite
= 0;
257 for (int i
= 0; i
< md
->homenr
; i
++)
259 real force2
= norm2(f
[i
]);
260 bool nonFinite
= !std::isfinite(force2
);
261 if (force2
>= force2Tolerance
|| nonFinite
)
263 fprintf(fp
, "step %" PRId64
" atom %6d x %8.3f %8.3f %8.3f force %12.5e\n", step
,
264 ddglatnr(cr
->dd
, i
), x
[i
][XX
], x
[i
][YY
], x
[i
][ZZ
], std::sqrt(force2
));
271 if (numNonFinite
> 0)
273 /* Note that with MPI this fatal call on one rank might interrupt
274 * the printing on other ranks. But we can only avoid that with
275 * an expensive MPI barrier that we would need at each step.
277 gmx_fatal(FARGS
, "At step %" PRId64
" detected non-finite forces on %td atoms", step
, numNonFinite
);
281 //! When necessary, spreads forces on vsites and computes the virial for \p forceOutputs->forceWithShiftForces()
282 static void postProcessForceWithShiftForces(t_nrnb
* nrnb
,
283 gmx_wallcycle_t wcycle
,
285 ArrayRef
<const RVec
> x
,
286 ForceOutputs
* forceOutputs
,
288 const t_mdatoms
& mdatoms
,
289 const t_forcerec
& fr
,
290 gmx::VirtualSitesHandler
* vsite
,
291 const StepWorkload
& stepWork
)
293 ForceWithShiftForces
& forceWithShiftForces
= forceOutputs
->forceWithShiftForces();
295 /* If we have NoVirSum forces, but we do not calculate the virial,
296 * we later sum the forceWithShiftForces buffer together with
297 * the noVirSum buffer and spread the combined vsite forces at once.
299 if (vsite
&& (!forceOutputs
->haveForceWithVirial() || stepWork
.computeVirial
))
301 using VirialHandling
= gmx::VirtualSitesHandler::VirialHandling
;
303 auto f
= forceWithShiftForces
.force();
304 auto fshift
= forceWithShiftForces
.shiftForces();
305 const VirialHandling virialHandling
=
306 (stepWork
.computeVirial
? VirialHandling::Pbc
: VirialHandling::None
);
307 vsite
->spreadForces(x
, f
, virialHandling
, fshift
, nullptr, nrnb
, box
, wcycle
);
308 forceWithShiftForces
.haveSpreadVsiteForces() = true;
311 if (stepWork
.computeVirial
)
313 /* Calculation of the virial must be done after vsites! */
314 calc_virial(0, mdatoms
.homenr
, as_rvec_array(x
.data()), forceWithShiftForces
, vir_force
,
315 box
, nrnb
, &fr
, fr
.pbcType
);
319 //! Spread, compute virial for and sum forces, when necessary
320 static void postProcessForces(const t_commrec
* cr
,
323 gmx_wallcycle_t wcycle
,
325 ArrayRef
<const RVec
> x
,
326 ForceOutputs
* forceOutputs
,
328 const t_mdatoms
* mdatoms
,
329 const t_forcerec
* fr
,
330 gmx::VirtualSitesHandler
* vsite
,
331 const StepWorkload
& stepWork
)
333 // Extract the final output force buffer, which is also the buffer for forces with shift forces
334 ArrayRef
<RVec
> f
= forceOutputs
->forceWithShiftForces().force();
336 if (forceOutputs
->haveForceWithVirial())
338 auto& forceWithVirial
= forceOutputs
->forceWithVirial();
342 /* Spread the mesh force on virtual sites to the other particles...
343 * This is parallellized. MPI communication is performed
344 * if the constructing atoms aren't local.
346 GMX_ASSERT(!stepWork
.computeVirial
|| f
.data() != forceWithVirial
.force_
.data(),
347 "We need separate force buffers for shift and virial forces when "
348 "computing the virial");
349 GMX_ASSERT(!stepWork
.computeVirial
350 || forceOutputs
->forceWithShiftForces().haveSpreadVsiteForces(),
351 "We should spread the force with shift forces separately when computing "
353 const gmx::VirtualSitesHandler::VirialHandling virialHandling
=
354 (stepWork
.computeVirial
? gmx::VirtualSitesHandler::VirialHandling::NonLinear
355 : gmx::VirtualSitesHandler::VirialHandling::None
);
356 matrix virial
= { { 0 } };
357 vsite
->spreadForces(x
, forceWithVirial
.force_
, virialHandling
, {}, virial
, nrnb
, box
, wcycle
);
358 forceWithVirial
.addVirialContribution(virial
);
361 if (stepWork
.computeVirial
)
363 /* Now add the forces, this is local */
364 sum_forces(f
, forceWithVirial
.force_
);
366 /* Add the direct virial contributions */
368 forceWithVirial
.computeVirial_
,
369 "forceWithVirial should request virial computation when we request the virial");
370 m_add(vir_force
, forceWithVirial
.getVirial(), vir_force
);
374 pr_rvecs(debug
, 0, "vir_force", vir_force
, DIM
);
380 GMX_ASSERT(vsite
== nullptr || forceOutputs
->forceWithShiftForces().haveSpreadVsiteForces(),
381 "We should have spread the vsite forces (earlier)");
384 if (fr
->print_force
>= 0)
386 print_large_forces(stderr
, mdatoms
, cr
, step
, fr
->print_force
, x
, f
);
390 static void do_nb_verlet(t_forcerec
* fr
,
391 const interaction_const_t
* ic
,
392 gmx_enerdata_t
* enerd
,
393 const StepWorkload
& stepWork
,
394 const InteractionLocality ilocality
,
398 gmx_wallcycle_t wcycle
)
400 if (!stepWork
.computeNonbondedForces
)
402 /* skip non-bonded calculation */
406 nonbonded_verlet_t
* nbv
= fr
->nbv
.get();
408 /* GPU kernel launch overhead is already timed separately */
411 /* When dynamic pair-list pruning is requested, we need to prune
412 * at nstlistPrune steps.
414 if (nbv
->isDynamicPruningStepCpu(step
))
416 /* Prune the pair-list beyond fr->ic->rlistPrune using
417 * the current coordinates of the atoms.
419 wallcycle_sub_start(wcycle
, ewcsNONBONDED_PRUNING
);
420 nbv
->dispatchPruneKernelCpu(ilocality
, fr
->shift_vec
);
421 wallcycle_sub_stop(wcycle
, ewcsNONBONDED_PRUNING
);
425 nbv
->dispatchNonbondedKernel(ilocality
, *ic
, stepWork
, clearF
, *fr
, enerd
, nrnb
);
428 static inline void clearRVecs(ArrayRef
<RVec
> v
, const bool useOpenmpThreading
)
430 int nth
= gmx_omp_nthreads_get_simple_rvec_task(emntDefault
, v
.ssize());
432 /* Note that we would like to avoid this conditional by putting it
433 * into the omp pragma instead, but then we still take the full
434 * omp parallel for overhead (at least with gcc5).
436 if (!useOpenmpThreading
|| nth
== 1)
445 #pragma omp parallel for num_threads(nth) schedule(static)
446 for (gmx::index i
= 0; i
< v
.ssize(); i
++)
453 /*! \brief Return an estimate of the average kinetic energy or 0 when unreliable
455 * \param groupOptions Group options, containing T-coupling options
457 static real
averageKineticEnergyEstimate(const t_grpopts
& groupOptions
)
459 real nrdfCoupled
= 0;
460 real nrdfUncoupled
= 0;
461 real kineticEnergy
= 0;
462 for (int g
= 0; g
< groupOptions
.ngtc
; g
++)
464 if (groupOptions
.tau_t
[g
] >= 0)
466 nrdfCoupled
+= groupOptions
.nrdf
[g
];
467 kineticEnergy
+= groupOptions
.nrdf
[g
] * 0.5 * groupOptions
.ref_t
[g
] * BOLTZ
;
471 nrdfUncoupled
+= groupOptions
.nrdf
[g
];
475 /* This conditional with > also catches nrdf=0 */
476 if (nrdfCoupled
> nrdfUncoupled
)
478 return kineticEnergy
* (nrdfCoupled
+ nrdfUncoupled
) / nrdfCoupled
;
486 /*! \brief This routine checks that the potential energy is finite.
488 * Always checks that the potential energy is finite. If step equals
489 * inputrec.init_step also checks that the magnitude of the potential energy
490 * is reasonable. Terminates with a fatal error when a check fails.
491 * Note that passing this check does not guarantee finite forces,
492 * since those use slightly different arithmetics. But in most cases
493 * there is just a narrow coordinate range where forces are not finite
494 * and energies are finite.
496 * \param[in] step The step number, used for checking and printing
497 * \param[in] enerd The energy data; the non-bonded group energies need to be added to
498 * enerd.term[F_EPOT] before calling this routine \param[in] inputrec The input record
500 static void checkPotentialEnergyValidity(int64_t step
, const gmx_enerdata_t
& enerd
, const t_inputrec
& inputrec
)
502 /* Threshold valid for comparing absolute potential energy against
503 * the kinetic energy. Normally one should not consider absolute
504 * potential energy values, but with a factor of one million
505 * we should never get false positives.
507 constexpr real c_thresholdFactor
= 1e6
;
509 bool energyIsNotFinite
= !std::isfinite(enerd
.term
[F_EPOT
]);
510 real averageKineticEnergy
= 0;
511 /* We only check for large potential energy at the initial step,
512 * because that is by far the most likely step for this too occur
513 * and because computing the average kinetic energy is not free.
514 * Note: nstcalcenergy >> 1 often does not allow to catch large energies
515 * before they become NaN.
517 if (step
== inputrec
.init_step
&& EI_DYNAMICS(inputrec
.eI
))
519 averageKineticEnergy
= averageKineticEnergyEstimate(inputrec
.opts
);
522 if (energyIsNotFinite
523 || (averageKineticEnergy
> 0 && enerd
.term
[F_EPOT
] > c_thresholdFactor
* averageKineticEnergy
))
528 ": The total potential energy is %g, which is %s. The LJ and electrostatic "
529 "contributions to the energy are %g and %g, respectively. A %s potential energy "
530 "can be caused by overlapping interactions in bonded interactions or very large%s "
531 "coordinate values. Usually this is caused by a badly- or non-equilibrated initial "
532 "configuration, incorrect interactions or parameters in the topology.",
533 step
, enerd
.term
[F_EPOT
], energyIsNotFinite
? "not finite" : "extremely high",
534 enerd
.term
[F_LJ
], enerd
.term
[F_COUL_SR
],
535 energyIsNotFinite
? "non-finite" : "very high", energyIsNotFinite
? " or Nan" : "");
539 /*! \brief Return true if there are special forces computed this step.
541 * The conditionals exactly correspond to those in computeSpecialForces().
543 static bool haveSpecialForces(const t_inputrec
& inputrec
,
544 const gmx::ForceProviders
& forceProviders
,
545 const pull_t
* pull_work
,
546 const bool computeForces
,
550 return ((computeForces
&& forceProviders
.hasForceProvider()) || // forceProviders
551 (inputrec
.bPull
&& pull_have_potential(pull_work
)) || // pull
552 inputrec
.bRot
|| // enforced rotation
553 (ed
!= nullptr) || // flooding
554 (inputrec
.bIMD
&& computeForces
)); // IMD
557 /*! \brief Compute forces and/or energies for special algorithms
559 * The intention is to collect all calls to algorithms that compute
560 * forces on local atoms only and that do not contribute to the local
561 * virial sum (but add their virial contribution separately).
562 * Eventually these should likely all become ForceProviders.
563 * Within this function the intention is to have algorithms that do
564 * global communication at the end, so global barriers within the MD loop
565 * are as close together as possible.
567 * \param[in] fplog The log file
568 * \param[in] cr The communication record
569 * \param[in] inputrec The input record
570 * \param[in] awh The Awh module (nullptr if none in use).
571 * \param[in] enforcedRotation Enforced rotation module.
572 * \param[in] imdSession The IMD session
573 * \param[in] pull_work The pull work structure.
574 * \param[in] step The current MD step
575 * \param[in] t The current time
576 * \param[in,out] wcycle Wallcycle accounting struct
577 * \param[in,out] forceProviders Pointer to a list of force providers
578 * \param[in] box The unit cell
579 * \param[in] x The coordinates
580 * \param[in] mdatoms Per atom properties
581 * \param[in] lambda Array of free-energy lambda values
582 * \param[in] stepWork Step schedule flags
583 * \param[in,out] forceWithVirial Force and virial buffers
584 * \param[in,out] enerd Energy buffer
585 * \param[in,out] ed Essential dynamics pointer
586 * \param[in] didNeighborSearch Tells if we did neighbor searching this step, used for ED sampling
588 * \todo Remove didNeighborSearch, which is used incorrectly.
589 * \todo Convert all other algorithms called here to ForceProviders.
591 static void computeSpecialForces(FILE* fplog
,
593 const t_inputrec
* inputrec
,
595 gmx_enfrot
* enforcedRotation
,
596 gmx::ImdSession
* imdSession
,
600 gmx_wallcycle_t wcycle
,
601 gmx::ForceProviders
* forceProviders
,
603 gmx::ArrayRef
<const gmx::RVec
> x
,
604 const t_mdatoms
* mdatoms
,
605 gmx::ArrayRef
<const real
> lambda
,
606 const StepWorkload
& stepWork
,
607 gmx::ForceWithVirial
* forceWithVirial
,
608 gmx_enerdata_t
* enerd
,
610 bool didNeighborSearch
)
612 /* NOTE: Currently all ForceProviders only provide forces.
613 * When they also provide energies, remove this conditional.
615 if (stepWork
.computeForces
)
617 gmx::ForceProviderInput
forceProviderInput(x
, *mdatoms
, t
, box
, *cr
);
618 gmx::ForceProviderOutput
forceProviderOutput(forceWithVirial
, enerd
);
620 /* Collect forces from modules */
621 forceProviders
->calculateForces(forceProviderInput
, &forceProviderOutput
);
624 if (inputrec
->bPull
&& pull_have_potential(pull_work
))
626 pull_potential_wrapper(cr
, inputrec
, box
, x
, forceWithVirial
, mdatoms
, enerd
, pull_work
,
627 lambda
.data(), t
, wcycle
);
631 const bool needForeignEnergyDifferences
= awh
->needForeignEnergyDifferences(step
);
632 std::vector
<double> foreignLambdaDeltaH
, foreignLambdaDhDl
;
633 if (needForeignEnergyDifferences
)
635 enerd
->foreignLambdaTerms
.finalizePotentialContributions(enerd
->dvdl_lin
, lambda
,
637 std::tie(foreignLambdaDeltaH
, foreignLambdaDhDl
) = enerd
->foreignLambdaTerms
.getTerms(cr
);
640 enerd
->term
[F_COM_PULL
] += awh
->applyBiasForcesAndUpdateBias(
641 inputrec
->pbcType
, mdatoms
->massT
, foreignLambdaDeltaH
, foreignLambdaDhDl
, box
,
642 forceWithVirial
, t
, step
, wcycle
, fplog
);
645 rvec
* f
= as_rvec_array(forceWithVirial
->force_
.data());
647 /* Add the forces from enforced rotation potentials (if any) */
650 wallcycle_start(wcycle
, ewcROTadd
);
651 enerd
->term
[F_COM_PULL
] += add_rot_forces(enforcedRotation
, f
, cr
, step
, t
);
652 wallcycle_stop(wcycle
, ewcROTadd
);
657 /* Note that since init_edsam() is called after the initialization
658 * of forcerec, edsam doesn't request the noVirSum force buffer.
659 * Thus if no other algorithm (e.g. PME) requires it, the forces
660 * here will contribute to the virial.
662 do_flood(cr
, inputrec
, as_rvec_array(x
.data()), f
, ed
, box
, step
, didNeighborSearch
);
665 /* Add forces from interactive molecular dynamics (IMD), if any */
666 if (inputrec
->bIMD
&& stepWork
.computeForces
)
668 imdSession
->applyForces(f
);
672 /*! \brief Launch the prepare_step and spread stages of PME GPU.
674 * \param[in] pmedata The PME structure
675 * \param[in] box The box matrix
676 * \param[in] stepWork Step schedule flags
677 * \param[in] xReadyOnDevice Event synchronizer indicating that the coordinates are ready in the device memory.
678 * \param[in] lambdaQ The Coulomb lambda of the current state.
679 * \param[in] wcycle The wallcycle structure
681 static inline void launchPmeGpuSpread(gmx_pme_t
* pmedata
,
683 const StepWorkload
& stepWork
,
684 GpuEventSynchronizer
* xReadyOnDevice
,
686 gmx_wallcycle_t wcycle
)
688 pme_gpu_prepare_computation(pmedata
, box
, wcycle
, stepWork
);
689 pme_gpu_launch_spread(pmedata
, xReadyOnDevice
, wcycle
, lambdaQ
);
692 /*! \brief Launch the FFT and gather stages of PME GPU
694 * This function only implements setting the output forces (no accumulation).
696 * \param[in] pmedata The PME structure
697 * \param[in] lambdaQ The Coulomb lambda of the current system state.
698 * \param[in] wcycle The wallcycle structure
699 * \param[in] stepWork Step schedule flags
701 static void launchPmeGpuFftAndGather(gmx_pme_t
* pmedata
,
703 gmx_wallcycle_t wcycle
,
704 const gmx::StepWorkload
& stepWork
)
706 pme_gpu_launch_complex_transforms(pmedata
, wcycle
, stepWork
);
707 pme_gpu_launch_gather(pmedata
, wcycle
, lambdaQ
);
711 * Polling wait for either of the PME or nonbonded GPU tasks.
713 * Instead of a static order in waiting for GPU tasks, this function
714 * polls checking which of the two tasks completes first, and does the
715 * associated force buffer reduction overlapped with the other task.
716 * By doing that, unlike static scheduling order, it can always overlap
717 * one of the reductions, regardless of the GPU task completion order.
719 * \param[in] nbv Nonbonded verlet structure
720 * \param[in,out] pmedata PME module data
721 * \param[in,out] forceOutputsNonbonded Force outputs for the non-bonded forces and shift forces
722 * \param[in,out] forceOutputsPme Force outputs for the PME forces and virial
723 * \param[in,out] enerd Energy data structure results are reduced into
724 * \param[in] lambdaQ The Coulomb lambda of the current system state.
725 * \param[in] stepWork Step schedule flags
726 * \param[in] wcycle The wallcycle structure
728 static void alternatePmeNbGpuWaitReduce(nonbonded_verlet_t
* nbv
,
730 gmx::ForceOutputs
* forceOutputsNonbonded
,
731 gmx::ForceOutputs
* forceOutputsPme
,
732 gmx_enerdata_t
* enerd
,
734 const StepWorkload
& stepWork
,
735 gmx_wallcycle_t wcycle
)
737 bool isPmeGpuDone
= false;
738 bool isNbGpuDone
= false;
740 gmx::ArrayRef
<const gmx::RVec
> pmeGpuForces
;
742 while (!isPmeGpuDone
|| !isNbGpuDone
)
746 GpuTaskCompletion completionType
=
747 (isNbGpuDone
) ? GpuTaskCompletion::Wait
: GpuTaskCompletion::Check
;
748 isPmeGpuDone
= pme_gpu_try_finish_task(pmedata
, stepWork
, wcycle
,
749 &forceOutputsPme
->forceWithVirial(), enerd
,
750 lambdaQ
, completionType
);
755 auto& forceBuffersNonbonded
= forceOutputsNonbonded
->forceWithShiftForces();
756 GpuTaskCompletion completionType
=
757 (isPmeGpuDone
) ? GpuTaskCompletion::Wait
: GpuTaskCompletion::Check
;
758 isNbGpuDone
= Nbnxm::gpu_try_finish_task(
759 nbv
->gpu_nbv
, stepWork
, AtomLocality::Local
, enerd
->grpp
.ener
[egLJSR
].data(),
760 enerd
->grpp
.ener
[egCOULSR
].data(), forceBuffersNonbonded
.shiftForces(),
761 completionType
, wcycle
);
765 nbv
->atomdata_add_nbat_f_to_f(AtomLocality::Local
, forceBuffersNonbonded
.force());
771 /*! \brief Set up the different force buffers; also does clearing.
773 * \param[in] forceHelperBuffers Helper force buffers
774 * \param[in] force force array
775 * \param[in] stepWork Step schedule flags
776 * \param[out] wcycle wallcycle recording structure
778 * \returns Cleared force output structure
780 static ForceOutputs
setupForceOutputs(ForceHelperBuffers
* forceHelperBuffers
,
781 gmx::ArrayRefWithPadding
<gmx::RVec
> force
,
782 const StepWorkload
& stepWork
,
783 gmx_wallcycle_t wcycle
)
785 wallcycle_sub_start(wcycle
, ewcsCLEAR_FORCE_BUFFER
);
787 /* NOTE: We assume fr->shiftForces is all zeros here */
788 gmx::ForceWithShiftForces
forceWithShiftForces(force
, stepWork
.computeVirial
,
789 forceHelperBuffers
->shiftForces());
791 if (stepWork
.computeForces
)
793 /* Clear the short- and long-range forces */
794 clearRVecs(forceWithShiftForces
.force(), true);
796 /* Clear the shift forces */
797 clearRVecs(forceWithShiftForces
.shiftForces(), false);
800 /* If we need to compute the virial, we might need a separate
801 * force buffer for algorithms for which the virial is calculated
802 * directly, such as PME. Otherwise, forceWithVirial uses the
803 * the same force (f in legacy calls) buffer as other algorithms.
805 const bool useSeparateForceWithVirialBuffer
=
806 (stepWork
.computeForces
807 && (stepWork
.computeVirial
&& forceHelperBuffers
->haveDirectVirialContributions()));
808 /* forceWithVirial uses the local atom range only */
809 gmx::ForceWithVirial
forceWithVirial(
810 useSeparateForceWithVirialBuffer
? forceHelperBuffers
->forceBufferForDirectVirialContributions()
811 : force
.unpaddedArrayRef(),
812 stepWork
.computeVirial
);
814 if (useSeparateForceWithVirialBuffer
)
816 /* TODO: update comment
817 * We only compute forces on local atoms. Note that vsites can
818 * spread to non-local atoms, but that part of the buffer is
819 * cleared separately in the vsite spreading code.
821 clearRVecs(forceWithVirial
.force_
, true);
824 wallcycle_sub_stop(wcycle
, ewcsCLEAR_FORCE_BUFFER
);
826 return ForceOutputs(forceWithShiftForces
, forceHelperBuffers
->haveDirectVirialContributions(),
831 /*! \brief Set up flags that have the lifetime of the domain indicating what type of work is there to compute.
833 static DomainLifetimeWorkload
setupDomainLifetimeWorkload(const t_inputrec
& inputrec
,
834 const t_forcerec
& fr
,
835 const pull_t
* pull_work
,
837 const t_mdatoms
& mdatoms
,
838 const SimulationWorkload
& simulationWork
,
839 const StepWorkload
& stepWork
)
841 DomainLifetimeWorkload domainWork
;
842 // Note that haveSpecialForces is constant over the whole run
843 domainWork
.haveSpecialForces
=
844 haveSpecialForces(inputrec
, *fr
.forceProviders
, pull_work
, stepWork
.computeForces
, ed
);
845 domainWork
.haveCpuListedForceWork
= false;
846 domainWork
.haveCpuBondedWork
= false;
847 for (const auto& listedForces
: fr
.listedForces
)
849 if (listedForces
.haveCpuListedForces(*fr
.fcdata
))
851 domainWork
.haveCpuListedForceWork
= true;
853 if (listedForces
.haveCpuBondeds())
855 domainWork
.haveCpuBondedWork
= true;
858 domainWork
.haveGpuBondedWork
= ((fr
.gpuBonded
!= nullptr) && fr
.gpuBonded
->haveInteractions());
859 // Note that haveFreeEnergyWork is constant over the whole run
860 domainWork
.haveFreeEnergyWork
= (fr
.efep
!= efepNO
&& mdatoms
.nPerturbed
!= 0);
861 // We assume we have local force work if there are CPU
862 // force tasks including PME or nonbondeds.
863 domainWork
.haveCpuLocalForceWork
=
864 domainWork
.haveSpecialForces
|| domainWork
.haveCpuListedForceWork
865 || domainWork
.haveFreeEnergyWork
|| simulationWork
.useCpuNonbonded
|| simulationWork
.useCpuPme
866 || simulationWork
.haveEwaldSurfaceContribution
|| inputrec
.nwall
> 0;
871 /*! \brief Set up force flag stuct from the force bitmask.
873 * \param[in] legacyFlags Force bitmask flags used to construct the new flags
874 * \param[in] mtsLevels The multiple time-stepping levels, either empty or 2 levels
875 * \param[in] step The current MD step
876 * \param[in] simulationWork Simulation workload description.
877 * \param[in] rankHasPmeDuty If this rank computes PME.
879 * \returns New Stepworkload description.
881 static StepWorkload
setupStepWorkload(const int legacyFlags
,
882 ArrayRef
<const gmx::MtsLevel
> mtsLevels
,
884 const SimulationWorkload
& simulationWork
,
885 const bool rankHasPmeDuty
)
887 GMX_ASSERT(mtsLevels
.empty() || mtsLevels
.size() == 2, "Expect 0 or 2 MTS levels");
888 const bool computeSlowForces
= (mtsLevels
.empty() || step
% mtsLevels
[1].stepFactor
== 0);
891 flags
.stateChanged
= ((legacyFlags
& GMX_FORCE_STATECHANGED
) != 0);
892 flags
.haveDynamicBox
= ((legacyFlags
& GMX_FORCE_DYNAMICBOX
) != 0);
893 flags
.doNeighborSearch
= ((legacyFlags
& GMX_FORCE_NS
) != 0);
894 flags
.computeSlowForces
= computeSlowForces
;
895 flags
.computeVirial
= ((legacyFlags
& GMX_FORCE_VIRIAL
) != 0);
896 flags
.computeEnergy
= ((legacyFlags
& GMX_FORCE_ENERGY
) != 0);
897 flags
.computeForces
= ((legacyFlags
& GMX_FORCE_FORCES
) != 0);
898 flags
.computeListedForces
= ((legacyFlags
& GMX_FORCE_LISTED
) != 0);
899 flags
.computeNonbondedForces
=
900 ((legacyFlags
& GMX_FORCE_NONBONDED
) != 0) && simulationWork
.computeNonbonded
901 && !(simulationWork
.computeNonbondedAtMtsLevel1
&& !computeSlowForces
);
902 flags
.computeDhdl
= ((legacyFlags
& GMX_FORCE_DHDL
) != 0);
904 if (simulationWork
.useGpuBufferOps
)
906 GMX_ASSERT(simulationWork
.useGpuNonbonded
,
907 "Can only offload buffer ops if nonbonded computation is also offloaded");
909 flags
.useGpuXBufferOps
= simulationWork
.useGpuBufferOps
;
910 // on virial steps the CPU reduction path is taken
911 flags
.useGpuFBufferOps
= simulationWork
.useGpuBufferOps
&& !flags
.computeVirial
;
912 flags
.useGpuPmeFReduction
= flags
.computeSlowForces
&& flags
.useGpuFBufferOps
&& simulationWork
.useGpuPme
913 && (rankHasPmeDuty
|| simulationWork
.useGpuPmePpCommunication
);
919 /* \brief Launch end-of-step GPU tasks: buffer clearing and rolling pruning.
921 * TODO: eliminate \p useGpuPmeOnThisRank when this is
922 * incorporated in DomainLifetimeWorkload.
924 static void launchGpuEndOfStepTasks(nonbonded_verlet_t
* nbv
,
925 gmx::GpuBonded
* gpuBonded
,
927 gmx_enerdata_t
* enerd
,
928 const gmx::MdrunScheduleWorkload
& runScheduleWork
,
929 bool useGpuPmeOnThisRank
,
931 gmx_wallcycle_t wcycle
)
933 if (runScheduleWork
.simulationWork
.useGpuNonbonded
&& runScheduleWork
.stepWork
.computeNonbondedForces
)
935 /* Launch pruning before buffer clearing because the API overhead of the
936 * clear kernel launches can leave the GPU idle while it could be running
939 if (nbv
->isDynamicPruningStepGpu(step
))
941 nbv
->dispatchPruneKernelGpu(step
);
944 /* now clear the GPU outputs while we finish the step on the CPU */
945 wallcycle_start_nocount(wcycle
, ewcLAUNCH_GPU
);
946 wallcycle_sub_start_nocount(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
947 Nbnxm::gpu_clear_outputs(nbv
->gpu_nbv
, runScheduleWork
.stepWork
.computeVirial
);
948 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
949 wallcycle_stop(wcycle
, ewcLAUNCH_GPU
);
952 if (useGpuPmeOnThisRank
)
954 pme_gpu_reinit_computation(pmedata
, wcycle
);
957 if (runScheduleWork
.domainWork
.haveGpuBondedWork
&& runScheduleWork
.stepWork
.computeEnergy
)
959 // in principle this should be included in the DD balancing region,
960 // but generally it is infrequent so we'll omit it for the sake of
962 gpuBonded
->waitAccumulateEnergyTerms(enerd
);
964 gpuBonded
->clearEnergies();
968 //! \brief Data structure to hold dipole-related data and staging arrays
971 //! Dipole staging for fast summing over MPI
972 gmx::DVec muStaging
[2] = { { 0.0, 0.0, 0.0 } };
973 //! Dipole staging for states A and B (index 0 and 1 resp.)
974 gmx::RVec muStateAB
[2] = { { 0.0_real
, 0.0_real
, 0.0_real
} };
978 static void reduceAndUpdateMuTot(DipoleData
* dipoleData
,
980 const bool haveFreeEnergy
,
981 gmx::ArrayRef
<const real
> lambda
,
983 const DDBalanceRegionHandler
& ddBalanceRegionHandler
)
987 gmx_sumd(2 * DIM
, dipoleData
->muStaging
[0], cr
);
988 ddBalanceRegionHandler
.reopenRegionCpu();
990 for (int i
= 0; i
< 2; i
++)
992 for (int j
= 0; j
< DIM
; j
++)
994 dipoleData
->muStateAB
[i
][j
] = dipoleData
->muStaging
[i
][j
];
1000 copy_rvec(dipoleData
->muStateAB
[0], muTotal
);
1004 for (int j
= 0; j
< DIM
; j
++)
1006 muTotal
[j
] = (1.0 - lambda
[efptCOUL
]) * dipoleData
->muStateAB
[0][j
]
1007 + lambda
[efptCOUL
] * dipoleData
->muStateAB
[1][j
];
1012 /*! \brief Combines MTS level0 and level1 force buffes into a full and MTS-combined force buffer.
1014 * \param[in] numAtoms The number of atoms to combine forces for
1015 * \param[in,out] forceMtsLevel0 Input: F_level0, output: F_level0 + F_level1
1016 * \param[in,out] forceMts Input: F_level1, output: F_level0 + mtsFactor * F_level1
1017 * \param[in] mtsFactor The factor between the level0 and level1 time step
1019 static void combineMtsForces(const int numAtoms
,
1020 ArrayRef
<RVec
> forceMtsLevel0
,
1021 ArrayRef
<RVec
> forceMts
,
1022 const real mtsFactor
)
1024 const int gmx_unused numThreads
= gmx_omp_nthreads_get(emntDefault
);
1025 #pragma omp parallel for num_threads(numThreads) schedule(static)
1026 for (int i
= 0; i
< numAtoms
; i
++)
1028 const RVec forceMtsLevel0Tmp
= forceMtsLevel0
[i
];
1029 forceMtsLevel0
[i
] += forceMts
[i
];
1030 forceMts
[i
] = forceMtsLevel0Tmp
+ mtsFactor
* forceMts
[i
];
1034 /*! \brief Setup for the local and non-local GPU force reductions:
1035 * reinitialization plus the registration of forces and dependencies.
1037 * \param [in] runScheduleWork Schedule workload flag structure
1038 * \param [in] cr Communication record object
1039 * \param [in] fr Force record object
1040 * \param [in] ddUsesGpuDirectCommunication Whether GPU direct communication is in use
1042 static void setupGpuForceReductions(gmx::MdrunScheduleWorkload
* runScheduleWork
,
1043 const t_commrec
* cr
,
1045 bool ddUsesGpuDirectCommunication
)
1048 nonbonded_verlet_t
* nbv
= fr
->nbv
.get();
1049 gmx::StatePropagatorDataGpu
* stateGpu
= fr
->stateGpu
;
1051 // (re-)initialize local GPU force reduction
1052 const bool accumulate
=
1053 runScheduleWork
->domainWork
.haveCpuLocalForceWork
|| havePPDomainDecomposition(cr
);
1054 const int atomStart
= 0;
1055 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->reinit(
1056 stateGpu
->getForces(), nbv
->getNumAtoms(AtomLocality::Local
), nbv
->getGridIndices(),
1057 atomStart
, accumulate
, stateGpu
->fReducedOnDevice());
1059 // register forces and add dependencies
1060 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->registerNbnxmForce(nbv
->getGpuForces());
1062 if (runScheduleWork
->simulationWork
.useGpuPme
1063 && (thisRankHasDuty(cr
, DUTY_PME
) || runScheduleWork
->simulationWork
.useGpuPmePpCommunication
))
1065 void* forcePtr
= thisRankHasDuty(cr
, DUTY_PME
) ? pme_gpu_get_device_f(fr
->pmedata
)
1066 : // PME force buffer on same GPU
1067 fr
->pmePpCommGpu
->getGpuForceStagingPtr(); // buffer received from other GPU
1068 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->registerRvecForce(forcePtr
);
1070 GpuEventSynchronizer
* const pmeSynchronizer
=
1071 (thisRankHasDuty(cr
, DUTY_PME
) ? pme_gpu_get_f_ready_synchronizer(fr
->pmedata
)
1072 : // PME force buffer on same GPU
1073 fr
->pmePpCommGpu
->getForcesReadySynchronizer()); // buffer received from other GPU
1074 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->addDependency(pmeSynchronizer
);
1077 if ((runScheduleWork
->domainWork
.haveCpuLocalForceWork
|| havePPDomainDecomposition(cr
))
1078 && !ddUsesGpuDirectCommunication
)
1080 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->addDependency(
1081 stateGpu
->getForcesReadyOnDeviceEvent(AtomLocality::Local
, true));
1084 if (ddUsesGpuDirectCommunication
)
1086 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->addDependency(
1087 cr
->dd
->gpuHaloExchange
[0][0]->getForcesReadyOnDeviceEvent());
1090 if (havePPDomainDecomposition(cr
))
1092 // (re-)initialize non-local GPU force reduction
1093 const bool accumulate
= runScheduleWork
->domainWork
.haveCpuBondedWork
1094 || runScheduleWork
->domainWork
.haveFreeEnergyWork
;
1095 const int atomStart
= dd_numHomeAtoms(*cr
->dd
);
1096 fr
->gpuForceReduction
[gmx::AtomLocality::NonLocal
]->reinit(
1097 stateGpu
->getForces(), nbv
->getNumAtoms(AtomLocality::NonLocal
),
1098 nbv
->getGridIndices(), atomStart
, accumulate
);
1100 // register forces and add dependencies
1101 fr
->gpuForceReduction
[gmx::AtomLocality::NonLocal
]->registerNbnxmForce(nbv
->getGpuForces());
1102 if (runScheduleWork
->domainWork
.haveCpuBondedWork
|| runScheduleWork
->domainWork
.haveFreeEnergyWork
)
1104 fr
->gpuForceReduction
[gmx::AtomLocality::NonLocal
]->addDependency(
1105 stateGpu
->getForcesReadyOnDeviceEvent(AtomLocality::NonLocal
, true));
1111 void do_force(FILE* fplog
,
1112 const t_commrec
* cr
,
1113 const gmx_multisim_t
* ms
,
1114 const t_inputrec
* inputrec
,
1116 gmx_enfrot
* enforcedRotation
,
1117 gmx::ImdSession
* imdSession
,
1121 gmx_wallcycle_t wcycle
,
1122 const gmx_localtop_t
* top
,
1124 gmx::ArrayRefWithPadding
<gmx::RVec
> x
,
1126 gmx::ForceBuffersView
* forceView
,
1128 const t_mdatoms
* mdatoms
,
1129 gmx_enerdata_t
* enerd
,
1130 gmx::ArrayRef
<const real
> lambda
,
1132 gmx::MdrunScheduleWorkload
* runScheduleWork
,
1133 gmx::VirtualSitesHandler
* vsite
,
1138 const DDBalanceRegionHandler
& ddBalanceRegionHandler
)
1140 auto force
= forceView
->forceWithPadding();
1141 GMX_ASSERT(force
.unpaddedArrayRef().ssize() >= fr
->natoms_force_constr
,
1142 "The size of the force buffer should be at least the number of atoms to compute "
1145 nonbonded_verlet_t
* nbv
= fr
->nbv
.get();
1146 interaction_const_t
* ic
= fr
->ic
;
1148 gmx::StatePropagatorDataGpu
* stateGpu
= fr
->stateGpu
;
1150 const SimulationWorkload
& simulationWork
= runScheduleWork
->simulationWork
;
1152 runScheduleWork
->stepWork
= setupStepWorkload(legacyFlags
, inputrec
->mtsLevels
, step
,
1153 simulationWork
, thisRankHasDuty(cr
, DUTY_PME
));
1154 const StepWorkload
& stepWork
= runScheduleWork
->stepWork
;
1156 const bool useGpuPmeOnThisRank
=
1157 simulationWork
.useGpuPme
&& thisRankHasDuty(cr
, DUTY_PME
) && stepWork
.computeSlowForces
;
1159 /* At a search step we need to start the first balancing region
1160 * somewhere early inside the step after communication during domain
1161 * decomposition (and not during the previous step as usual).
1163 if (stepWork
.doNeighborSearch
)
1165 ddBalanceRegionHandler
.openBeforeForceComputationCpu(DdAllowBalanceRegionReopen::yes
);
1168 clear_mat(vir_force
);
1170 if (fr
->pbcType
!= PbcType::No
)
1172 /* Compute shift vectors every step,
1173 * because of pressure coupling or box deformation!
1175 if (stepWork
.haveDynamicBox
&& stepWork
.stateChanged
)
1177 calc_shifts(box
, fr
->shift_vec
);
1180 const bool fillGrid
= (stepWork
.doNeighborSearch
&& stepWork
.stateChanged
);
1181 const bool calcCGCM
= (fillGrid
&& !DOMAINDECOMP(cr
));
1184 put_atoms_in_box_omp(fr
->pbcType
, box
, x
.unpaddedArrayRef().subArray(0, mdatoms
->homenr
),
1185 gmx_omp_nthreads_get(emntDefault
));
1186 inc_nrnb(nrnb
, eNR_SHIFTX
, mdatoms
->homenr
);
1190 nbnxn_atomdata_copy_shiftvec(stepWork
.haveDynamicBox
, fr
->shift_vec
, nbv
->nbat
.get());
1192 const bool pmeSendCoordinatesFromGpu
=
1193 GMX_MPI
&& simulationWork
.useGpuPmePpCommunication
&& !(stepWork
.doNeighborSearch
);
1194 const bool reinitGpuPmePpComms
=
1195 GMX_MPI
&& simulationWork
.useGpuPmePpCommunication
&& (stepWork
.doNeighborSearch
);
1197 const auto localXReadyOnDevice
= (useGpuPmeOnThisRank
|| simulationWork
.useGpuBufferOps
)
1198 ? stateGpu
->getCoordinatesReadyOnDeviceEvent(
1199 AtomLocality::Local
, simulationWork
, stepWork
)
1202 // If coordinates are to be sent to PME task from CPU memory, perform that send here.
1203 // Otherwise the send will occur after H2D coordinate transfer.
1204 if (GMX_MPI
&& !thisRankHasDuty(cr
, DUTY_PME
) && !pmeSendCoordinatesFromGpu
&& stepWork
.computeSlowForces
)
1206 /* Send particle coordinates to the pme nodes */
1207 if (!stepWork
.doNeighborSearch
&& simulationWork
.useGpuUpdate
)
1209 GMX_RELEASE_ASSERT(false,
1210 "GPU update and separate PME ranks are only supported with GPU "
1211 "direct communication!");
1212 // TODO: when this code-path becomes supported add:
1213 // stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1216 gmx_pme_send_coordinates(fr
, cr
, box
, as_rvec_array(x
.unpaddedArrayRef().data()), lambda
[efptCOUL
],
1217 lambda
[efptVDW
], (stepWork
.computeVirial
|| stepWork
.computeEnergy
),
1218 step
, simulationWork
.useGpuPmePpCommunication
, reinitGpuPmePpComms
,
1219 pmeSendCoordinatesFromGpu
, localXReadyOnDevice
, wcycle
);
1222 // Coordinates on the device are needed if PME or BufferOps are offloaded.
1223 // The local coordinates can be copied right away.
1224 // NOTE: Consider moving this copy to right after they are updated and constrained,
1225 // if the later is not offloaded.
1226 if (useGpuPmeOnThisRank
|| stepWork
.useGpuXBufferOps
)
1228 if (stepWork
.doNeighborSearch
)
1230 // TODO refactor this to do_md, after partitioning.
1231 stateGpu
->reinit(mdatoms
->homenr
,
1232 cr
->dd
!= nullptr ? dd_numAtomsZones(*cr
->dd
) : mdatoms
->homenr
);
1233 if (useGpuPmeOnThisRank
)
1235 // TODO: This should be moved into PME setup function ( pme_gpu_prepare_computation(...) )
1236 pme_gpu_set_device_x(fr
->pmedata
, stateGpu
->getCoordinates());
1239 // We need to copy coordinates when:
1240 // 1. Update is not offloaded
1241 // 2. The buffers were reinitialized on search step
1242 if (!simulationWork
.useGpuUpdate
|| stepWork
.doNeighborSearch
)
1244 GMX_ASSERT(stateGpu
!= nullptr, "stateGpu should not be null");
1245 stateGpu
->copyCoordinatesToGpu(x
.unpaddedArrayRef(), AtomLocality::Local
);
1249 // TODO Update this comment when introducing SimulationWorkload
1251 // The conditions for gpuHaloExchange e.g. using GPU buffer
1252 // operations were checked before construction, so here we can
1253 // just use it and assert upon any conditions.
1254 const bool ddUsesGpuDirectCommunication
=
1255 ((cr
->dd
!= nullptr) && (!cr
->dd
->gpuHaloExchange
[0].empty()));
1256 GMX_ASSERT(!ddUsesGpuDirectCommunication
|| stepWork
.useGpuXBufferOps
,
1257 "Must use coordinate buffer ops with GPU halo exchange");
1258 const bool useGpuForcesHaloExchange
= ddUsesGpuDirectCommunication
&& stepWork
.useGpuFBufferOps
;
1260 // Copy coordinate from the GPU if update is on the GPU and there
1261 // are forces to be computed on the CPU, or for the computation of
1262 // virial, or if host-side data will be transferred from this task
1263 // to a remote task for halo exchange or PME-PP communication. At
1264 // search steps the current coordinates are already on the host,
1265 // hence copy is not needed.
1266 const bool haveHostPmePpComms
=
1267 !thisRankHasDuty(cr
, DUTY_PME
) && !simulationWork
.useGpuPmePpCommunication
;
1268 const bool haveHostHaloExchangeComms
= havePPDomainDecomposition(cr
) && !ddUsesGpuDirectCommunication
;
1270 bool gmx_used_in_debug haveCopiedXFromGpu
= false;
1271 if (simulationWork
.useGpuUpdate
&& !stepWork
.doNeighborSearch
1272 && (runScheduleWork
->domainWork
.haveCpuLocalForceWork
|| stepWork
.computeVirial
1273 || haveHostPmePpComms
|| haveHostHaloExchangeComms
))
1275 GMX_ASSERT(stateGpu
!= nullptr, "stateGpu should not be null");
1276 stateGpu
->copyCoordinatesFromGpu(x
.unpaddedArrayRef(), AtomLocality::Local
);
1277 haveCopiedXFromGpu
= true;
1280 // If coordinates are to be sent to PME task from GPU memory, perform that send here.
1281 // Otherwise the send will occur before the H2D coordinate transfer.
1282 if (!thisRankHasDuty(cr
, DUTY_PME
) && pmeSendCoordinatesFromGpu
)
1284 /* Send particle coordinates to the pme nodes */
1285 gmx_pme_send_coordinates(fr
, cr
, box
, as_rvec_array(x
.unpaddedArrayRef().data()), lambda
[efptCOUL
],
1286 lambda
[efptVDW
], (stepWork
.computeVirial
|| stepWork
.computeEnergy
),
1287 step
, simulationWork
.useGpuPmePpCommunication
, reinitGpuPmePpComms
,
1288 pmeSendCoordinatesFromGpu
, localXReadyOnDevice
, wcycle
);
1291 if (useGpuPmeOnThisRank
)
1293 launchPmeGpuSpread(fr
->pmedata
, box
, stepWork
, localXReadyOnDevice
, lambda
[efptCOUL
], wcycle
);
1296 const gmx::DomainLifetimeWorkload
& domainWork
= runScheduleWork
->domainWork
;
1298 /* do gridding for pair search */
1299 if (stepWork
.doNeighborSearch
)
1301 if (fr
->wholeMoleculeTransform
&& stepWork
.stateChanged
)
1303 fr
->wholeMoleculeTransform
->updateForAtomPbcJumps(x
.unpaddedArrayRef(), box
);
1307 // - vzero is constant, do we need to pass it?
1308 // - box_diag should be passed directly to nbnxn_put_on_grid
1314 box_diag
[XX
] = box
[XX
][XX
];
1315 box_diag
[YY
] = box
[YY
][YY
];
1316 box_diag
[ZZ
] = box
[ZZ
][ZZ
];
1318 wallcycle_start(wcycle
, ewcNS
);
1319 if (!DOMAINDECOMP(cr
))
1321 wallcycle_sub_start(wcycle
, ewcsNBS_GRID_LOCAL
);
1322 nbnxn_put_on_grid(nbv
, box
, 0, vzero
, box_diag
, nullptr, { 0, mdatoms
->homenr
}, -1,
1323 fr
->cginfo
, x
.unpaddedArrayRef(), 0, nullptr);
1324 wallcycle_sub_stop(wcycle
, ewcsNBS_GRID_LOCAL
);
1328 wallcycle_sub_start(wcycle
, ewcsNBS_GRID_NONLOCAL
);
1329 nbnxn_put_on_grid_nonlocal(nbv
, domdec_zones(cr
->dd
), fr
->cginfo
, x
.unpaddedArrayRef());
1330 wallcycle_sub_stop(wcycle
, ewcsNBS_GRID_NONLOCAL
);
1333 nbv
->setAtomProperties(gmx::constArrayRefFromArray(mdatoms
->typeA
, mdatoms
->nr
),
1334 gmx::constArrayRefFromArray(mdatoms
->chargeA
, mdatoms
->nr
), fr
->cginfo
);
1336 wallcycle_stop(wcycle
, ewcNS
);
1338 /* initialize the GPU nbnxm atom data and bonded data structures */
1339 if (simulationWork
.useGpuNonbonded
)
1341 wallcycle_start_nocount(wcycle
, ewcLAUNCH_GPU
);
1343 wallcycle_sub_start_nocount(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1344 Nbnxm::gpu_init_atomdata(nbv
->gpu_nbv
, nbv
->nbat
.get());
1345 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1349 /* Now we put all atoms on the grid, we can assign bonded
1350 * interactions to the GPU, where the grid order is
1351 * needed. Also the xq, f and fshift device buffers have
1352 * been reallocated if needed, so the bonded code can
1353 * learn about them. */
1354 // TODO the xq, f, and fshift buffers are now shared
1355 // resources, so they should be maintained by a
1356 // higher-level object than the nb module.
1357 fr
->gpuBonded
->updateInteractionListsAndDeviceBuffers(
1358 nbv
->getGridIndices(), top
->idef
, Nbnxm::gpu_get_xq(nbv
->gpu_nbv
),
1359 Nbnxm::gpu_get_f(nbv
->gpu_nbv
), Nbnxm::gpu_get_fshift(nbv
->gpu_nbv
));
1361 wallcycle_stop(wcycle
, ewcLAUNCH_GPU
);
1364 // Need to run after the GPU-offload bonded interaction lists
1365 // are set up to be able to determine whether there is bonded work.
1366 runScheduleWork
->domainWork
= setupDomainLifetimeWorkload(
1367 *inputrec
, *fr
, pull_work
, ed
, *mdatoms
, simulationWork
, stepWork
);
1369 wallcycle_start_nocount(wcycle
, ewcNS
);
1370 wallcycle_sub_start(wcycle
, ewcsNBS_SEARCH_LOCAL
);
1371 /* Note that with a GPU the launch overhead of the list transfer is not timed separately */
1372 nbv
->constructPairlist(InteractionLocality::Local
, top
->excls
, step
, nrnb
);
1374 nbv
->setupGpuShortRangeWork(fr
->gpuBonded
, InteractionLocality::Local
);
1376 wallcycle_sub_stop(wcycle
, ewcsNBS_SEARCH_LOCAL
);
1377 wallcycle_stop(wcycle
, ewcNS
);
1379 if (stepWork
.useGpuXBufferOps
)
1381 nbv
->atomdata_init_copy_x_to_nbat_x_gpu();
1384 if (simulationWork
.useGpuBufferOps
)
1386 setupGpuForceReductions(runScheduleWork
, cr
, fr
, ddUsesGpuDirectCommunication
);
1389 else if (!EI_TPI(inputrec
->eI
) && stepWork
.computeNonbondedForces
)
1391 if (stepWork
.useGpuXBufferOps
)
1393 GMX_ASSERT(stateGpu
, "stateGpu should be valid when buffer ops are offloaded");
1394 nbv
->convertCoordinatesGpu(AtomLocality::Local
, false, stateGpu
->getCoordinates(),
1395 localXReadyOnDevice
);
1399 if (simulationWork
.useGpuUpdate
)
1401 GMX_ASSERT(stateGpu
, "need a valid stateGpu object");
1402 GMX_ASSERT(haveCopiedXFromGpu
,
1403 "a wait should only be triggered if copy has been scheduled");
1404 stateGpu
->waitCoordinatesReadyOnHost(AtomLocality::Local
);
1406 nbv
->convertCoordinates(AtomLocality::Local
, false, x
.unpaddedArrayRef());
1410 if (simulationWork
.useGpuNonbonded
&& (stepWork
.computeNonbondedForces
|| domainWork
.haveGpuBondedWork
))
1412 ddBalanceRegionHandler
.openBeforeForceComputationGpu();
1414 wallcycle_start(wcycle
, ewcLAUNCH_GPU
);
1416 wallcycle_sub_start(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1417 Nbnxm::gpu_upload_shiftvec(nbv
->gpu_nbv
, nbv
->nbat
.get());
1418 if (stepWork
.doNeighborSearch
|| !stepWork
.useGpuXBufferOps
)
1420 Nbnxm::gpu_copy_xq_to_gpu(nbv
->gpu_nbv
, nbv
->nbat
.get(), AtomLocality::Local
);
1422 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1423 // with X buffer ops offloaded to the GPU on all but the search steps
1425 // bonded work not split into separate local and non-local, so with DD
1426 // we can only launch the kernel after non-local coordinates have been received.
1427 if (domainWork
.haveGpuBondedWork
&& !havePPDomainDecomposition(cr
))
1429 wallcycle_sub_start(wcycle
, ewcsLAUNCH_GPU_BONDED
);
1430 fr
->gpuBonded
->setPbcAndlaunchKernel(fr
->pbcType
, box
, fr
->bMolPBC
, stepWork
);
1431 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_BONDED
);
1434 /* launch local nonbonded work on GPU */
1435 wallcycle_sub_start_nocount(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1436 do_nb_verlet(fr
, ic
, enerd
, stepWork
, InteractionLocality::Local
, enbvClearFNo
, step
, nrnb
, wcycle
);
1437 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1438 wallcycle_stop(wcycle
, ewcLAUNCH_GPU
);
1441 if (useGpuPmeOnThisRank
)
1443 // In PME GPU and mixed mode we launch FFT / gather after the
1444 // X copy/transform to allow overlap as well as after the GPU NB
1445 // launch to avoid FFT launch overhead hijacking the CPU and delaying
1446 // the nonbonded kernel.
1447 launchPmeGpuFftAndGather(fr
->pmedata
, lambda
[efptCOUL
], wcycle
, stepWork
);
1450 /* Communicate coordinates and sum dipole if necessary +
1451 do non-local pair search */
1452 if (havePPDomainDecomposition(cr
))
1454 if (stepWork
.doNeighborSearch
)
1456 // TODO: fuse this branch with the above large stepWork.doNeighborSearch block
1457 wallcycle_start_nocount(wcycle
, ewcNS
);
1458 wallcycle_sub_start(wcycle
, ewcsNBS_SEARCH_NONLOCAL
);
1459 /* Note that with a GPU the launch overhead of the list transfer is not timed separately */
1460 nbv
->constructPairlist(InteractionLocality::NonLocal
, top
->excls
, step
, nrnb
);
1462 nbv
->setupGpuShortRangeWork(fr
->gpuBonded
, InteractionLocality::NonLocal
);
1463 wallcycle_sub_stop(wcycle
, ewcsNBS_SEARCH_NONLOCAL
);
1464 wallcycle_stop(wcycle
, ewcNS
);
1465 // TODO refactor this GPU halo exchange re-initialisation
1466 // to location in do_md where GPU halo exchange is
1467 // constructed at partitioning, after above stateGpu
1468 // re-initialization has similarly been refactored
1469 if (ddUsesGpuDirectCommunication
)
1471 reinitGpuHaloExchange(*cr
, stateGpu
->getCoordinates(), stateGpu
->getForces());
1476 if (ddUsesGpuDirectCommunication
)
1478 // The following must be called after local setCoordinates (which records an event
1479 // when the coordinate data has been copied to the device).
1480 communicateGpuHaloCoordinates(*cr
, box
, localXReadyOnDevice
);
1482 if (domainWork
.haveCpuBondedWork
|| domainWork
.haveFreeEnergyWork
)
1484 // non-local part of coordinate buffer must be copied back to host for CPU work
1485 stateGpu
->copyCoordinatesFromGpu(x
.unpaddedArrayRef(), AtomLocality::NonLocal
);
1490 // Note: GPU update + DD without direct communication is not supported,
1491 // a waitCoordinatesReadyOnHost() should be issued if it will be.
1492 GMX_ASSERT(!simulationWork
.useGpuUpdate
,
1493 "GPU update is not supported with CPU halo exchange");
1494 dd_move_x(cr
->dd
, box
, x
.unpaddedArrayRef(), wcycle
);
1497 if (stepWork
.useGpuXBufferOps
)
1499 if (!useGpuPmeOnThisRank
&& !ddUsesGpuDirectCommunication
)
1501 stateGpu
->copyCoordinatesToGpu(x
.unpaddedArrayRef(), AtomLocality::NonLocal
);
1503 nbv
->convertCoordinatesGpu(AtomLocality::NonLocal
, false, stateGpu
->getCoordinates(),
1504 stateGpu
->getCoordinatesReadyOnDeviceEvent(
1505 AtomLocality::NonLocal
, simulationWork
, stepWork
));
1509 nbv
->convertCoordinates(AtomLocality::NonLocal
, false, x
.unpaddedArrayRef());
1513 if (simulationWork
.useGpuNonbonded
)
1515 wallcycle_start(wcycle
, ewcLAUNCH_GPU
);
1517 if (stepWork
.doNeighborSearch
|| !stepWork
.useGpuXBufferOps
)
1519 wallcycle_sub_start(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1520 Nbnxm::gpu_copy_xq_to_gpu(nbv
->gpu_nbv
, nbv
->nbat
.get(), AtomLocality::NonLocal
);
1521 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1524 if (domainWork
.haveGpuBondedWork
)
1526 wallcycle_sub_start(wcycle
, ewcsLAUNCH_GPU_BONDED
);
1527 fr
->gpuBonded
->setPbcAndlaunchKernel(fr
->pbcType
, box
, fr
->bMolPBC
, stepWork
);
1528 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_BONDED
);
1531 /* launch non-local nonbonded tasks on GPU */
1532 wallcycle_sub_start(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1533 do_nb_verlet(fr
, ic
, enerd
, stepWork
, InteractionLocality::NonLocal
, enbvClearFNo
, step
,
1535 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1537 wallcycle_stop(wcycle
, ewcLAUNCH_GPU
);
1541 if (simulationWork
.useGpuNonbonded
&& stepWork
.computeNonbondedForces
)
1543 /* launch D2H copy-back F */
1544 wallcycle_start_nocount(wcycle
, ewcLAUNCH_GPU
);
1545 wallcycle_sub_start_nocount(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1547 if (havePPDomainDecomposition(cr
))
1549 Nbnxm::gpu_launch_cpyback(nbv
->gpu_nbv
, nbv
->nbat
.get(), stepWork
, AtomLocality::NonLocal
);
1551 Nbnxm::gpu_launch_cpyback(nbv
->gpu_nbv
, nbv
->nbat
.get(), stepWork
, AtomLocality::Local
);
1552 wallcycle_sub_stop(wcycle
, ewcsLAUNCH_GPU_NONBONDED
);
1554 if (domainWork
.haveGpuBondedWork
&& stepWork
.computeEnergy
)
1556 fr
->gpuBonded
->launchEnergyTransfer();
1558 wallcycle_stop(wcycle
, ewcLAUNCH_GPU
);
1561 gmx::ArrayRef
<const gmx::RVec
> xWholeMolecules
;
1562 if (fr
->wholeMoleculeTransform
)
1564 xWholeMolecules
= fr
->wholeMoleculeTransform
->wholeMoleculeCoordinates(x
.unpaddedArrayRef(), box
);
1567 DipoleData dipoleData
;
1569 if (simulationWork
.computeMuTot
)
1571 const int start
= 0;
1573 /* Calculate total (local) dipole moment in a temporary common array.
1574 * This makes it possible to sum them over nodes faster.
1576 gmx::ArrayRef
<const gmx::RVec
> xRef
=
1577 (xWholeMolecules
.empty() ? x
.unpaddedArrayRef() : xWholeMolecules
);
1578 calc_mu(start
, mdatoms
->homenr
, xRef
, mdatoms
->chargeA
, mdatoms
->chargeB
,
1579 mdatoms
->nChargePerturbed
, dipoleData
.muStaging
[0], dipoleData
.muStaging
[1]);
1581 reduceAndUpdateMuTot(&dipoleData
, cr
, (fr
->efep
!= efepNO
), lambda
, muTotal
, ddBalanceRegionHandler
);
1584 /* Reset energies */
1585 reset_enerdata(enerd
);
1587 if (DOMAINDECOMP(cr
) && !thisRankHasDuty(cr
, DUTY_PME
))
1589 wallcycle_start(wcycle
, ewcPPDURINGPME
);
1590 dd_force_flop_start(cr
->dd
, nrnb
);
1593 // For the rest of the CPU tasks that depend on GPU-update produced coordinates,
1594 // this wait ensures that the D2H transfer is complete.
1595 if ((simulationWork
.useGpuUpdate
)
1596 && (runScheduleWork
->domainWork
.haveCpuLocalForceWork
|| stepWork
.computeVirial
))
1598 stateGpu
->waitCoordinatesReadyOnHost(AtomLocality::Local
);
1603 wallcycle_start(wcycle
, ewcROT
);
1604 do_rotation(cr
, enforcedRotation
, box
, as_rvec_array(x
.unpaddedArrayRef().data()), t
, step
,
1605 stepWork
.doNeighborSearch
);
1606 wallcycle_stop(wcycle
, ewcROT
);
1609 /* Start the force cycle counter.
1610 * Note that a different counter is used for dynamic load balancing.
1612 wallcycle_start(wcycle
, ewcFORCE
);
1614 /* Set up and clear force outputs:
1615 * forceOutMtsLevel0: everything except what is in the other two outputs
1616 * forceOutMtsLevel1: PME-mesh and listed-forces group 1
1617 * forceOutNonbonded: non-bonded forces
1618 * Without multiple time stepping all point to the same object.
1619 * With multiple time-stepping the use is different for MTS fast (level0 only) and slow steps.
1621 ForceOutputs forceOutMtsLevel0
=
1622 setupForceOutputs(&fr
->forceHelperBuffers
[0], force
, stepWork
, wcycle
);
1624 // Force output for MTS combined forces, only set at level1 MTS steps
1625 std::optional
<ForceOutputs
> forceOutMts
=
1626 (fr
->useMts
&& stepWork
.computeSlowForces
)
1627 ? std::optional(setupForceOutputs(&fr
->forceHelperBuffers
[1],
1628 forceView
->forceMtsCombinedWithPadding(),
1632 ForceOutputs
* forceOutMtsLevel1
=
1633 fr
->useMts
? (stepWork
.computeSlowForces
? &forceOutMts
.value() : nullptr) : &forceOutMtsLevel0
;
1635 const bool nonbondedAtMtsLevel1
= runScheduleWork
->simulationWork
.computeNonbondedAtMtsLevel1
;
1637 ForceOutputs
* forceOutNonbonded
= nonbondedAtMtsLevel1
? forceOutMtsLevel1
: &forceOutMtsLevel0
;
1639 if (inputrec
->bPull
&& pull_have_constraint(pull_work
))
1641 clear_pull_forces(pull_work
);
1644 /* We calculate the non-bonded forces, when done on the CPU, here.
1645 * We do this before calling do_force_lowlevel, because in that
1646 * function, the listed forces are calculated before PME, which
1647 * does communication. With this order, non-bonded and listed
1648 * force calculation imbalance can be balanced out by the domain
1649 * decomposition load balancing.
1652 const bool useOrEmulateGpuNb
= simulationWork
.useGpuNonbonded
|| fr
->nbv
->emulateGpu();
1654 if (!useOrEmulateGpuNb
)
1656 do_nb_verlet(fr
, ic
, enerd
, stepWork
, InteractionLocality::Local
, enbvClearFYes
, step
, nrnb
, wcycle
);
1659 if (fr
->efep
!= efepNO
&& stepWork
.computeNonbondedForces
)
1661 /* Calculate the local and non-local free energy interactions here.
1662 * Happens here on the CPU both with and without GPU.
1664 nbv
->dispatchFreeEnergyKernel(InteractionLocality::Local
, fr
,
1665 as_rvec_array(x
.unpaddedArrayRef().data()),
1666 &forceOutNonbonded
->forceWithShiftForces(), *mdatoms
,
1667 inputrec
->fepvals
, lambda
, enerd
, stepWork
, nrnb
);
1669 if (havePPDomainDecomposition(cr
))
1671 nbv
->dispatchFreeEnergyKernel(InteractionLocality::NonLocal
, fr
,
1672 as_rvec_array(x
.unpaddedArrayRef().data()),
1673 &forceOutNonbonded
->forceWithShiftForces(), *mdatoms
,
1674 inputrec
->fepvals
, lambda
, enerd
, stepWork
, nrnb
);
1678 if (stepWork
.computeNonbondedForces
&& !useOrEmulateGpuNb
)
1680 if (havePPDomainDecomposition(cr
))
1682 do_nb_verlet(fr
, ic
, enerd
, stepWork
, InteractionLocality::NonLocal
, enbvClearFNo
, step
,
1686 if (stepWork
.computeForces
)
1688 /* Add all the non-bonded force to the normal force array.
1689 * This can be split into a local and a non-local part when overlapping
1690 * communication with calculation with domain decomposition.
1692 wallcycle_stop(wcycle
, ewcFORCE
);
1693 nbv
->atomdata_add_nbat_f_to_f(AtomLocality::All
,
1694 forceOutNonbonded
->forceWithShiftForces().force());
1695 wallcycle_start_nocount(wcycle
, ewcFORCE
);
1698 /* If there are multiple fshift output buffers we need to reduce them */
1699 if (stepWork
.computeVirial
)
1701 /* This is not in a subcounter because it takes a
1702 negligible and constant-sized amount of time */
1703 nbnxn_atomdata_add_nbat_fshift_to_fshift(
1704 *nbv
->nbat
, forceOutNonbonded
->forceWithShiftForces().shiftForces());
1708 // TODO Force flags should include haveFreeEnergyWork for this domain
1709 if (ddUsesGpuDirectCommunication
&& (domainWork
.haveCpuBondedWork
|| domainWork
.haveFreeEnergyWork
))
1711 /* Wait for non-local coordinate data to be copied from device */
1712 stateGpu
->waitCoordinatesReadyOnHost(AtomLocality::NonLocal
);
1715 // Compute wall interactions, when present.
1716 // Note: should be moved to special forces.
1717 if (inputrec
->nwall
&& stepWork
.computeNonbondedForces
)
1719 /* foreign lambda component for walls */
1720 real dvdl_walls
= do_walls(*inputrec
, *fr
, box
, *mdatoms
, x
.unpaddedConstArrayRef(),
1721 &forceOutMtsLevel0
.forceWithVirial(), lambda
[efptVDW
],
1722 enerd
->grpp
.ener
[egLJSR
].data(), nrnb
);
1723 enerd
->dvdl_lin
[efptVDW
] += dvdl_walls
;
1726 if (stepWork
.computeListedForces
)
1728 /* Check whether we need to take into account PBC in listed interactions */
1729 bool needMolPbc
= false;
1730 for (const auto& listedForces
: fr
->listedForces
)
1732 if (listedForces
.haveCpuListedForces(*fr
->fcdata
))
1734 needMolPbc
= fr
->bMolPBC
;
1742 /* Since all atoms are in the rectangular or triclinic unit-cell,
1743 * only single box vector shifts (2 in x) are required.
1745 set_pbc_dd(&pbc
, fr
->pbcType
, DOMAINDECOMP(cr
) ? cr
->dd
->numCells
: nullptr, TRUE
, box
);
1748 for (int mtsIndex
= 0; mtsIndex
< (fr
->useMts
&& stepWork
.computeSlowForces
? 2 : 1); mtsIndex
++)
1750 ListedForces
& listedForces
= fr
->listedForces
[mtsIndex
];
1751 ForceOutputs
& forceOut
= (mtsIndex
== 0 ? forceOutMtsLevel0
: *forceOutMtsLevel1
);
1752 listedForces
.calculate(
1753 wcycle
, box
, inputrec
->fepvals
, cr
, ms
, x
, xWholeMolecules
, fr
->fcdata
.get(),
1754 hist
, &forceOut
, fr
, &pbc
, enerd
, nrnb
, lambda
.data(), mdatoms
,
1755 DOMAINDECOMP(cr
) ? cr
->dd
->globalAtomIndices
.data() : nullptr, stepWork
);
1759 if (stepWork
.computeSlowForces
)
1761 calculateLongRangeNonbondeds(fr
, inputrec
, cr
, nrnb
, wcycle
, mdatoms
,
1762 x
.unpaddedConstArrayRef(), &forceOutMtsLevel1
->forceWithVirial(),
1763 enerd
, box
, lambda
.data(), as_rvec_array(dipoleData
.muStateAB
),
1764 stepWork
, ddBalanceRegionHandler
);
1767 wallcycle_stop(wcycle
, ewcFORCE
);
1769 // VdW dispersion correction, only computed on master rank to avoid double counting
1770 if ((stepWork
.computeEnergy
|| stepWork
.computeVirial
) && fr
->dispersionCorrection
&& MASTER(cr
))
1772 // Calculate long range corrections to pressure and energy
1773 const DispersionCorrection::Correction correction
=
1774 fr
->dispersionCorrection
->calculate(box
, lambda
[efptVDW
]);
1776 if (stepWork
.computeEnergy
)
1778 enerd
->term
[F_DISPCORR
] = correction
.energy
;
1779 enerd
->term
[F_DVDL_VDW
] += correction
.dvdl
;
1780 enerd
->dvdl_lin
[efptVDW
] += correction
.dvdl
;
1782 if (stepWork
.computeVirial
)
1784 correction
.correctVirial(vir_force
);
1785 enerd
->term
[F_PDISPCORR
] = correction
.pressure
;
1789 computeSpecialForces(fplog
, cr
, inputrec
, awh
, enforcedRotation
, imdSession
, pull_work
, step
, t
,
1790 wcycle
, fr
->forceProviders
, box
, x
.unpaddedArrayRef(), mdatoms
, lambda
, stepWork
,
1791 &forceOutMtsLevel0
.forceWithVirial(), enerd
, ed
, stepWork
.doNeighborSearch
);
1793 GMX_ASSERT(!(nonbondedAtMtsLevel1
&& stepWork
.useGpuFBufferOps
),
1794 "The schedule below does not allow for nonbonded MTS with GPU buffer ops");
1795 GMX_ASSERT(!(nonbondedAtMtsLevel1
&& useGpuForcesHaloExchange
),
1796 "The schedule below does not allow for nonbonded MTS with GPU halo exchange");
1797 // Will store the amount of cycles spent waiting for the GPU that
1798 // will be later used in the DLB accounting.
1799 float cycles_wait_gpu
= 0;
1800 if (useOrEmulateGpuNb
&& stepWork
.computeNonbondedForces
)
1802 auto& forceWithShiftForces
= forceOutNonbonded
->forceWithShiftForces();
1804 /* wait for non-local forces (or calculate in emulation mode) */
1805 if (havePPDomainDecomposition(cr
))
1807 if (simulationWork
.useGpuNonbonded
)
1809 cycles_wait_gpu
+= Nbnxm::gpu_wait_finish_task(
1810 nbv
->gpu_nbv
, stepWork
, AtomLocality::NonLocal
, enerd
->grpp
.ener
[egLJSR
].data(),
1811 enerd
->grpp
.ener
[egCOULSR
].data(), forceWithShiftForces
.shiftForces(), wcycle
);
1815 wallcycle_start_nocount(wcycle
, ewcFORCE
);
1816 do_nb_verlet(fr
, ic
, enerd
, stepWork
, InteractionLocality::NonLocal
, enbvClearFYes
,
1817 step
, nrnb
, wcycle
);
1818 wallcycle_stop(wcycle
, ewcFORCE
);
1821 if (stepWork
.useGpuFBufferOps
)
1823 // TODO: move this into DomainLifetimeWorkload, including the second part of the
1824 // condition The bonded and free energy CPU tasks can have non-local force
1825 // contributions which are a dependency for the GPU force reduction.
1826 bool haveNonLocalForceContribInCpuBuffer
=
1827 domainWork
.haveCpuBondedWork
|| domainWork
.haveFreeEnergyWork
;
1829 if (haveNonLocalForceContribInCpuBuffer
)
1831 stateGpu
->copyForcesToGpu(forceOutMtsLevel0
.forceWithShiftForces().force(),
1832 AtomLocality::NonLocal
);
1835 fr
->gpuForceReduction
[gmx::AtomLocality::NonLocal
]->execute();
1837 if (!useGpuForcesHaloExchange
)
1839 // copy from GPU input for dd_move_f()
1840 stateGpu
->copyForcesFromGpu(forceOutMtsLevel0
.forceWithShiftForces().force(),
1841 AtomLocality::NonLocal
);
1846 nbv
->atomdata_add_nbat_f_to_f(AtomLocality::NonLocal
, forceWithShiftForces
.force());
1849 if (fr
->nbv
->emulateGpu() && stepWork
.computeVirial
)
1851 nbnxn_atomdata_add_nbat_fshift_to_fshift(*nbv
->nbat
, forceWithShiftForces
.shiftForces());
1856 /* Combining the forces for multiple time stepping before the halo exchange, when possible,
1857 * avoids an extra halo exchange (when DD is used) and post-processing step.
1859 const bool combineMtsForcesBeforeHaloExchange
=
1860 (stepWork
.computeForces
&& fr
->useMts
&& stepWork
.computeSlowForces
1861 && (legacyFlags
& GMX_FORCE_DO_NOT_NEED_NORMAL_FORCE
) != 0
1862 && !(stepWork
.computeVirial
|| simulationWork
.useGpuNonbonded
|| useGpuPmeOnThisRank
));
1863 if (combineMtsForcesBeforeHaloExchange
)
1865 const int numAtoms
= havePPDomainDecomposition(cr
) ? dd_numAtomsZones(*cr
->dd
) : mdatoms
->homenr
;
1866 combineMtsForces(numAtoms
, force
.unpaddedArrayRef(), forceView
->forceMtsCombined(),
1867 inputrec
->mtsLevels
[1].stepFactor
);
1870 if (havePPDomainDecomposition(cr
))
1872 /* We are done with the CPU compute.
1873 * We will now communicate the non-local forces.
1874 * If we use a GPU this will overlap with GPU work, so in that case
1875 * we do not close the DD force balancing region here.
1877 ddBalanceRegionHandler
.closeAfterForceComputationCpu();
1879 if (stepWork
.computeForces
)
1881 if (useGpuForcesHaloExchange
)
1883 if (domainWork
.haveCpuLocalForceWork
)
1885 stateGpu
->copyForcesToGpu(forceOutMtsLevel0
.forceWithShiftForces().force(),
1886 AtomLocality::Local
);
1888 communicateGpuHaloForces(*cr
, domainWork
.haveCpuLocalForceWork
);
1892 if (stepWork
.useGpuFBufferOps
)
1894 stateGpu
->waitForcesReadyOnHost(AtomLocality::NonLocal
);
1897 // Without MTS or with MTS at slow steps with uncombined forces we need to
1898 // communicate the fast forces
1899 if (!fr
->useMts
|| !combineMtsForcesBeforeHaloExchange
)
1901 dd_move_f(cr
->dd
, &forceOutMtsLevel0
.forceWithShiftForces(), wcycle
);
1903 // With MTS we need to communicate the slow or combined (in forceOutMtsLevel1) forces
1904 if (fr
->useMts
&& stepWork
.computeSlowForces
)
1906 dd_move_f(cr
->dd
, &forceOutMtsLevel1
->forceWithShiftForces(), wcycle
);
1912 // With both nonbonded and PME offloaded a GPU on the same rank, we use
1913 // an alternating wait/reduction scheme.
1914 bool alternateGpuWait
= (!c_disableAlternatingWait
&& useGpuPmeOnThisRank
&& simulationWork
.useGpuNonbonded
1915 && !DOMAINDECOMP(cr
) && !stepWork
.useGpuFBufferOps
);
1916 if (alternateGpuWait
)
1918 alternatePmeNbGpuWaitReduce(fr
->nbv
.get(), fr
->pmedata
, forceOutNonbonded
,
1919 forceOutMtsLevel1
, enerd
, lambda
[efptCOUL
], stepWork
, wcycle
);
1922 if (!alternateGpuWait
&& useGpuPmeOnThisRank
)
1924 pme_gpu_wait_and_reduce(fr
->pmedata
, stepWork
, wcycle
,
1925 &forceOutMtsLevel1
->forceWithVirial(), enerd
, lambda
[efptCOUL
]);
1928 /* Wait for local GPU NB outputs on the non-alternating wait path */
1929 if (!alternateGpuWait
&& stepWork
.computeNonbondedForces
&& simulationWork
.useGpuNonbonded
)
1931 /* Measured overhead on CUDA and OpenCL with(out) GPU sharing
1932 * is between 0.5 and 1.5 Mcycles. So 2 MCycles is an overestimate,
1933 * but even with a step of 0.1 ms the difference is less than 1%
1936 const float gpuWaitApiOverheadMargin
= 2e6F
; /* cycles */
1937 const float waitCycles
= Nbnxm::gpu_wait_finish_task(
1938 nbv
->gpu_nbv
, stepWork
, AtomLocality::Local
, enerd
->grpp
.ener
[egLJSR
].data(),
1939 enerd
->grpp
.ener
[egCOULSR
].data(),
1940 forceOutNonbonded
->forceWithShiftForces().shiftForces(), wcycle
);
1942 if (ddBalanceRegionHandler
.useBalancingRegion())
1944 DdBalanceRegionWaitedForGpu waitedForGpu
= DdBalanceRegionWaitedForGpu::yes
;
1945 if (stepWork
.computeForces
&& waitCycles
<= gpuWaitApiOverheadMargin
)
1947 /* We measured few cycles, it could be that the kernel
1948 * and transfer finished earlier and there was no actual
1949 * wait time, only API call overhead.
1950 * Then the actual time could be anywhere between 0 and
1951 * cycles_wait_est. We will use half of cycles_wait_est.
1953 waitedForGpu
= DdBalanceRegionWaitedForGpu::no
;
1955 ddBalanceRegionHandler
.closeAfterForceComputationGpu(cycles_wait_gpu
, waitedForGpu
);
1959 if (fr
->nbv
->emulateGpu())
1961 // NOTE: emulation kernel is not included in the balancing region,
1962 // but emulation mode does not target performance anyway
1963 wallcycle_start_nocount(wcycle
, ewcFORCE
);
1964 do_nb_verlet(fr
, ic
, enerd
, stepWork
, InteractionLocality::Local
,
1965 DOMAINDECOMP(cr
) ? enbvClearFNo
: enbvClearFYes
, step
, nrnb
, wcycle
);
1966 wallcycle_stop(wcycle
, ewcFORCE
);
1969 // If on GPU PME-PP comms or GPU update path, receive forces from PME before GPU buffer ops
1970 // TODO refactor this and unify with below default-path call to the same function
1971 if (PAR(cr
) && !thisRankHasDuty(cr
, DUTY_PME
) && stepWork
.computeSlowForces
1972 && (simulationWork
.useGpuPmePpCommunication
|| simulationWork
.useGpuUpdate
))
1974 /* In case of node-splitting, the PP nodes receive the long-range
1975 * forces, virial and energy from the PME nodes here.
1977 pme_receive_force_ener(fr
, cr
, &forceOutMtsLevel1
->forceWithVirial(), enerd
,
1978 simulationWork
.useGpuPmePpCommunication
,
1979 stepWork
.useGpuPmeFReduction
, wcycle
);
1983 /* Do the nonbonded GPU (or emulation) force buffer reduction
1984 * on the non-alternating path. */
1985 GMX_ASSERT(!(nonbondedAtMtsLevel1
&& stepWork
.useGpuFBufferOps
),
1986 "The schedule below does not allow for nonbonded MTS with GPU buffer ops");
1987 if (useOrEmulateGpuNb
&& !alternateGpuWait
)
1989 if (stepWork
.useGpuFBufferOps
)
1991 ArrayRef
<gmx::RVec
> forceWithShift
= forceOutNonbonded
->forceWithShiftForces().force();
1993 // Flag to specify whether the CPU force buffer has contributions to
1994 // local atoms. This depends on whether there are CPU-based force tasks
1995 // or when DD is active the halo exchange has resulted in contributions
1996 // from the non-local part.
1997 const bool haveLocalForceContribInCpuBuffer
=
1998 (domainWork
.haveCpuLocalForceWork
|| havePPDomainDecomposition(cr
));
2000 // TODO: move these steps as early as possible:
2001 // - CPU f H2D should be as soon as all CPU-side forces are done
2002 // - wait for force reduction does not need to block host (at least not here, it's sufficient to wait
2003 // before the next CPU task that consumes the forces: vsite spread or update)
2004 // - copy is not perfomed if GPU force halo exchange is active, because it would overwrite the result
2005 // of the halo exchange. In that case the copy is instead performed above, before the exchange.
2006 // These should be unified.
2007 if (haveLocalForceContribInCpuBuffer
&& !useGpuForcesHaloExchange
)
2009 // Note: AtomLocality::All is used for the non-DD case because, as in this
2010 // case copyForcesToGpu() uses a separate stream, it allows overlap of
2011 // CPU force H2D with GPU force tasks on all streams including those in the
2012 // local stream which would otherwise be implicit dependencies for the
2013 // transfer and would not overlap.
2014 auto locality
= havePPDomainDecomposition(cr
) ? AtomLocality::Local
: AtomLocality::All
;
2016 stateGpu
->copyForcesToGpu(forceWithShift
, locality
);
2019 if (stepWork
.computeNonbondedForces
)
2021 fr
->gpuForceReduction
[gmx::AtomLocality::Local
]->execute();
2024 // Copy forces to host if they are needed for update or if virtual sites are enabled.
2025 // If there are vsites, we need to copy forces every step to spread vsite forces on host.
2026 // TODO: When the output flags will be included in step workload, this copy can be combined with the
2027 // copy call done in sim_utils(...) for the output.
2028 // NOTE: If there are virtual sites, the forces are modified on host after this D2H copy. Hence,
2029 // they should not be copied in do_md(...) for the output.
2030 if (!simulationWork
.useGpuUpdate
|| vsite
)
2032 stateGpu
->copyForcesFromGpu(forceWithShift
, AtomLocality::Local
);
2033 stateGpu
->waitForcesReadyOnHost(AtomLocality::Local
);
2036 else if (stepWork
.computeNonbondedForces
)
2038 ArrayRef
<gmx::RVec
> forceWithShift
= forceOutNonbonded
->forceWithShiftForces().force();
2039 nbv
->atomdata_add_nbat_f_to_f(AtomLocality::Local
, forceWithShift
);
2043 launchGpuEndOfStepTasks(nbv
, fr
->gpuBonded
, fr
->pmedata
, enerd
, *runScheduleWork
,
2044 useGpuPmeOnThisRank
, step
, wcycle
);
2046 if (DOMAINDECOMP(cr
))
2048 dd_force_flop_stop(cr
->dd
, nrnb
);
2051 const bool haveCombinedMtsForces
= (stepWork
.computeForces
&& fr
->useMts
&& stepWork
.computeSlowForces
2052 && combineMtsForcesBeforeHaloExchange
);
2053 if (stepWork
.computeForces
)
2055 postProcessForceWithShiftForces(nrnb
, wcycle
, box
, x
.unpaddedArrayRef(), &forceOutMtsLevel0
,
2056 vir_force
, *mdatoms
, *fr
, vsite
, stepWork
);
2058 if (fr
->useMts
&& stepWork
.computeSlowForces
&& !haveCombinedMtsForces
)
2060 postProcessForceWithShiftForces(nrnb
, wcycle
, box
, x
.unpaddedArrayRef(), forceOutMtsLevel1
,
2061 vir_force
, *mdatoms
, *fr
, vsite
, stepWork
);
2065 // TODO refactor this and unify with above GPU PME-PP / GPU update path call to the same function
2066 if (PAR(cr
) && !thisRankHasDuty(cr
, DUTY_PME
) && !simulationWork
.useGpuPmePpCommunication
2067 && !simulationWork
.useGpuUpdate
&& stepWork
.computeSlowForces
)
2069 /* In case of node-splitting, the PP nodes receive the long-range
2070 * forces, virial and energy from the PME nodes here.
2072 pme_receive_force_ener(fr
, cr
, &forceOutMtsLevel1
->forceWithVirial(), enerd
,
2073 simulationWork
.useGpuPmePpCommunication
, false, wcycle
);
2076 if (stepWork
.computeForces
)
2078 /* If we don't use MTS or if we already combined the MTS forces before, we only
2079 * need to post-process one ForceOutputs object here, called forceOutCombined,
2080 * otherwise we have to post-process two outputs and then combine them.
2082 ForceOutputs
& forceOutCombined
= (haveCombinedMtsForces
? forceOutMts
.value() : forceOutMtsLevel0
);
2083 postProcessForces(cr
, step
, nrnb
, wcycle
, box
, x
.unpaddedArrayRef(), &forceOutCombined
,
2084 vir_force
, mdatoms
, fr
, vsite
, stepWork
);
2086 if (fr
->useMts
&& stepWork
.computeSlowForces
&& !haveCombinedMtsForces
)
2088 postProcessForces(cr
, step
, nrnb
, wcycle
, box
, x
.unpaddedArrayRef(), forceOutMtsLevel1
,
2089 vir_force
, mdatoms
, fr
, vsite
, stepWork
);
2091 combineMtsForces(mdatoms
->homenr
, force
.unpaddedArrayRef(),
2092 forceView
->forceMtsCombined(), inputrec
->mtsLevels
[1].stepFactor
);
2096 if (stepWork
.computeEnergy
)
2098 /* Compute the final potential energy terms */
2099 accumulatePotentialEnergies(enerd
, lambda
, inputrec
->fepvals
);
2101 if (!EI_TPI(inputrec
->eI
))
2103 checkPotentialEnergyValidity(step
, *enerd
, *inputrec
);
2107 /* In case we don't have constraints and are using GPUs, the next balancing
2108 * region starts here.
2109 * Some "special" work at the end of do_force_cuts?, such as vsite spread,
2110 * virial calculation and COM pulling, is not thus not included in
2111 * the balance timing, which is ok as most tasks do communication.
2113 ddBalanceRegionHandler
.openBeforeForceComputationCpu(DdAllowBalanceRegionReopen::no
);